
Delft University of Technology
Delft Center for Systems and Control

Technical report 06-007a

Stabilization of max-plus-linear systems
using receding horizon control: The

unconstrained case – Extended report∗

I. Necoara, T.J.J. van den Boom, B. De Schutter, and J. Hellendoorn

April 2006

A short version of this report has been published in the Proceedings of the
2nd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS’06),

Alghero, Italy, pp. 148-153, June 2006.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/06_007a.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/06_007a.html


Stabilization of max-plus-linear systems using receding

horizon control: The unconstrained case –

Extended report*

I. Necoara, T.J.J. van den Boom, B. De Schutter and J. Hellendoorn

Delft Center for Systems and Control, Delft University of Technology

Mekelweg 2, 2628 CD Delft, The Netherlands

email: {i.necoara,b.deschutter,t.j.j.vandenboom,j.hellendoorn}@dcsc.tudelft.nl

Abstract

Max-plus-linear (MPL) systems are a class of discrete event systems that can be described by

models that are “linear” in the max-plus algebra. In this paper we focus on MPL systems such

as they arise in the context of e.g. manufacturing systems, telecommunication networks, railway

networks, and parallel computing. We derive a receding horizon control scheme for MPL sys-

tems that guarantees a priori stability (in the sense of boundedness of the normalized state) of

the closed-loop system in the “unconstrained” case. We also discuss the main properties of the

resulting receding horizon controllers.

1 Introduction

Discrete-event systems (DES) are event-driven dynamical systems (i.e. the state transitions are ini-

tiated by events, rather than a clock) and they often arise in the context of manufacturing systems,

telecommunication networks, railway networks, parallel computing, etc. In the last couple of decades

there has been an increase in the research on DES that can be modeled as max-plus-linear (MPL) sys-

tems [1, 4, 7]. Most of the earlier literature on this class of systems addresses performance analysis

rather than control. There are two main directions in MPL DES control: one direction uses optimal

control based on residuation theory [3, 8, 10, 11], and the other a receding horizon control (RHC)

based approach [6]. Although there are several papers on optimal and RHC control for MPL DES,

the literature on the stabilizing controller for this class of systems is relatively sparse. In fact, to the

authors’ best knowledge, the only papers explicitly dealing with stabilizing control of MPL DES are

[8] and [13].

Receding horizon control (RHC), also known as model predictive control, is an attractive feedback

strategy for linear or nonlinear processes subject to input and state constraints [9]. The essence of RHC

is to determine a control profile that optimizes a cost criterion over a prediction window and then to

apply this control profile until new process measurements become available. Feedback is incorporated

by using these measurements to update the optimization problem for the next step.

*This report is an extended version of the paper “Stabilization of max-plus-linear systems using receding horizon control

— The unconstrained case” by I. Necoara, T.J.J. van den Boom, B. De Schutter, and J. Hellendoorn, Proceedings of the 2nd

IFAC Conference on Analysis and Design of Hybrid Systems (ADHS’06), Alghero, Italy, pp. 148–153, June 2006
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This paper considers the problem of designing a stabilizing receding horizon controller for the

class of MPL DES. We consider a trade-off between tracking a reference state trajectory and just-

in-time production for the so-called “unconstrained” case, in which only the constraint that the input

(i.e., the sequence of feeding times) should be nondecreasing is taken into account. In this particular

case we derive a stable RHC scheme for which the analytic solution exists. The main advantage of

this paper compared to most of the results on RHC of MPL DES is the fact that we guarantee a priori

stability of the closed-loop system. Moreover, the conditions that we will derive in this paper are less

strict than those of [13] (where output tracking is considered). We also prove several properties of the

RHC controllers, and we characterize a whole class of stabilizing controllers for MPL DES.

2 Max-plus algebra and MPL DES

2.1 Max-plus algebra

Define ε := −∞ and Rε := R∪{ε}. The max-plus-algebraic (MPA) addition (⊕) and multiplication

(⊗) are defined as [1, 4]: x⊕ y := max{x,y}, x⊗ y := x+ y, for x,y ∈ Rε . For matrices A,B ∈ R
m×n
ε

and C ∈ R
n×p
ε one can extend the definition as follows:

(A⊕B)i j := Ai j ⊕Bi j,

(A⊗C)i j :=
n

⊕

k=1

Aik ⊗Ck j,

for all i, j. Define the matrix εm×n as the m× n MPA zero matrix: (εm×n)i j := ε , for all i, j. The

matrix En is the n×n MPA identity matrix: (En)ii := 0, for all i and (En)i j := ε , for all i, j with i 6= j.

For any matrix A ∈ R
n×n
ε , let A∗ be defined, whenever it exists, by

A∗ := En ⊕A⊕·· ·⊕A⊗n
⊕A⊗n+1

⊕·· ·

For a positive integer n, we denote n := {1,2, · · · ,n}. Given x ∈ R
n
ε we define ‖x‖⊕ := maxi∈n xi

and ‖x‖∞ := maxi∈n |xi|. A matrix Γ ∈ R
n×m
ε is row-finite if for any row i ∈ n, max j∈m Γi j 6= ε .

