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Stabilization of max-plus-linear systems using model predictive

control: The unconstrained case ⋆

Ion Necoara a, Ton J.J. van den Boom a, Bart De Schutter a, Hans Hellendoorn a

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

Max-plus-linear (MPL) systems are a class of event-driven nonlinear dynamic systems that can be described by models that are “linear” in
the max-plus algebra. In this paper we derive a solution to a finite-horizon model predictive control (MPC) problem for MPL systems where
the cost is designed to provide a trade-off between minimizing the due date error and a just-in-time production. In general, MPC can deal
with complex input and states constraints. However, in this paper we assume that these are not present and it is only required that the input
should be a nondecreasing sequence, i.e. we consider the “unconstrained” case. Despite the fact that the controlled system is nonlinear,
by employing recent results in max-plus theory we are able to provide sufficient conditions such that the MPC controller is determined
analytically and moreover the stability in terms of Lyapunov and in terms of boundedness of the closed-loop system is guaranteed a priori.

Key words: Discrete-event systems, max-plus-linear systems, model predictive control, Lyapunov stability, bounded buffer stability.

1 Introduction

Discrete-event systems (DES) are event-driven dynamical
systems that often arise in the context of manufacturing sys-
tems, telecommunication networks, railway networks, par-
allel computing, etc. In the last decades there has been an
increasing amount of research on DES that can be mod-
eled as max-plus-linear (MPL) systems. Most of the earlier
literature on this class of systems addresses performance
analysis [1, 4, 5, 9, 11] rather than control. Although there
are papers on optimal control for MPL systems (see e.g.
[6, 8, 13, 16, 19, 20]), the literature on stabilizing controllers
for MPL systems is relatively sparse. In [6, 13, 16] optimal
controllers for MPL systems were derived. The main differ-
ences between our approach and the approaches of [6,13,16]
are that these papers use an input-output model instead of
a state-space model, that they do not use a receding hori-
zon approach, that stability is not guaranteed a priori in
those papers, except [13], and the optimal input sequence
is sometimes decreasing (i.e. physically infeasible), unless
this sequence is projected on the set of nondecreasing input
sequences, similarly as we do in this paper. In [8, 19] sta-
bility is not guaranteed a priori, and in [20] stability is only
defined in terms of boundedness. Lyapunov stability is not

⋆ This paper was not presented at any IFAC meeting. Corre-
sponding author I. Necoara. Tel. +31-015-2787171. Fax +31-015-
2787171.

Email address: ion.necoara@esat.kuleuven.be (Ion
Necoara).

discussed in [20], it is not proved that stability in terms of
boundedness implies bounded buffer levels, and moreover
the imposed conditions are somewhat restrictive (in particu-
lar irreducibility of the system matrix A is required and the
initial states must satisfy a certain inequality). We obtain an
explicit expression for the model predictive controller (in
fact the current paper extends our results from the confer-
ence paper [20] regarding explicit model predictive control
(MPC)). But in [8, 19] an optimization problem must be
solved in order to obtain the MPC input at each event step.

Model predictive control (MPC) is an attractive feedback
strategy for linear or nonlinear processes [12, 15]: it is an
easy-to-tune method, it is applicable to multi-variable sys-
tems, it can handle constraints, and it is capable of track-
ing pre-scheduled reference signals. The essence of MPC
is to determine a control profile that optimizes a cost crite-
rion over a prediction window and then to apply this control
profile until new process measurements become available.
Feedback is incorporated by using these measurements to
update the optimization problem for the next step.

This paper considers the problem of designing a stabiliz-
ing MPC controller for the class of MPL systems where the
cost is chosen such that it provides a trade-off between min-
imizing the due date error and a just-in-time production. We
define two notions of stability for MPL systems: Lyapunov
stability and stability in terms of boundedness. Although in
general the MPC framework allows us to deal with state
and input constraints (see Remark 2), in this paper we con-
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sider an unconstrained formulation of the MPC, where the
only constraint that we take into account is that the input is
required to be a monotone nondecreasing sequence (since,
in general, the input represents consecutive time instants).
The main advantage of this paper compared to most of the
results on optimal control and MPC for MPL systems is
the fact that we guarantee a priori stability of the closed-
loop system both in the sense of Lyapunov and in terms of
boundedness, that the resulting closed-loop signals are non-
decreasing (i.e. physically feasible), and that the MPC law
is computed explicitly.

One of the key results of this paper is to provide sufficient
conditions such that one can employ results from max-plus
algebra to compute an explicit MPC controller for MPL sys-
tems that guarantees a priory closed-loop stability in terms
of Lyapunov and in terms of boundedness. The usual ap-
proach for proving stability of the MPC is to use a terminal
cost and a terminal set such that the optimal cost becomes a
Lyapunov function [15]. In this paper we do not follow this
classical proof for stability, but rather taking advantage of
the special MPL system properties, particularly monotonic-
ity, we show that by a proper tuning of the design parame-
ters stability can still be guaranteed and convergence can be
achieved even in a finite number of event steps.

This section proceeds with an introduction to MPL systems
and the formulation of the control problem that we are going
to solve in this paper. In Section 2 we derive two controllers
together with their main properties, in particular stability of
the controlled systems. In Section 3, taking into account that
the input should be nondecreasing, we design a stabilizing
MPC controller which turns out to be also a just-in-time
controller. Using results from max-plus algebra, in particu-
lar the monotonicity property of the max and plus operators,
we derive sufficient conditions such that the resulting MPC
controller lies in between the two controllers derived in Sec-
tion 2 and it can be determined explicitly. Moreover, the
closed-loop MPC is stable, and convergence of the closed-
loop state trajectory is even achieved in a finite number of
event steps. We conclude with an example in Section 4.

1.1 Max-Plus Algebra

Define ε :=−∞ and Rε :=R∪{ε}. The max-plus-algebraic
(MPA) addition (⊕) and multiplication (⊗) are defined
as [1, 7]: x⊕ y := max{x,y}, x⊗ y := x+ y, for x,y ∈ Rε .

For matrices A,B ∈R
m×n
ε and C ∈R

n×p
ε one can extend the

definition as follows: (A ⊕ B)i j := Ai j ⊕ Bi j,(A ⊗C)i j :=
⊕n

k=1 Aik ⊗Ck j for all i, j. The matrix ε denotes the MPA
zero matrix of appropriate dimension: ε i j := ε for all i, j.
The matrix E is the MPA identity matrix of appropriate
dimension: Eii := 0 for all i and Ei j := ε for all i, j with
i 6= j. For any matrix A ∈R

n×n
ε let A∗ be defined, whenever

it exists, by A∗ := limk→∞ E ⊕A⊕·· ·⊕A⊗k
.