We denote with x⊕′ y := min{x,y} and x⊗′ y := x+ y (the operations ⊗ and ⊗′ differ only in

that (−∞)⊗ (+∞) := −∞, while (−∞)⊗′ (+∞) := +∞). The matrix multiplication and addition for

(⊕′,⊗′) are defined similarly as for (⊕,⊗). It can be shown that the following relations hold for any

matrices A,B and vectors x,y of appropriate dimensions over Rε (see also [2]):

A⊗′ (B⊗ x)≥ (A⊗′ B)⊗ x, (1)

((−AT )⊗′ A)⊗ x ≥ x (2)

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y. (3)

Lemma 2.1 [1] (i) The inequality A⊗x≤ b has a unique largest solution given by xopt =(−AT )⊗′b=
−(AT ⊗ (−b)) (by the largest solution we mean that for all x satisfying A⊗ x ≤ b we have x ≤ xopt).

(ii) The equation x = A⊗ x⊕ b has a solution x = A∗⊗ b. If Ai j < 0 for all i, j, then the solution is

unique.
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2.2 MPL systems

DES with only synchronization and no concurrency can be modeled by an MPA model of the form

[1, 4]1

xsys(k) = Asys ⊗ xsys(k−1)⊕Bsys ⊗usys(k), (4)

where xsys(k) ∈R
n
ε represents the state, usys(k) ∈R

m
ε is the input and where Asys ∈R

n×n
ε , Bsys ∈R

n×m
ε

are the system matrices. In the context of DES k is an event counter while usys,xsys are dates (feeding

times and processing times, respectively). A typical constraint that appears in the context of DES

where the input represents times, is that the signal usys should be increasing: usys(k+1)−usys(k)≥ 0.

Let λ ∗ be the largest MPA eigenvalue of Asys (λ ∈Rε is an MPA eigenvalue of Asys if there exists

an MPA eigenvector v∈R
n
ε with at least one finite entry such that Asys⊗v= λ ⊗v). In the next section

we will consider a reference signal that the state should track of the following form:

rsys(k) = xsys,t + kρ. (5)

Since through the term Bsys ⊗usys it is only possible to create delays in the starting times of activities,

we should choose ρ ≥ λ ∗. If λ ∗ > ε (in practical applications we even have λ ∗ ≥ 0), then there exists

an MPA invertible matrix P ∈ R
n×n
ε such that2 the matrix Ā = P⊗−1

⊗Asys ⊗P satisfies Āi j ≤ λ ∗ for

all i, j ∈ n [5].

We make the following change of coordinates x̄(k) = P⊗−1
⊗xsys(k). We denote with B̄ = P⊗−1

⊗
Bsys and ū(k) = usys(k). In the new coordinates the system (4) becomes:

x̄(k) = Ā⊗ x̄(k−1)⊕ B̄⊗ ū(k).

We now consider the normalized system with x(k) = x̄(k)− ρk, u(k) = ū(k)− ρk, A = Ā− ρ (i.e.

by subtracting in the conventional algebra all entries of x̄, ū and of Ā by ρk and ρ , respectively) and

B = B̄. The normalized system can be written as:

x(k) = A⊗ x(k−1)⊕B⊗u(k). (6)

The MPL system (6) is controllable if and only if (iff) each component of the state can be made

arbitrarily large by applying an appropriate controller to the system initially at rest. It can be checked

that the system is controllable iff the matrix Γn := [B A⊗B · · ·A⊗n−1
⊗B] is row-finite (note that

this definition is equivalent to the one given in [1], where the system is controllable if all states are

connected to some input).

The following key assumption will be used throughout the paper:

Assumption A: We assume that ρ > λ ∗ ≥ 0 and that the system is controllable.

The conditions of this assumption are quite weak and are usually met in applications (see also the

previous discussion). Note that from Assumption A it follows that Ai j < 0, for all i, j ∈ n. In the new

coordinates the state should be regulated to the desired target xt := P⊗−1
⊗ xsys,t.

1In general there is also an output equation of the form y(k) =C⊗x(k), but in this paper we assume that all the states can

be measured (i.e. C = En). Note however that the results of this paper can also be extended to take the output into account

and to do output tracking instead of state tracking.

2Here, P⊗
−1

denotes the MPA inverse of P: P⊗
−1

⊗P = P⊗P⊗
−1

= En. In fact, P is the MPA diagonal matrix with

on its diagonal the entries of the MPA eigenvector v∗ corresponding to λ ∗, and ε elsewhere, i.e. P = diag⊕(v
∗). Moreover,

P⊗
−1

= diag⊕(−v∗).
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Since Ai j < 0 for all i, j ∈ n, we have A∗ = En ⊕A⊕ ·· ·⊕A⊗n−1
(see [1, Theorem 3.20]). Note

that for any finite, constant input u there exists a state equilibrium x (i.e. x = A⊗ x⊕B⊗ u), viz.

x = A∗ ⊗ B⊗ u. Note that x is unique (according to Lemma 2.1 (ii)) and finite (since Γn is row-

finite). We associate to xt the largest3 equilibrium pair (xel,uel) satisfying xel ≤ xt. From the previous

discussion it follows that (xel,uel) is unique, finite and given by:

uel = (−(A∗⊗B))T ⊗′ xt, xel = A∗⊗B⊗uel. (7)

3 Stabilizing MPL DES controllers for the unconstrained case

3.1 Stabilizing control for MPL DES

In this section we consider the normalized system (6), where the matrix A satisfies Ai j < 0, for all

i, j ∈ n (according to Assumption A) and with the constraint that the original input signal (usys) should

be nondecreasing, i.e.

u(k+1)−u(k)≥−ρ, ∀k ≥ 0. (8)

Given a desired target xt ∈ R
n, let (xel,uel) be the largest equilibrium pair satisfying xel ≤ xt (cf. (7)).

We define also an upper bound on xt: xub = A∗⊗ xt ≥ xt, uub = (−B)T ⊗′ (A∗⊗ xt). It is clear that

these pairs are uniquely determined and finite. Note that uel ≤ uub and whenever xt is an equilibrium

state (i.e. there exists a finite ut such that xt = A⊗ xt ⊕B⊗ ut) then xel = xub = xt and consequently

uel = uub = ut.

Definition 3.1 Given a state feedback controller µ : Rn
ε → R

m
ε , then the closed-loop system x(k) =

A⊗x(k−1)⊕B⊗µ(x(k−1)) is stable iff the state remains bounded, i.e. for every δ > 0 there exists a

real-valued function θ(δ )> 0 such that ‖x(0)−xel‖∞ ≤ δ implies ‖x(k)−xel‖∞ ≤ θ(δ ) for all k ≥ 0.

Now we formulate the control problem that we will solve in the sequel:

Problem 1: Design a state feedback controller µ : Rn
ε → R

m
ε for the MPL system (6) such that the

closed-loop system is stable.

3.2 Stabilizing state feedback controller

Assume we are at event step k. Given the previous4 state x(k− 1) and input u(k− 1), we define two

controllers: a feedback controller

uf(k) := (−BT )⊗′ (A⊗ x(k−1)⊕B⊗ (u(k−1)−ρ)⊕ xt) (9)

and a “constant” controller:

uc(k) := uel ⊕ (u(k−1)−ρ). (10)

Later on, we will show that under some conditions the RHC controller lies between these two con-

trollers. Let us now study the (stabilizing) properties of these two controllers. Note that uf(k) satisfies

the constraint (8). Indeed, from (3) it follows that uf(k)≥ (−BT )⊗′ (B⊗ (u(k−1)−ρ)) and from (1)

and (2) we conclude that uf(k)≥ u(k−1)−ρ . Using similar arguments we can prove that uf(k)≥ uel,

for all k ≥ 1. Similarly, uc(k) satisfies the constraint (8) and uc(k)≥ uel, for all k ≥ 1.

3By the largest we mean that any other feasible equilibrium pair (x,u) satisfies x ≤ xel,u ≤ uel.
4Timing aspects and the interplay between event steps and time steps are discussed in [12].
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We study now the stabilizing properties of these two controllers. With the controller (9), the

closed-loop normalized system (6) becomes

xf(k) = A⊗ xf(k−1)⊕B⊗uf(k), (11)

where the initial conditions xf(0) = x(0) and uf(0) = u(0) are given. Note that uc(k) = uel ⊕ (u(0)−
ρk) and the corresponding closed-loop system, for xc(0) = x(0) and uc(0) = u(0) is given by:

xc(k) = A⊗ xc(k−1)⊕B⊗uc(k). (12)

First let us note that:
{

xf(k)≤ A⊗ xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕ xt

xf(k)≥ A⊗ xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕B⊗uel.
(13)

Indeed, from Lemma 2.1 we have B⊗uf(k)≤ A⊗xf(k−1)⊕B⊗(uf(k−1)−ρ)⊕xt and thus xf(k)≤
A⊗ xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕ xt. The second inequality is straightforward (recall that uf(k)≥
uf(k − 1)− ρ and uf(k) ≥ uel and using the monotonicity property (3) it follows that xf(k) ≥ A⊗
xf(k− 1)⊕B⊗ (uf(k− 1)−ρ)⊕B⊗ uel. The following inequality is also useful: since xf(k− 1) ≥
B⊗uf(k−1) it follows that

B⊗ (uf(k−1)−ρ) = (B⊗uf(k−1))−ρ ≤ xf(k−1)−ρ (14)

We have

Lemma 3.2 The following inequalities are satisfied:

uf(k)≥ uc(k) and xf(k)≥ xc(k), ∀k ≥ 0. (15)

Proof : We prove the lemma by induction. For k = 0 we have uf(0) = uc(0) = u(0) and xf(0) =
xc(0) = x(0). Let us assume that the inequalities of the lemma are valid for a given k. Now we prove

that they also hold for k+1. Since uf(·) satisfies the constraint (8) and using our induction hypothesis

we obtain

uf(k+1)≥ uf(k)−ρ ≥ uc(k)−ρ

Moreover, uf(k+ 1) ≥ uel. We conclude that uf(k+ 1) ≥ (uc(k)−ρ)⊕ uel = uc(k+ 1). Using again

the induction hypothesis and the monotonicity property (3) it follows that:

xf(k+1)≥ A⊗ xc(k)⊕B⊗uf(k+1)≥

A⊗ xc(k)⊕B⊗uc(k+1) = xc(k+1).

This concludes the proof. ✷

Proposition 3.3 The feedback controller (9) is the largest controller that guarantees the fastest single

step decrease while fulfilling the constraint (8).