For a positive integer n, we denote with n := {1,2, · · · ,n}.
A matrix Γ ∈ R

n×m
ε is row-finite if for any row i ∈ n,

max j∈m Γi j > ε; column-finite is similarly defined. For

A ∈ R
m×n
ε and ρ ∈ R the notation A − ρ denotes a new

matrix in R
m×n
ε defined as (A−ρ)i j = Ai j −ρ for all i, j.

We denote with x⊕′ y := min{x,y} and x⊗′ y := x+ y (the
operations ⊗ and ⊗′ differ only in that (−∞)⊗(+∞) :=−∞,
while (−∞)⊗′ (+∞) :=+∞). The matrix multiplication and
addition for (⊕′,⊗′) are defined similarly as for (⊕,⊗).
It can be shown that the following relations hold for any
matrices A,B and any vectors x,y of appropriate dimensions
over Rε (see [3, Section 1]):

A⊗′(B⊗x)≥(A⊗′B)⊗x, ((−AT )⊗′A)⊗ x≥x (1a)

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y, (1b)

where “≤” denotes the partial order defined by the nonneg-
ative orthant. The rules for the order of evaluation of the
max-plus-algebraic operators are similar to those of conven-
tional algebra. So max-plus-algebraic power has the highest
priority, and ⊗ has a higher priority than ⊕.

Lemma 1 [1, 11] (i) The inequality A ⊗ x ≤ b has the
largest 1 solution xopt = (−AT )⊗′ b =−(AT ⊗ (−b)).
(ii) The equation x = A⊗x⊕b has a solution x = A∗⊗b pro-
vided that A∗ exists. If Ai j < 0 for all i, j, then the solution
is unique.

1.2 Max-Plus-Linear Systems

DES with only synchronization and no concurrency can be
modeled by an MPA model of the following form [1,7,11]:

xsys(k) = Asys ⊗ xsys(k−1)⊕Bsys ⊗usys(k) (2a)

ysys(k) =Csys ⊗ xsys(k), (2b)

where xsys(k) ∈ R
n
ε represents the state, usys(k) ∈ R

m
ε is the

input, ysys(k) ∈ R
p
ε is the output and where Asys ∈ R

n×n
ε ,

Bsys ∈ R
n×m
ε , Csys ∈ R

p×n
ε are the system matrices 2 . In the

context of DES k is an event counter while usys,xsys and
ysys are times (feeding times, processing times and finishing
times, respectively). Note that the state denotes time, and
thus it can be easily measured. Since the input represents
time, a typical constraint that appears in the context of MPL
systems is that the signal usys should be nondecreasing, i.e.

usys(k+1)−usys(k)≥ 0 ∀k ≥ 0. (3)

Remark 2 In [8, 17] we have considered linear state
and input constraints of the form Hkxsys(k)+Gkusys(k)+
Fkrsys(k)≤ hk, where rsys(k) is a reference signal as defined
below. In this paper we consider the “unconstrained” case,
i.e. only the constraints (3) are taken into account. ♦

1 By the largest solution we mean that for all x satisfying A⊗x≤ b
we have xopt ≥ x.
2 We may assume without loss of generality that Bsys is column-
finite and Csys is row-finite since otherwise the corresponding
inputs and outputs can be eliminated from the description model.
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Let λmax be the largest MPA eigenvalue of Asys (λ ∈ Rε is
an MPA eigenvalue if there exists v ∈ R

n
ε with at least one

finite entry such that Asys ⊗ v = λ ⊗ v [1]). We consider a
reference signal (due dates) that the output should track:

rsys(k) = ysys,t + kρ , (4)

where ysys,t ∈ R
p is a vector of offsets 3 . Note that we can

consider a more general signal rsys(·) such that there exists
a finite Kr for which rsys(k) = ysys,t +kρ for all k ≥ Kr. The
subsequent derivations remain the same.
Since through the term Bsys⊗usys it is only possible to create
delays in the starting times of activities, we should choose
the growth rate of the due dates such that is larger than the
growth rate of the system, i.e. ρ ≥ λmax. If λmax > ε (in
practical applications we ever have λmax ≥ 0), then there
exists an MPA invertible matrix P ∈R

n×n
ε such that the ma-

trix Ā = P⊗−1
⊗Asys ⊗P satisfies Āi j ≤ λmax for all i, j ∈ n

(see e.g. [14, Lemma 3]), where P⊗−1
denotes the inverse

of the matrix P in the max-plus algebra, i.e. P⊗−1
⊗P =

P⊗P⊗−1
= En (see [7] for a method to compute P⊗−1

).
In order to simplify the proofs in the sequel we make the
following change of coordinates. First, we consider x̄(k) =

P⊗−1
⊗xsys(k). We denote with B̄ = P⊗−1

⊗Bsys, C̄ =Csys⊗
P and ȳ(k) = ysys(k), ū(k) = usys(k). Rewriting (2a)–(2b) in
the new coordinates, i.e. replacing xsys(k) with P⊗ x̄(k) we
obtain the following equivalent system:

x̄(k) = Ā⊗ x̄(k−1)⊕ B̄⊗ ū(k), ȳ(k) = C̄⊗ x̄(k).

We now consider the normalized system: x(k) = x̄(k)−
ρk, u(k) = ū(k)−ρk, y(k) = ȳ(k)−ρk, A = Ā−ρ (recall
that this means to subtract in the conventional algebra all
entries of x̄, ū, ȳ and of Ā by ρk and ρ , respectively) and
B = B̄, C = C̄. Using the standard max-plus operations the
normalized system can be written as:

x(k) = A⊗ x(k−1)⊕B⊗u(k) (5a)

y(k) =C⊗ x(k). (5b)

As we will see in the sequel, the normalized system allows
us to pose the notion of Lyapunov stability for MPL sys-
tems and it also simplifies the proofs. Therefore, in the se-
quel we consider only MPL systems in the form (5a)–(5b),
where the matrix A satisfies Ai j < 0 for all i, j, provided that

ρ > λmax (since A = Ā−ρ and Āi j ≤ λmax for all i, j ∈ n,

according to the definition of Ā). For the normalized sys-
tems the variables x,u and y represent the delays (deviations)
with respect to some nominal signals (see Appendix A for
their definition) and thus we can consider the problem of
obtaining asymptotic constant values of timers for this new
system. Since we only make a change of coordinates and a

3 In practice, such a reference signal is often used as it corresponds
to a regular and smooth due date signal with a constant output rate.

subtraction with ρk, it follows that if a control law µ is op-
timal for the normalized system, then µ +ρk is optimal for
the original system (see also the Appendix A). In the new
coordinates, the constraint (3) becomes:

u(k+1)−u(k)≥−ρ ∀k ≥ 0. (6)

The MPL system (5a) is controllable if and only if (iff) each
component of the state can be made arbitrarily large by ap-
plying an appropriate controller to the system initially at rest.
It can be checked (see e.g. [10, Theorem 3.3]) that the system

is controllable iff the matrix Γn := [B A⊗B · · ·A⊗n−1
⊗B]

is row-finite (this definition is equivalent to the one given
in [1, 10], where the system is controllable if all states are
connected to some input). Similarly, the system (5a)–(5b) is
observable iff each state is connected to some output, i.e. the

matrix Ωn := [CT (C ⊗A)T · · ·(C ⊗A⊗n−1
)T ]T is column-

finite (see e.g. [10, Theorem 3.10]). The following key as-
sumption will be used throughout the paper:

Assumption A: We consider that ρ > λmax ≥ 0 and the system
is controllable and observable. ♦

The conditions from Assumption A are quite weak and are
usually met in applications. Note that ρ can be chosen arbi-
trarily close to λmax (see also the previous discussion). From
Assumption A it follows that Ai j < 0 for all i, j ∈ n. In the
new coordinates the output should be regulated to the de-
sired target ysys,t.
Since Ai j < 0 for all i, j ∈ n, we have A∗ = En ⊕A⊕·· ·⊕

A⊗n−1
[1, Theorem 3.20]. Note that for any finite vector u

there exists a state equilibrium x (i.e. x=A⊗x⊕B⊗u), given
by x = A∗⊗B⊗u. Note that x is unique (see Lemma 1 (ii))
and finite (since Γn is row-finite). We associate to ysys,t the

largest 4 equilibrium pair (xe,ue) satisfying C⊗ xe ≤ ysys,t.
From the previous discussion and taking into account that
Ωn and B are column-finite and C is row-finite, it follows
that (xe,ue) is unique, finite, and given by:

ue=(−(C⊗A∗⊗B))T⊗′ ysys,t, xe=A∗⊗B⊗ue. (7)

Throughout the paper ‖·‖ represents the ∞-norm (i.e. ‖x‖ :=
maxi∈n |xi|). We consider a state feedback law (e.g. an MPC
law) µ : Rn → R

m and the closed-loop system:

x(k)=A⊗x(k−1)⊕B⊗µ(x(k−1)),y(k)=C⊗x(k). (8)

Definition 3 (i) The closed-loop system (8) is Lyapunov sta-
ble if for any ε > 0 there exists a δ > 0 such that ‖x(0)−
xe‖ ≤ δ implies ‖x(k)− xe‖ ≤ ε for all k ≥ 0.
(ii) The closed-loop system (8) is stable in terms of bound-
edness if for any δ > 0 there exists a θ > 0 such that
‖x(0)− xe‖ ≤ δ implies ‖x(k)− xe‖ ≤ θ for all k ≥ 0.
(iii) The closed-loop system (8) is finitely convergent if there

4 By the largest we mean that any other feasible equilibrium pair
(x,u) satisfies x ≤ xe,u ≤ ue.
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exists a finite k0 such that x(k) = xe for all k ≥ k0.
The closed-loop system is finitely Lyapunov stable if it is
Lyapunov stable and finitely convergent.

In [1,13,18] stability for DES is defined in terms of bound-
edness of the buffer levels. In Appendix A we will prove that
stability in terms of boundedness for the normalized system
(Definition 3 (ii)) implies boundedness of the buffer levels
for the original system (2a)–(2b). In this paper however, in
addition to stability in terms of boundedness we also prove
Lyapunov stability. We formulate now the control problem
that we solve in the sequel:

Problem definition: Design a state feedback law µ : Rn →
R

m for the MPL system (5a)–(5b) such that the closed-loop
system is finitely Lyapunov stable and/or stable in terms of
boundedness and the constraint (6) is satisfied. ♦

2 Stabilizing controllers

2.1 Feedback and ultimately constant slope controller

We consider the normalized system (5a)–(5b), where A ∈
R

n×n
ε , B∈R

n×m
ε , C ∈R

p×n
ε and the matrix A satisfies Ai j < 0

for all i, j ∈ n (according to Assumption A), subject to the
constraint (6). We define two types of control input signals:

• one that corresponds to a feedback controller

uf(k) := (−BT )⊗′ (A⊗ x(k−1)⊕

B⊗ (u(k−1)−ρ)⊕ xe), (9)

• an ultimately constant slope (UCS) control signal

uc(k) := ue ⊕ (u(k−1)−ρ), (10)

with x(k−1) and u(k−1) the previous state and input.

For the original system the UCS controller results in a con-
trol input that has a constant slope ρ for k large enough since
uc

sys(k)= (ue+ρk)⊕uc
sys(k− 1). Later on, we will show that

under some conditions the MPC controller lies in between
these two controllers. However, we do not need to compute
them explicitly in order to obtain the MPC controller.
With the feedback controller (9) the normalized system (5a)
becomes

xf(k) = A⊗ xf(k−1)⊕B⊗uf(k) (11a)

uf(k) = (−BT )⊗′ (A⊗ xf(k−1)⊕

B⊗ (uf(k−1)−ρ)⊕ xe), (11b)

for initial conditions xf(0) = x(0) and uf(0) = u(0). With
the UCS controller (10) the normalized system becomes

xc(k) = A⊗ xc(k−1)⊕B⊗uc(k) (12a)

uc(k) = ue ⊕ (uc(k−1)−ρ), (12b)

where the initial conditions xc(0) = x(0) and uc(0) = u(0)
are given. Under these initial conditions by iterating back-
wards (12b) and using Assumption A (in particular that
ρ > 0) it follows that uc(k) = ue ⊕ (u(0)−ρk).

First let us note that the feedback controller uf defined in
(11b) satisfies the constraint (6). Indeed, from (1b) it follows
that uf(k)≥ (−BT )⊗′ (B⊗(uf(k−1)−ρ)) and from (1a) we

conclude that uf(k)≥ uf(k−1)−ρ . Using similar arguments

we can prove that uf(k)≥ ue for all k ≥ 1. Clearly the UCS
controller uc defined in (12b) satisfies the constraint (6) and
uc(k)≥ ue for all k ≥ 1. Furthermore,

{

xf(k)≤A⊗ xf(k−1)⊕B⊗(uf(k−1)−ρ)⊕xe

xf(k)≥A⊗xf(k−1)⊕B⊗(uf(k−1)−ρ)⊕B⊗ue
(13)

Indeed, from Lemma 1 (i) and (11b) it follows that B⊗
uf(k) ≤ A ⊗ xf(k − 1)⊕ B ⊗ (uf(k − 1)− ρ)⊕ xe and thus

xf(k)≤ A⊗xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕xe. The second

inequality is straightforward (recall that uf(k)≥ uf(k−1)−ρ
and uf(k) ≥ ue and using the monotonicity property (1b) it

follows that xf(k) ≥ A⊗ xf(k − 1)⊕B⊗ (uf(k − 1)− ρ)⊕
B⊗ue). The next inequality is also useful:

B⊗(uf(k−1)−ρ)=(B⊗uf(k−1))−ρ ≤xf(k−1)−ρ , (14)

since xf(k−1)≥ B⊗uf(k−1).