Proof : We prove this proposition by contradiction. Given x and u let us assume that there exists a

feasible ū with the property

ū ≥ uf and ū 6= uf (16)

such that x̄ = A⊗ x⊕B⊗ ū ≤ xf = A⊗ x⊕B⊗uf.

Since ū ≥ uf, using the monotonicity property of max operator (3) it follows that x̄ ≥ xf. In conclusion,

x̄ = xf, i.e. we cannot have a larger decrease than xf.

From (13) we have B⊗ ū ≤ x̄ = xf ≤ A⊗x⊕B⊗ (u−ρ)⊕xt. Hence, ū ≤ (−BT )⊗′ (A⊗x⊕B⊗ (u−
ρ)⊕ xt) = uf. We have obtained a contradiction with (16). ✷
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The stabilizing properties of the two state feedback controllers are summarized in the next theorem:

Theorem 3.4 The following statements hold:

(i) For any initial condition xf(0) = x(0) and uf(0) = u(0) there exists a finite Kf such that xf(k)≤ xub

and uel ≤ uf(k+1)≤ uub, for all k ≥ Kf.

(ii) For any initial condition xc(0) = x(0) and uc(0) = u(0) there exists a finite Kc such that xc(k) = xel

and uc(k) = uel, for all k ≥ Kc.

(iii) The closed-loop systems (11) and (12) are stable.

Proof : (i) From (13) and (14) it follows that: xf(k) ≤ A⊗ xf(k − 1)⊕B⊗ (uf(k − 1)− ρ)⊕ xt ≤
A⊗ xf(k−1)⊕ (xf(k−1)−ρ)⊕ xub. By induction it is straightforward to prove that:

xf(k)≤
k

⊕

t=0

(A⊗k−t
⊗ (xf(0)− tρ))⊕ xub. (17)

Recall that Ai j < 0 for all i, j ∈ n. Then, it is well-known that [1]:

A⊗k
⊗ xf(0)→ ε n×1 as k → ∞. (18)

We denote with z0 = xf(0) and iteratively zk =
⊕k

t=0(A
⊗k−t

⊗ xf(0)− tρ) = max{A⊗k
⊗ xf(0),zk−1

−ρ}. From (18) and ρ > 0 it follows that

zk → ε n×1 as k → ∞. (19)

Therefore, there exists a finite integer Kf such that
⊕k

t=0(A
⊗k−t

⊗ (xf(0)− tρ))≤ xub for any k ≥ Kf.

In conclusion, xf(k)≤ xub for any k ≥ Kf.

Now consider k satisfying k ≥ Kf. Therefore, xf(k) ≤ xub. We obtain A⊗ xf(k) ≤ A⊗ xub ≤ xub.

Similarly, from (14) we have B⊗ (uf(k)−ρ)≤ xf(k)−ρ ≤ xub. Using now (3) we obtain:

uf(k+1)≤ (−BT )⊗′ xub = uub.

By induction, using the same procedure it follows that uf(Kf + l) ≤ uub, for all l ≥ 1. On the other

hand uf(k)≥ uel for all k ≥ 1. We conclude that uel ≤ uf(Kf + l)≤ uub, for all l ≥ 1.

(ii) Since ρ > 0, uc(k) = uel for k large enough. Note that

xc(k) = A⊗k
⊗ xc(0)⊕ (

k
⊕

t=1

A⊗k−t
⊗B⊗ (uc(0)− tρ))⊕ (

k
⊕

t=1

A⊗k−t
⊗B⊗uel).

From (18) we have A⊗k
⊗ xc(0) → ε n×1 as k → ∞. So,

⊕k
t=1 A⊗k−t

⊗B⊗ (uc(0)− tρ) → ε n×1 as

k → ∞ (this can be proved in a similar way as (19)). Since xel =
⊕n

t=1 A⊗n−t
⊗B⊗uel, it follows that

there exists a Kc ≥ n such that xc(k) = xel and uc(k) = uel, for all k ≥ Kc.

(iii) Let us now prove stability of the closed-loop systems (11) and (12). Let δ > 0 and consider

‖x(0)− xel‖∞ ≤ δ .

From uc(k)≥ uel it follows that xc(k)≥ xel for all k ≥ n.

6



Since the system is controllable (by Assumption A), for any 1 ≤ k ≤ n− 1 and for any index i ∈ n,

one of the two following conditions are satisfied:

xc
i (k)≥ Bi j +(uel) j, with Bi j 6= ε (20)

∃ p ∈ n s. t. xc
i (k)≥ (A⊗p

)l j + xc
j(k− p), with(A⊗p

)l j 6= ε . (21)

Note that xc
j(k− p) is either equal to xc

j(0) or satisfies (20).

Hence, for any k ≥ 0 and for any index i ∈ n we have (xel−xc(k))i ≤ θ1(δ ) := max
{

0,(xel)i1 −Bi1 j −

(uel) j,(xel)i2 − (A⊗p
)li1 − xi1(0),(xel)i3 − (A⊗p

)li1 −Bi1 j − (uel) j} for some indices i1, i2, i3, j.