Lemma 4 The following inequalities hold:

uf(k)≥ uc(k) and xf(k)≥ xc(k) ∀k ≥ 0. (15)

PROOF. We prove the lemma by induction. For k = 0 we
have uf(0) = uc(0) = u(0) and xf(0) = xc(0) = x(0). Let us
assume that the inequalities of the lemma are valid for a
given k−1. Now we prove that they also hold for k. Since uf

satisfies the constraint (6) and using our induction hypothesis
we obtain uf(k)≥ uf(k−1)−ρ ≥ uc(k−1)−ρ . Moreover,

uf(k)≥ ue. We conclude that uf(k)≥ (uc(k−1)−ρ)⊕ue =
uc(k). Using again the induction hypothesis and the mono-

tonicity property (1b) it follows that: xf(k)≥ A⊗xc(k−1)⊕
B⊗uf(k)≥ A⊗ xc(k−1)⊕B⊗uc(k) = xc(k). ♦

2.2 Stability of the feedback and UCS controller

The stabilizing properties of the two controllers discussed
before are summarized in the next theorem.

Theorem 5 The following statements hold:
(i) For any initial conditions xf(0) = x(0) ∈R

n and uf(0) =
u(0) ∈R

m there exists a finite Kf such that xf(k) = xe for all

k ≥ Kf.
(ii) For any initial conditions xc(0) = x(0)∈R

n and uc(0) =
u(0) ∈ R

m there exists a finite Kc such that xc(k) = xe for

4



all k ≥ Kc.
(iii) The controlled systems (11a) and (12a) are finitely Lya-
punov stable. In particular, they are also stable in terms of
boundedness.

PROOF. (i) From (13) and (14) it follows that

xf(k)≤ A⊗ xf(k−1)⊕ (xf(k−1)−ρ)⊕ xe. (16)

Iterating this formula backwards we obtain xf(k) ≤
⊕k

t=0(A
⊗k−t

⊗ (xf(0) − tρ)) ⊕ xe. Since Ai j < 0 for all
i, j ∈ n, it follows that [11, Section 2.3]

A⊗k
⊗ xf(0)→ ε as k → ∞. (17)

We denote with z0 = xf(0) and iteratively zk =
⊕k

t=0(A
⊗k−t

⊗

(xf(0)− tρ)) = max{A⊗k
⊗ xf(0),zk−1 −ρ}. From (17) and

since ρ > 0 it follows that

zk → ε as k → ∞. (18)

Therefore, there exists a finite integer Kf
0 such that

⊕k
t=0(A

⊗k−t
⊗ (xf(0)− tρ))≤ xe for any k ≥ Kf

0. In conclu-

sion, xf(k)≤ xe for any k ≥ Kf
0.

On the other hand, from (13) it follows that xf(k) ≥
A⊗ xf(k− 1)⊕B⊗ ue. Iterating this formula and using the

definition of xe =
⊕n

t=1(A
⊗n−t

⊗ B ⊗ ue) it follows that

xf(k)≥ A⊗k
⊗ xf(0)⊕ xe for all k ≥ n.

From the previous discussion it follows that there exists
Kf ≥ max{Kf

0,n} such that xf(k) = xe for all k ≥ Kf.

(ii) Since ρ > 0 and uc(k) = ue ⊕ (u(0)− ρk) it follows

that uc(k) = ue for k large enough. Note that xc(k) = A⊗k
⊗

xc(0)⊕ (
⊕k

t=1(A
⊗k−t

⊗B⊗ (u(0)− tρ)))⊕ (
⊕k

t=1 A⊗k−t
⊗

B⊗ue). From (17) we have A⊗k
⊗xc(0)→ε as k→∞. Using

similar arguments as in (18) it follows that
⊕k

t=1(A
⊗k−t

⊗

B⊗ (u(0)− tρ))→ ε as k → ∞. Since xe =
⊕n

t=1(A
⊗n−t

⊗
B⊗ ue), there exists a Kc ≥ n such that xc(k) = xe for all
k ≥ Kc.

(iii) From (i) and (ii) we conclude that we have finite con-
vergence for the controlled systems (11a) and (12a). Let
us now prove Lyapunov stability of both controlled sys-
tems. Let ε > 0 and consider ‖x(0)− xe‖ ≤ ε (i.e. δ = ε).

From Lemma 4 it follows that for all k ≥ 0: max{‖xf(k)−
xe‖,‖xc(k)− xe‖} ≤ maxi∈n{(x

f(k)− xe)i,(xe − xc(k))i}.

Note that aT ⊗ x − aT ⊗ y ≤ maxi∈n{xi − yi} for any
a∈R

n
ε ,a 6=ε , and x,y∈R

n [11, Lemma 3.10]. From the last

inequality and (16) it follows that maxi∈n{(x
f(k)− xe)i} ≤

maxi∈n{((A ⊗ xf(k − 1)⊕ (xf(k − 1)− ρ)⊕ xe)− xe)i} =

maxi∈n{((A⊗ xf(k− 1)⊕ (xf(k− 1)− ρ)⊕ xe)− (A⊗ xe ⊕

(xe − ρ) ⊕ xe))i} ≤ maxi∈n{(x
f(k − 1) − xe)i,0}. Iterat-

ing this inequality backwards we obtain maxi∈n{(x
f(k)−

xe)i} ≤ maxi∈n{(x
f(0)− xe)i,0} ≤ ε for all k ≥ 0. More-

over, xe = A⊗k
⊗ xe ⊕ (

⊕k
t=1(A

⊗k−t
⊗ B ⊗ ue)) for all

k ≥ 1. From second part of the proof we see that

xc(k) ≥ A⊗k
⊗ xc(0)⊕ (

⊕k
t=1(A

⊗k−t
⊗ B ⊗ ue)). It follows

that maxi∈n{(xe−xc(k))i}≤maxi∈n{(xe−xc(0))i,0} ≤ ε for

all k ≥ 0. So max{‖xf(k)− xe‖,‖xc(k)− xe‖} ≤ ε for all
k ≥ 0, i.e. the controlled systems (11a) and (12a) are finitely
Lyapunov stable. Using the same arguments as above it
follows that the controlled systems (11a) and (12a) are also
stable in terms of boundedness (we may take θ = δ ). ♦

An immediate consequence of Theorem 5 is the following:

Corollary 6 For any input signal u(·) fulfilling the con-

straint (6) and such that uc(k)≤ u(k)≤ uf(k) for all k, the

corresponding trajectory satisfies xc(k) ≤ x(k) ≤ xf(k) for
all k. Moreover, there exists a finite K such that x(k) = xe

for all k ≥ K. Consequently the controlled system obtained
by applying this input signal is finitely Lyapunov stable and
stable in terms of boundedness. ♦

Note that once we have finite convergence the output of the
controlled system satisfies max{y(k)−ysys,t,0}= 0 or equiv-
alently max{ysys(k)− rsys(k),0} = 0 for all k ≥ K (where

K ≤ Kf according to Theorem 5), which implies ysys(k) ≤
rsys(k) (i.e. we obtain a just-in-time production).

3 Stabilizing MPC controller

Given the state and the input at event step k−1, the following
cost function is introduced:

J(x(k−1), ũ(k))=
N−1

∑
j=0

n

∑
i=1

max{xi(k+ j|k−1)−(xe)i,0}

−β
N−1

∑
j=0

m

∑
i=1

ui(k+ j|k−1), (19)

where N is the prediction horizon, β > 0 is the weight,
and x(k+ j|k−1) is the system state at event step k+ j as
predicted at event step k−1, based on the MPL difference
equation (5a), the state x(k−1) and the future input sequence

ũ(k) = [uT (k|k−1) · · ·uT (k+N −1|k−1)]T .

The first term in the cost expresses the tardiness (i.e. pe-
nalizes every delay with respect to the desired due date tar-
get xe), while the second term maximizes the feeding times
(we want to feed raw material as late as possible). So, the
cost function is designed to obtain a just-in-time controller.
We define the following optimization problem:

J∗(x(k−1)) = min
ũ(k)

J(x(k−1), ũ(k)) s.t. (20)
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x(k+ j|k−1) = A⊗ x(k+ j−1|k−1)⊕

B⊗u(k+ j|k−1)

u(k+ j|k−1)−u(k+ j−1|k−1)≥−ρ ∀ j

(21)

where x(k− 1|k− 1) = x(k− 1),u(k− 1|k− 1) = u(k− 1).
Let ũ♮(k) be the optimal solution of (20)–(21). Using the
receding horizon principle at event counter k we apply only
the input uMPC,N(k) = u♮(k|k−1). Note that ũ♮(k) depends

on x(k−1) and consequently uMPC,N(k) depends on x(k− 1).
In this way we can define an implicit MPC state feedback
law. The evolution of the closed-loop system obtained from
applying the MPC law is denoted with

xMPC,N(k)=A⊗xMPC,N(k−1)⊕B⊗uMPC,N(k), (22)

where xMPC,N(0) = x(0), uMPC,N(0) = u(0) are given initial
conditions. Let us define the matrices

D̃=















B ε · · · ε
A⊗B B · · · ε

...
...

. . .
...

A⊗N−1
⊗B A⊗N−2

⊗B · · · B















,C̃=















A

A⊗2

...

A⊗N















and the vectors ū(k) = [uT (k − 1) − ρ · · ·uT (k − 1) −
Nρ ]T , ūe = [uT

e · · ·u
T
e ]

T , x̄e = [xT
e · · ·x

T
e ]

T and x̄(k) =
C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ū(k) ⊕ x̄e, or in vector notation
x̄(k) = [x̄T (k|k−1) · · · x̄T (k+N −1|k−1)]T .

The next lemma shows that the MPC controller uMPC,N is
bounded from below by the UCS controller uc.

Lemma 7 uc(k)≤ uMPC,N(k), xc(k)≤ xMPC,N(k) ∀k ≥ 0

PROOF. First, let us show that ũ♮(k) ≥ ūe. The states

corresponding to ũ♮(k) are given by : x̃♮(k) = C̃ ⊗
x(k − 1) ⊕ D̃ ⊗ ũ♮(k), or in vector notation x̃♮(k) =
[(x♮(k|k − 1))T · · ·(x♮(k + N − 1|k − 1))T ]T . Let us as-

sume that ũ♮(k) 6≥ ūe. Define ũfeas(k) = ũ♮(k)⊕ ūe and

x̃feas(k) = C̃⊗ x(k− 1)⊕ D̃⊗ ũfeas(k). Note that ũfeas(k) is
a feasible solution of the problem (20)–(21), i.e. it satis-

fies the constraints (21). Since A⊗ j
⊗B⊗ ue ≤ xe for all j,

x̃feas(k) = x̃♮(k)⊕ D̃⊗ ūe ≤ x̃♮(k)⊕ x̄e. It follows that

J(x(k−1), ũfeas(k))≤
N−1

∑
j=0

n

∑
i=1

max{x
♮
i (k+ j|k−1)−

(xe)i,0}−β
N−1

∑
j=0

m

∑
i=1

ufeas
i (k+ j|k−1)<

N−1

∑
j=0

n

∑
i=1

max{x
♮
i (k+ j|k−1)− (xe)i,0}−

β
N−1

∑
j=0

m

∑
i=1

u
♮
i (k+ j|k−1) = J(x(k−1), ũ♮(k)),

and thus we get contradiction with the optimality of ũ♮(k).

Now we go on with the proof of the lemma using induction.
For k = 0 we have uc(0) = uMPC,N(0) = u(0) and xc(0) =
xMPC,N(0) = x(0). We assume that uc(k−1)≤ uMPC,N(k−1)
and xc(k− 1) ≤ xMPC,N(k− 1) and we prove that these in-
equalities also hold for k. From the induction hypothesis
we have uMPC,N(k) ≥ uMPC,N(k − 1)− ρ ≥ uc(k − 1)− ρ .

Moreover, uMPC,N(k) = u♮(k|k − 1) ≥ ue. So uMPC,N(k) ≥
(uc(k− 1)−ρ)⊕ ue = uc(k). From the monotonicity prop-
erty (1b) it follows that xc(k) = A⊗xc(k−1)⊕B⊗uc(k)≤
A⊗ xMPC,N(k−1)⊕B⊗uMPC,N(k) = xMPC,N(k). ♦

We will show in the sequel that when the parameters N and
β are chosen properly the MPC controller is bounded from
above as well and therefore it will stabilize the system (5a)–
(5b). In fact, the next proposition shows us that by a proper
tuning of the design parameters the MPC controller can be
interpreted as a just-in-time controller.

Proposition 8 Assume β < 1
mN

and consider the maximiza-
tion problem

ũ♯(k) = argmax
ũ(k)

N−1

∑
j=0

m

∑
i=1

ui(k+ j|k−1) (23)

s.t.