So from xc(k)≤ xf(k)≤ zk ⊕ xub it follows that:

‖xf(k)− xel‖∞ = max
i∈n

{(xf(k)− xel)i,(xel − xf(k))i}

≤ max
i∈n

{((zk ⊕ xub)− xel)i,(xel − xc(k))i}

≤ max
i∈n

{(zk − xel)i,(xub − xel)i,θ1(δ )}

≤ max
i∈n

{(zk − xel)i,θ2(δ )}

≤ max
i, j

{(A⊗ j
⊗ x(0)− (k− j)ρ − xel)i,θ2(δ )}

≤ max
i, j

{(A⊗ j
⊗ x(0)− (k− j)ρ −A⊗ j

⊗ xel)i,θ2(δ )}

≤ max
i, j

{(A⊗ j
⊗ x(0)−A⊗ j

⊗ xel)i,θ2(δ )}

≤ max
i
{(x(0)− xel)i,θ2(δ )} ≤ θ(δ )

with θ2(δ ) = max{maxi∈n(xub − xel)i,θ2(δ )} and θ(δ ) = max{δ ,θ1(δ )}, and where for the last

transition we have used that fact that from standard properties of the max operator5 it follows that:

aT ⊗ x−aT ⊗ y ≤ ‖x− y‖⊕, for any a ∈ R
n
ε and x,y ∈ R

n. ✷

An immediate consequence of Theorem 3.4 is:

Proposition 3.5 For any input signal u(·) fulfilling the constraint (8) and uc(k) ≤ u(k) ≤ uf(k), the

corresponding trajectory satisfies xc(k) ≤ x(k) ≤ xf(k), for all k and consequently u(·) is stabilizing.

Moreover, there exists a finite K such that xel ≤ x(k)≤ xub, for all k ≥ K.

3.3 Stabilizing receding horizon controller

Given the state and the input at event step k−1, the following cost function is introduced:

J(x(k−1), ũ(k)) =
N−1

∑
j=0

n

∑
i=1

max{xi(k+ j|k−1)− (xt)i,0}−β
N−1

∑
j=0

m

∑
i=1

ui(k+ j|k−1).

where N is the prediction horizon, x(k+ j|k− 1) is the system state at event step k+ j as predicted

at event step k− 1, based on the MPL difference equation (6), the state x(k− 1) and the future input

sequence

ũ(k) = [uT (k|k−1) · · ·uT (k+N −1|k−1)]T .

5Recall that by definition ε − ε = ε .
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In the context of DES the first term of J expresses the tardiness (i.e. the delay with respect to the de-

sired due date target xt), while the second term maximizes the feeding times. We define the following

receding horizon control (RHC) based optimization problem:

J∗(x(k−1)) = min
ũ(k)

J(x(k−1), ũ(k)) (22)

s.t.

{

x(k+ j|k−1) = A⊗ x(k+ j−1|k−1)⊕B⊗u(k+ j|k−1)

u(k+ j|k−1)−u(k+ j−1|k−1)≥−ρ
∀ j ∈ {0, · · · ,N −1}. (23)

where x(k− 1|k− 1) = x(k− 1),u(k− 1|k− 1) = u(k− 1). Let ũ♮(k) be the optimal solution of the

optimization problem (22)–(23). Using the receding horizon principle at event counter k we apply the

input uRHC,N(k) = u♮(k|k− 1). The evolution of the closed-loop system obtained from applying the

receding horizon controller is denoted with

xRHC,N(k) = A⊗ xRHC,N(k−1)⊕B⊗uRHC,N(k),

with given initial conditions xRHC,N(0) = x(0), uRHC,N(k) = u(0).
Let us define the matrices

D̃ =











B ε · · · ε
A⊗B B · · · ε

...
...

. . .
...

A⊗N−1
⊗B A⊗N−2

⊗B · · · B











, C̃ =













A

A⊗2

...

A⊗N













and the vectors ū(k) = [uT (k − 1)− ρ · · ·uT (k − 1)−Nρ]T , ūel = [uT
el · · ·u

T
el]

T , x̄t = [xT
t · · ·x

T
t ]

T and

x̄(k) = [x̄T (k|k−1) · · · x̄T (k+N −1|k−1)]T = C̃⊗ x(k−1)⊕ D̃⊗ ū(k)⊕ x̄t.

Now we give some properties of the receding horizon controller. The next lemma shows that the

receding horizon controller uMPC,N(·) is bounded from below by uc(·):

Lemma 3.6 uc(k)≤ uRHC,N(k), xc(k)≤ xRHC,N(k), ∀k ≥ 0.

Proof : First, let us show that ũ♮(k) ≥ ūel. The states corresponding to ũ♮(k) are given by x̃♮(k) =
[(x♮(k|k−1))T · · ·(x(k+N −1|k−1))T ]T = C̃⊗ x(k−1)⊕ D̃⊗ ũ♮(k). Let us assume that ũ♮(k) 6≥ ūel.