{

D̃⊗ ũ(k)≤ x̄(k)

u(k+ j|k−1)−u(k+ j−1|k−1)≥−ρ ∀ j.
(24)

Then, ũ♯(k) is also the optimal solution of (20)–(21).

PROOF. Note that we do not have to impose also the con-
straint u(k|k− 1)− u(k− 1|k− 1) ≥ −ρ in (24). This in-
equality is automatically satisfied, since ū(k) is a feasible so-
lution for (20)–(21) and consequently a feasible solution for
the optimization problem (23)–(24) and thus ū(k)≤ ũ♯(k).

We will prove this lemma by contradiction. Define
x̄c(k) = C̃⊗x(k−1)⊕ D̃⊗ ū(k) then x̄(k) = x̄c(k)⊕ x̄e. First

let us consider an ũ♭(k) that satisfies (24) but for which

∑N−1
j=0 ∑m

i=1 u♭i (k + j|k − 1) < ∑N−1
j=0 ∑m

i=1 u
♯
i (k + j|k − 1).

Define x̃♭(k) = C̃ ⊗ x(k − 1)⊕ D̃ ⊗ ũ♭(k). Then, for each

i ∈ n and j ∈ {0,1, · · · ,N − 1} it follows that max{x♭i (k+

j|k − 1),(xe)i} = max{xc
i (k + j|k − 1), D̃ jn+i ⊗ ũ♭,(xe)i} =

max{x̄i(k + j|k − 1), D̃ jn+i ⊗ ũ♭} = x̄i(k + j|k − 1), where

D̃ jn+i denotes the ( jn + i)-th row of D̃. It follows that

J(x(k − 1), ũ♭(k)) = ∑N−1
j=0 ∑n

i=1(x̄i(k + j|k − 1) − (xe)i) −

β ∑N−1
j=0 ∑m

i=1 u♭i (k+ j)> ∑N−1
j=0 ∑n

i=1(x̄i(k+ j|k−1)− (xe)i)

−β ∑N−1
j=0 ∑m

i=1 u
♯
i (k+ j) = J(x(k−1), ũ♯(k)), and thus ũ♭(k)

cannot be the optimal solution of (20)–(21).
Next let us consider ũ†(k) that satisfies (21) but not the in-
equality D̃ũ≤ x̄(k). Define δ =maxi∈n, j∈{0,··· ,N−1}{(D̃ jn+i⊗

ũ†(k))− x̄i(k+ j|k−1)}> 0. Then, there exist i0, j0 such that
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x
†
i0
(k + j0|k − 1) = D̃ j0n+i0 ⊗ ũ†(k) = x̄i0(k + j0|k − 1) + δ

and thus ∑N−1
j=0 ∑n

i=1 max{x
†
i (k + j|k − 1) − (xe)i,0} ≥

∑N−1
j=0 ∑n

i=1 max{x̄i(k + j|k − 1) − (xe)i,0} + δ . Note that

ũ‡(k) = (ũ†(k)−δ )⊕ ū(k) fulfills (24) and the correspond-
ing cost satisfies:

J(x(k−1), ũ‡(k))≤
N−1

∑
j=0

n

∑
i=1

max{x
†
i (k+ j|k−1)−(xe)i,

0}−δ −β (
N−1

∑
j=0

m

∑
i=1

u
†
i (k+ j|k−1)−Nmδ ) =

J(x(k−1), ũ†(k))+(βNm−1)δ < J(x(k−1), ũ†(k)),

and thus ũ†(k) cannot be the optimal solution of (20)–(21).

This proves that ũ♯(k) is also the optimal solution of the
original optimization problem (20)–(21). ♦

From the proof of Proposition 8 it follows that the optimal
control sequence ũ♯(k) is a just-in-time control sequence
over the prediction window [k,k+N − 1], since we search
for the latest input dates ũ(k) such that the state dates occur
at times as close as possible to the desired ones or at the
latest before the desired ones.
Let us define ũ∗N(k) := (−D̃T )⊗′ x̄(k) or in vector notation
it can be written as ũ∗N(k) = [(u∗N(k|k− 1))T · · ·(u∗N(k+
N−1|k−1))T ]T . The following lemma provides an explicit
solution to the optimization problem (23)–(24).

Lemma 9 The optimization problem (23)–(24) has an
unique solution given by:

u♯(k+N −1|k−1) = u∗N(k+N −1|k−1)

u♯(k+ j|k−1) = min{u∗N(k+ j|k−1), (25)

u♯(k+ j+1|k−1)+ρ},

for j = N −2, · · · ,0.

PROOF. The feasibility conditions (24) for u♯(k+N−1|k−
1) are given by: B⊗u♯(k+N−1|k−1)≤ x̄(k+N−1|k−1),
and from Lemma 1 (i) it is clear that the largest u♯(k+N −
1|k−1) is given by u♯(k+N−1|k−1) = u∗N(k+N−1|k−
1) = (−BT )⊗′ x̄(k+N −1|k−1).

From the feasibility conditions (24), u♯(k+N−2|k−1) has
to satisfy:

A⊗B⊗u♯(k+N−2|k−1)≤ x̄(k+N−1|k−1),

B⊗u♯(k+N−2|k−1)≤ x̄(k+N−2|k−1),

u♯(k+N −2|k−1)≤ u♯(k+N −1|k−1)+ρ ,

and thus the largest u♯(k+N−2|k−1) is given by u♯(k+N−
2|k− 1) = min{u∗N(k+N − 2|k− 1),u♯(k+N − 1|k− 1)+

ρ}. Using the same reasoning we obtain: u♯(k+ j|k−1)≤
u∗N(k + j|k − 1), u♯(k + j|k − 1) ≤ u♯(k + j + 1|k − 1)+ ρ
for all j, i.e. the formula (25). ♦

Lemma 10 Any feasible solution ũfeas(k) of (23)–(24) sat-

isfies ũfeas(k)≤ ũ♯(k).

PROOF. From Lemma 1 and D̃ ⊗ ũfeas(k) ≤ x̄(k) it fol-
lows that ũfeas(k) ≤ ũ∗N(k) and thus ufeas(k + N − 1|k −
1) ≤ u∗N(k+N − 1|k− 1) = u♯(k+N − 1|k− 1). Note that
ufeas(k+N −2|k−1) satisfies

ufeas(k+N −2|k−1)≤ u∗N(k+N −2|k−1)

ufeas(k+N−2|k−1)≤ufeas(k+N −1|k−1)+ρ ≤

u♯(k+N−1|k−1)+ρ .