Define ũfeas(k) = ũ♮(k)⊕ ūel and x̃feas(k) = C̃⊗ x(k− 1)⊕ D̃⊗ ũfeas(k). Note that ũfeas(k) is feasible

for the optimization problem (22)–(23). Since A⊗ j
⊗B⊗uel ≤ xt for all j, x̃feas(k) = x̃♮(k)⊕ D̃⊗ ūel ≤

x̃♮(k)⊕ x̄t. It follows that:

J(x(k−1), ũfeas(k)) ≤
N−1

∑
j=0

n

∑
i=1

max{x
♮
i (k+ j|k−1)− (xt)i,0}−β

N−1

∑
j=0

m

∑
i=1

ufeas
i (k+ j|k−1)

<
N−1

∑
j=0

n

∑
i=1

max{x
♮
i (k+ j|k−1)− (xt)i,0}−

β
N−1

∑
j=0

m

∑
i=1

u
♮
i (k+ j|k−1) = J(x(k−1), ũ♮(k))

and thus we get contradiction with the optimality of ũ♮(k).
Now we go on with the proof of the lemma using induction. For k = 0, we have uc(0) =

uRHC,N(0) = u(0) and xc(0) = xRHC,N(0) = x(0). We assume that uc(k − 1) ≤ uRHC,N(k − 1) and

8



xc(k − 1) ≤ xRHC,N(k − 1) and we prove that these inequalities also hold for k. From the induc-

tion hypothesis we have uRHC,N(k) ≥ uRHC,N(k − 1)− ρ ≥ uc(k − 1)− ρ . Moreover, uRHC,N(k) =
u♮(k|k− 1) ≥ uel. It follows that uRHC,N(k) ≥ (uc(k− 1)−ρ)⊕ uel = uc(k). From (3) it follows that

xc(k) = A⊗ xc(k−1)⊕B⊗uc(k)≤ A⊗ xRHC,N(k−1)⊕B⊗uRHC,N(k) = xRHC,N(k). ✷

Proposition 3.7 Assume β < 1
mN

and consider the maximization problem

ũ♯(k) = argmax
ũ(k)

N−1

∑
j=0

m

∑
i=1

ui(k+ j|k−1) (24)

s.t.

{

D̃⊗ ũ(k)≤ x̄(k)

u(k+ j|k−1)−u(k+ j−1|k−1)≥−ρ
∀ j ∈ {1, · · · ,N −1}. (25)

Then ũ♯(k) is also the optimal solution of the optimization problem (22)–(23).

Proof : First let us note that we do not have to impose also the constraint u(k|k−1)−u(k−1|k−1)≥
−ρ in (25). This inequality is automatically satisfied, since ū(k) is a feasible solution for (22)–(23)

and consequently a feasible solution for the optimization problem (24)–(25) and thus ū(k)≤ ũ♯(k).
We will prove the lemma by contradiction. Define x̄c(k) = C̃⊗ x(k− 1)⊕ D̃⊗ ū(k) then x̄(k) =

x̄c(k)⊕ x̄t. First let us consider an ũ♭(k) that satisfies (25) but for which

N−1

∑
j=0

m

∑
i=1

u♭i (k+ j|k−1)<
N−1

∑
j=0

m

∑
i=1

u
♯
i (k+ j|k−1) .

Define x̃♭(k) = C̃⊗ x(k−1)⊕ D̃⊗ ũ♭(k). Then, for each i ∈ n and j ∈ {0,1, · · · ,N −1} it follows that

max{x♭i (k+ j|k−1),(xt)i}= max{xc
i (k+ j|k−1), D̃ jn+i ⊗ ũ♭,(xt)i}

= max{x̄i(k+ j|k−1), D̃ jn+i ⊗ ũ♭}

= x̄i(k+ j|k−1),

where D̃ jn+i denotes the ( jn+ i)-th row of D̃. In conclusion, we obtain that

J(x(k−1), ũ♭(k)) =
N−1

∑
j=0

n

∑
i=1

(x̄i(k+ j|k−1)− (xt)i)−β
N−1

∑
j=0

m

∑
i=1

u♭i (k+ j)

>
N−1

∑
j=0

n

∑
i=1

(x̄i(k+ j|k−1)− (xt)i)−β
N−1

∑
j=0

m

∑
i=1

u
♯
i (k+ j) = J(x(k−1), ũ♯(k))

and thus ũ♭(k) cannot be the optimizer of (22)–(23).

Next let us consider ũ†(k) that satisfies (23) but does not satisfy the inequality D̃ũ ≤ x̄(k). Define

δ = max
i∈n, j∈{0,··· ,N−1}

{D̃ jn+i ⊗ ũ†(k)− x̄i(k+ j|k−1)}> 0 .

Then, there exist i0, j0 such that

x
†
i0
(k+ j0|k−1) = D̃ j0n+i0 ⊗ ũ†(k) = x̄i0(k+ j0|k−1)+δ

and thus

N−1

∑
j=0

n

∑
i=1

max{x
†
i (k+ j|k−1)− (xt)i,0} ≥

N−1

∑
j=0

n

∑
i=1

max{x̄i(k+ j|k−1)− (xt)i,0}+δ
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Note that ũ‡(k) = (ũ†(k)−δ )⊕ ū(k) fulfills (25) and the corresponding cost satisfies:

J(x(k−1), ũ‡(k)) ≤
N−1

∑
j=0

n

∑
i=1

max{x
†
i (k+ j|k−1)− (xt)i,0}−δ−

β (
N−1

∑
j=0

m

∑
i=1

u
†
i (k+ j|k−1)−Nmδ )

= J(x(k−1), ũ†(k))+(βNm−1)δ

< J(x(k−1), ũ†(k))

and thus ũ†(k) cannot be the optimizer of (22)–(23). This proves that ũ♯(k) is also the optimizer of the

original optimization problem (22)–(23). ✷

Define ũ∗N(k) := (−D̃T )⊗′ x̄(k). The following proposition provides an analytic solution to the opti-

mization problem (24)–(25).

Proposition 3.8 The optimization problem (24)–(25) has an unique solution given by:











u♯(k+N −1|k−1) = u∗N(k+N −1|k−1)

u♯(k+ j|k−1) = min{u∗N(k+ j|k−1),

u♯(k+ j+1|k−1)+ρ},

(26)

for j = N −2, · · · ,0.

Proof : The feasibility conditions (25) for u♯(k+N −1|k−1) are given by:

B⊗u♯(k+N −1|k−1)≤ x̄(k+N −1|k−1)

and from Lemma 2.1 is clear that the largest u♯(k+N − 1|k− 1) is given by u♯(k+N − 1|k− 1) =
u∗N(k+N −1|k−1) = (−BT )⊗′ x̄(k+N −1|k−1).

From the feasibility conditions (25), u♯(k+N −2|k−1) has to satisfy:

A⊗B⊗u♯(k+N −2|k−1)≤ x̄(k+N −1|k−1)

B⊗u♯(k+N −2|k−1)≤ x̄(k+N −2|k−1)

u♯(k+N −2|k−1)≤ u♯(k+N −1|k−1)+ρ

and thus the largest u♯(k +N − 2|k − 1) is given by u♯(k +N − 2|k − 1) = min{u∗N(k +N − 2|k −
1),u♯(k+N −1|k−1)+ρ}. Using the same reasoning we obtain:

u♯(k+ j|k−1)≤ u∗N(k+ j|k−1),

u♯(k+ j|k−1)≤ u♯(k+ j+1|k−1)+ρ,

for all j, i.e. (26). ✷

We prove now a lemma that will be useful in the sequel:

Lemma 3.9 Any feasible solution ũfeas(k) of (24)–(25) satisfies ũfeas(k)≤ ũ♯(k).
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Proof : From Lemma 2.1 and D̃⊗ ũfeas(k)≤ x̄(k) it follows that ũfeas(k)≤ ũ∗N(k) and thus ufeas(k+
N −1|k−1)≤ u∗N(k+N −1|k−1) = u♯(k+N −1|k−1). Note that ufeas(k+N −2|k−1) satisfies

ufeas(k+N −2|k−1)≤ u∗N(k+N −2|k−1),

ufeas(k+N −2|k−1)≤ ufeas(k+N −1|k−1)+ρ ≤ u♯(k+N −1|k−1)+ρ.

In conclusion ufeas(k+N − 2|k− 1) ≤ min{u∗N(k+N − 2|k− 1),u♯(k+N − 1|k− 1)+ρ} = u♯(k+
N−2|k−1). Applying this reasoning backwards, we obtain ufeas(k+ j|k−1)≤ u♯(k+ j|k−1) for all

j = N −1, · · · ,0, i.e. ũfeas(k)≤ ũ♯(k). ✷

The next theorem characterizes the stabilizing properties of the receding horizon controller:

Theorem 3.10 Given a prediction horizon N such that β < 1
mN

, then

(i) The following inequalities hold

{

uc(k)≤ uRHC,N(k)≤ uf(k)

xc(k)≤ xRHC,N(k)≤ xf(k)
(27)

and thus the receding horizon controller stabilizes the system (6).

(ii) If N = 1 then uRHC,1(k) = uf(k). For two prediction horizons N1 < N2 we have

{

uRHC,N1(k)≥ uRHC,N2(k)

xRHC,N1(k)≥ xRHC,N2(k)
(28)

Proof : (i) The left-hand side of inequalities (27) follows from Lemma 3.6.

The right-hand side of inequalities (27) is proved using induction. For k = 0 we have uRHC,N(0) =
uf(0) = u(0) and xRHC,N(0) = xf(0) = x(0). Let us assume that uRHC,N(k − 1) ≤ uf(k − 1) and

xRHC,N(k − 1) ≤ xf(k − 1) are valid and we prove that they also hold for k. Since x(k|k − 1) =
A⊗ x(k−1)⊕B⊗ (u(k−1)−ρ)⊕ xt and B⊗u♯(k|k−1)≤ x̄(k|k−1), we have

uRHC,N(k)≤ (−BT )⊗′ (A⊗ x(k−1)⊕B⊗ (u(k−1)−ρ)⊕ xt) (29)

From (29) and our induction hypothesis we have:

B⊗uRHC,N(k) ≤ A⊗ xRHC,N(k−1)⊕B⊗ (uRHC,N(k−1)−ρ)⊕ xt

≤ A⊗ xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕ xt

On the other hand, uf(k) is the largest solution of the inequality

B⊗uf(k)≤ A⊗ xf(k−1)⊕B⊗ (uf(k−1)−ρ)⊕ xt

From Lemma 2.1 it follows that uRHC,N(k)≤ uf(k). Then,

xRHC,N(k) = A⊗ xRHC,N(k−1)⊕B⊗uRHC,N(k)≤ A⊗ xf(k−1)⊕B⊗uf(k) = xf(k+1) .

The stabilizing property of the receding horizon controller follows from Proposition 3.5.