In conclusion ufeas(k+N−2|k−1)≤min{u∗N(k+N−2|k−
1),u♯(k+N−1|k−1)+ρ}= u♯(k+N−2|k−1). Applying
this reasoning backwards, it follows that ufeas(k+ j|k−1)≤
u♯(k+ j|k−1) for all j =N−1, · · · ,0, i.e. ũfeas(k)≤ ũ♯(k). ♦

Since x̄(k|k−1) = A⊗x(k−1)⊕B⊗(u(k−1)−ρ)⊕xe and

B⊗u♯(k|k−1)≤ x̄(k|k−1), it follows that

uMPC,N(k)≤ (−BT )⊗′ (A⊗ x(k−1)⊕

B⊗ (u(k−1)−ρ)⊕ xe), (26)

for any previous state x(k−1) and input u(k−1). The next
theorem characterizes the stabilizing properties of the MPC
controller. Contrary to the classical MPC where stability is
proved using the optimal cost as a Lyapunov function (see
e.g. [2, 12, 15]), here the proof is based on the particular
properties of max-plus algebra, especially the monotonicity
property (1b). We will show that the MPC policy lies in
between an infinite horizon policy and a feedback policy.

Theorem 11 Suppose that β < 1
mN

, then
(i) The following inequalities hold

uc(k)≤ uMPC,N(k)≤ uf(k), (27)

xc(k)≤ xMPC,N(k)≤ xf(k) ∀k ≥ 0.

In particular, the closed-loop system (22) is finitely Lyapunov
stable and stable in terms of boundedness.
(ii) If N = 1, then uMPC,1(k) = uf(k). For two prediction
horizons N1 < N2 the following inequalities hold

uMPC,N1(k)≥ uMPC,N2(k), (28)

xMPC,N1(k)≥ xMPC,N2(k) ∀k ≥ 0.

PROOF. (i) The left-hand side of inequalities (27) follows
from Lemma 7.
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The right-hand side of inequalities (27) is proved using in-
duction. For k = 0 we have uMPC,N(0) = uf(0) = u(0) and

xMPC,N(0) = xf(0) = x(0). Let us assume that uMPC,N(k−
1) ≤ uf(k− 1) and xMPC,N(k− 1) ≤ xf(k− 1) are valid and
we prove that they also hold for k. From (26) and our in-
duction hypothesis we have:

B⊗uMPC,N(k)≤A⊗xMPC,N(k−1)⊕B⊗(uMPC,N(k−1)

−ρ)⊕ xe ≤ A⊗ xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕ xe.

On the other hand, uf(k) is the largest solution of

B⊗uf(k)≤A⊗ xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕ xe.

From Lemma 1 (i) it follows that uMPC,N(k)≤ uf(k). Then,

xMPC,N(k)=A⊗xMPC,N(k−1)⊕B⊗uMPC,N(k)≤A⊗xf(k−
1)⊕B⊗uf(k) = xf(k+1).
The stability properties of the MPC controller follow from
Corollary 6.

(ii) For N = 1 from the feasibility condition (24) it is clear
that ũ♯(k) = u♯(k) = uf(k) (according to (9)).
For two prediction horizons N1 < N2, we denote with D̃(N1)

the matrix D̃ from (24) corresponding to the prediction
horizon N = N1. Similarly, we define D̃(N2). Note that

D̃(N2) =

[

D̃(N1) ε
∗ ∗

]

(where ∗ stands for matrix blocks of

appropriate dimensions but that are not relevant for this
proof). We denote with x̄(N1)(k) the vector x̄(k) from (24)

corresponding to N = N1 and ũ
♯
(N1)

(k) the optimal solu-

tion of (23)–(24) corresponding to N1. Similarly, we define

x̄(N2)(k) and ũ
♯
(N2)

(k).

We prove the inequalities (28) by induction. For k = 0
the statement is true: uMPC,N1(0) = uMPC,N2(0) = u(0)
and xMPC,N1(0) = xMPC,N2(0) = x(0). Let us assume that

uMPC,N1(k − 1) ≥ uMPC,N2(k − 1) and xMPC,N1(k − 1) ≥

xMPC,N2(k− 1). Define ũ
♯
(N2)

(k : k+N1 − 1) the sub-vector

of ũ
♯
(N2)

(k) containing the first mN1 components. We have:

D̃(N2)⊗ũ
♯
(N2)

(k)=

[

D̃(N1) ε
∗ ∗

]

⊗





ũ
♯
(N2)

(k : k+N1−1)

∗





≤ x̄(N2)(k)=

[

x̄(N2)(k : k+N1 −1)

∗

]

≤

[

x̄(N1)(k)

∗

]

.

It follows that D̃(N1) ⊗ ũ
♯
(N2)

(k : k +N1 − 1) ≤ x̄(N1)(k), i.e

ũ
♯
(N2)

(k : k+N1−1) is feasible for (23)–(24) with prediction

horizon N = N1. From Lemma 10 we obtain that ũ
♯
(N2)

(k :

k+N1 −1)≤ ũ
♯
(N1)

(k). Therefore, uMPC,N1(k) = u
♯
(N1)

(k|k−

P1

P2

✲

✲

P
P
P

P
PPq

✏
✏
✏

✏
✏✏✶

P3
✲usys(k) ysys(k)

t1 =2

t2 =0

t3 =1

t4 =0
t5 =0

d1 =11

d2 =12

d3 =7

Figure 1. A production system.

1) ≥ u
♯
(N2)

(k|k − 1) = uMPC,N2(k). Similarly, xMPC,N1(k) ≥

xMPC,N2(k). ♦

4 Example

We consider the example from [8], which represents a pro-
duction system with three processing units (see Figure 1)
that has the following state space description:

xsys(k) =









11 ε ε

ε 12 ε

23 24 7









⊗xsys(k−1)⊕









2

0

14









⊗usys(k)

ysys(k) = [ε ε 7]⊗ xsys(k).

In this example the largest MPA eigenvalue (the growth rate
of the system) is λmax = 12 and P = diag⊕([0 0 12]) 5 . We
consider the following due dates rsys(k) = 25+ 14.4k, i.e.
the offset vector is ysys,t = 25 and ρ = 14.4. We choose the
prediction horizon N = 5 and the weight β = 0.18. Note that

β < 1
N

, i.e. the condition from Theorem 11 is satisfied. The

initial conditions are chosen to be xsys(0) = [37 29 26]T and
usys(0) = 35. The normalized system has the form: y(k)=
[ε ε 19]⊗x(k) and

x(k)=









−3.4 ε ε

ε −2.4 ε

−3.4 −2.4 −7.4









⊗x(k−1)⊕









2

0

2









⊗u(k).

The equilibrium pair is given by xe = [6 4 6]T and ue = 4.

The controllers uc,uf,uMPC,5 corresponding to the normal-
ized system are depicted in Figure 2 and the corresponding
state trajectories in Figure 3. In this particular case we see
that uc(k) ≤ uf(k) = uMPC,5(k) but xc(k) = xf(k) = xMPC,5

for all k. Note that we have finitely Lyapunov stability since
convergence is achieved in a finite number of event steps.

5 Conclusions

In this paper we have discussed the problem of guaranteeing
a priori stability of an MPL system using the MPC frame-
work. We have provided sufficient conditions that guarantee

5 A matrix D=diag⊕(v), where v ∈ R
n, is defined as follows:

Dii = vi for all i and Di j = ε for all i 6= j.
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Figure 2. The controllers uc,uf,uMPC,5.
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Figure 3. State trajectory using different controllers: xc,xf,xMPC,5.

that the MPC controller based on a finite-horizon optimal
control problem guarantees a priori stability of the closed-
loop systems and the resulting control input sequence is
nondecreasing. Contrary to the classical case where stability
of the MPC is proved using a terminal cost/terminal set ap-
proach, we have shown that by a proper tuning of the design
parameters stability can be achieved even in finite number
of event steps and an analytic solution can be obtained for
the MPC controller although the system is nonlinear. The
key assumptions that allow one to guarantee stability of the
closed-loop system were that the growth rate of the due dates
be larger than the growth rate of the system and the cost

function be designed to provide a just-in-time controller.

A Appendix

In this appendix we show that stability in terms of bounded-
ness for the normalized system implies boundedness of the
buffer levels for the original system.

Remark 12 Since we assume that Bsys and Csys are column-
finite and row-finite, respectively, then by their multiplication
in the max-plus algebra with an MPA invertible matrix these
properties are preserved. It follows that the matrices B and
C are also column-finite and row-finite, respectively. ♦

For a row-finite matrix A ∈ R
m×n
ε the following property

holds [11, Lemma 3.10]:

‖A⊗ x−A⊗ y‖ ≤ ‖x− y‖ ∀x,y ∈ R
n. (A.1)

It is clear that if u(k) and x(k) are the input and state trajecto-
ries for the nominal system (5a), then xsys(k) =P⊗x(k)+ρk
is the state trajectory for the original system (2a) corre-
sponding to the input trajectory usys(k) = u(k)+ρk. Let us
define the nominal trajectories xe

sys(k) := P⊗ xe + ρk and

ue
sys(k) := ue+ρk. Moreover, we denote the state trajectories

for the original system (2a) obtained by applying the con-
trollers uf

sys(k) = uf(k)+ρk and uc
sys(k) = uc(k)+ρk with

xf
sys(k) and xc

sys(k), respectively. From the previous discus-

sion it follows that xf
sys(k) = P⊗ xf(k)+ ρk and xc

sys(k) =

P⊗ xc(k)+ρk.

First let us prove that the feedback controller uf and the
UCS controller uc are bounded. Recall that in Section 2.1 we
have shown that uf(k)≥ uc(k) ≥ ue for all k, i.e. these two
controllers are bounded from below. It remains to prove that
the feedback controller uf is also bounded from above. Let
us assume that uf is not bounded from above, i.e. there exists
j0 ∈m such that the signal {uf

j0
(k)}k≥0 diverges towards+∞.

Since the matrix B is row-finite (according to Remark 12)
it follows that there exists an i0 ∈ n such that Bi0 j0 ∈ R and

thus xf
i0
(k) = max{∗,Bi0 j0 +uf

j0
(k)} is unbounded (where ∗

stands for scalar expressions that are not relevant for this
proof), which is a contradiction with the result from Theorem
5 (iii). It follows that

‖uf
sys(k)−ue

sys(k)‖, ‖uc
sys(k)−ue

sys(k)‖ is bounded ∀k≥0.

Since P and C are row-finite, using (A.1) the following in-
equalities can be deduced:

‖xsys(k)− xe
sys(k)‖ ≤‖x(k)−xe‖

‖ysys(k)− rsys(k)‖ ≤‖x(k)−xe‖+‖(C⊗xe)− ysys,t‖.

Using the last two inequalities we conclude that if the nor-
malized system is stable in terms of boundedness (as defined

9
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Figure A.1. Buffer between two processing units.

in Definition 3 (ii)), then the original closed-loop system ob-
tained by applying the feedback law µ(x(k− 1))+ρk has
the property that

‖xsys(k)− xe
sys(k)‖ is bounded ∀k ≥ 0, (A.2)

and the corresponding output satisfies

‖ysys(k)− rsys(k)‖ is bounded ∀k ≥ 0. (A.3)

Now let us prove that if ‖usys(k) − ue
sys(k)‖,‖xsys(k) −

xe
sys(k)‖ and ‖ysys(k)− rsys(k)‖ are bounded for all k ≥ 0,

then the buffer levels are also bounded. It is sufficient to
prove boundedness of the internal buffers since for the input
or output buffers the proof is similar. Let us consider the
buffer between the internal states i and j (see Figure A.1),
then the buffer level of this buffer at time t is given by:

L (t) =
∞

∑
k=0

I{t≥(xsys)i(k)+pi}−
∞

∑
k=0

I{t≤(xsys) j(k)},

where pi is a fixed positive scalar (the processing time of the
ith processing unit) and IS is the indicator function defined
as IS = 1, if S is true and IS = 0, if S is false. Since ‖xsys(k)−
xe

sys(k)‖ is bounded it follows that there exist some finite
scalars mi,Mi,m j and M j such that

mi +ρk ≤ (xsys)i(k)≤ Mi +ρk

m j +ρk ≤ (xsys) j(k)≤ M j +ρk

for all k ≥ 0. If k satisfies t ≥ (xsys)i(k) + pi, then

t ≥ (xsys)i(k)+ pi ≥ pi +mi +ρk. Let us define 6 km(t) =
⌊(t − mi − pi)/ρ⌋. Then, the following inequality holds:

∑∞
k=0 I{t≥(xsys)i(k)+pi} ≤ km(t). Similarly, if k satisfies

t ≤ (xsys) j(k), then t ≤ M j + ρk. Let us define kM(t) =
⌈(t − M j)/ρ⌉. The following inequality also holds:

∑∞
k=0 I{t≤(xsys) j(k)} ≥ kM(t). It follows that

L (t)≤km(t)− kM(t)≤(t −mi − pi)/ρ +1−

((t −M j)/ρ −1) =2+(M j −mi − pi)/ρ ,

which is finite (since ρ > 0) for each time t. Therefore, the
buffer level of the buffer between processing units i and j
is finite at any time t.

6 ⌊x⌋ denotes the largest integer less than or equal to x and ⌈x⌉
denotes the smallest integer not less than x.
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