(ii) For N = 1 from the feasibility condition (25) it is clear that ũ♯(k) = u♯(k) = uf(k) (see (9)). For

two prediction horizons N1 < N2, we denote with D̃(N1) the matrix D̃ from (25) corresponding to
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the prediction horizon N = N1. Similarly, we define D̃(N2). Note that D̃(N2) =

[

D̃(N1) ε
∗ ∗

]

(where ∗

stands for appropriate matrix blocks). We denote with x̄(N1)(k) the vector x̄(k) from (25) corresponding

to N = N1 and ũ
♯
(N1)

(k) the optimal solution of (24)–(25) corresponding to N1. Similarly, we define

x̄(N2)(k) and ũ
♯
(N2)

(k).

We prove the inequalities (28) by induction. For k = 0 the statement is true: uRHC,N1(0) =
uRHC,N2(0) = u(0) and xRHC,N1(0) = xRHC,N2(0) = x(0). Let us now assume that uRHC,N1(k− 1) ≥
uRHC,N2(k− 1) and xRHC,N1(k− 1) ≥ xRHC,N2(k− 1). Define ũ

♯
(N2)

(k : k+N1 − 1) the sub-vector of

ũ
♯
(N2)

(k) containing the first mN1 components. We have:

D̃(N2)⊗ ũ
♯
(N2)

(k) =

[

D̃(N1) ε
∗ ∗

]

⊗

[

ũ
♯
(N2)

(k : k+N1 −1)

∗

]

≤ x̄(N2)(k) =

[

x̄(N2)(k : k+N1 −1)

∗

]

≤

[

x̄(N1)(k)

∗

]

It follows that D̃(N1)⊗ ũ
♯
(N2)

(k : k+N1 − 1) ≤ x̄(N1)(k), i.e ũ
♯
(N2)

(k : k+N1 − 1) is feasible for (24)–

(25) with prediction horizon N = N1. From Lemma 3.9 we obtain that ũ
♯
(N2)

(k : k+N1−1)≤ ũ
♯
(N1)

(k).

Therefore, uRHC,N1(k)= u
♯
(N1)

(k|k−1)≥ u
♯
(N2)

(k|k−1)= uRHC,N2(k). Similarly, we have xRHC,N1(k)≥

xRHC,N2(k). ✷

4 Example

We consider the following system:

xsys(k) =









ε 1 ε ε

ε ε 2 ε

ε ε ε 3

4 ε ε ε









⊗ xsys(k−1)⊕









2

ε

ε

ε









⊗usys(k) (30)

For this example the system matrix Asys has a (unique) MPA eigenvalue λ ∗ = 2.5, and a corresponding

MPA eigenvector v∗ = [0 1.5 2 1.5]T . We consider the due date signal rsys(k) = [17 15 1 10]T + 4.5k

(so ρ = 4.5), and the initial condition xsys(0) = [20 31.5 42 51.5]T and usys(0) = 20.

First we construct the normalized system corresponding to (30). We have

P =









0 ε ε ε

ε 1.5 ε ε

ε ε 2 ε

ε ε ε 1.5









, A =









ε −2 ε ε

ε ε −2 ε

ε ε ε −2

−2 ε ε ε









,

B =









2

ε

ε

ε









, x(0) =









20

30

40

50









, u(0) = 20 , xt =









17

13.5

−1

8.5









.
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Figure 1: The state feedback, “constant” and RHC control signals for the normalized system.

Furthermore, we obtain xel = [3 − 3 −1 1],uel = 1. It is easy to verify that the system and reference

signal defined above satisfy Assumption A.

Now we design stabilizing state feedback and receding horizon controllers for this system. For

the RHC controllers we consider the prediction horizons N = 2 and N = 5, and a weight β = 0.1

that satisfies the conditions of Proposition 3.7 and Theorem 3.10. In Figures 1 and 2 we have plotted

respectively the control signals and the state trajectories for the closed-loop controlled normalized

system. Clearly, all controllers are stabilizing. Moreover, the “constant” controller and the RHC

controller with N = 5 also make all states less than the target states. This is not always the case for the

state feedback controller and for the RHC controller with N = 2 (so in the latter case the prediction

horizon is clearly selected too small). Also note that uc(k) ≤ uRHC,N(k) ≤ uf(k) for all k and for

N = 2,5. Furthermore, uRHC,5(k) ≤ uRHC,2(k) and xRHC,5(k) ≤ xRHC,2(k) for all k (cf. Theorem 3.10

(ii)).

5 Conclusions and future research

In this paper we have discussed the problem of stabilization of max-plus-linear (MPL) discrete-event

systems. We have defined a stabilizing “constant” controller and a stabilizing state feedback controller

that could be considered as a lower and upper bound respectively for the receding horizon control

(RHC) controllers. For the RHC controllers we have considered a trade-off between minimizing the

tardiness and maximizing the input times. Using only the constraint that expresses that the input

signal should be nondecreasing and provided the trade-off weight is small enough, we have derived

an analytic expression for the RHC controller and proved that stability can be achieved in finite time.

We have also discussed also the main properties of the stabilizing state feedback, “constant”, and RHC
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Figure 2: The evolution of the states for the state feedback, “constant” and RHC controllers for the

normalized system. The dotted lines correspond to the target state xt.
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controllers.

Topics for future research include: extension to the “constrained” case where other constraints on

the inputs and states are present, and extension to the case where disturbances are present.
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