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ADAPTIVE CRUISE CONTROLLER DESIGN: A

COMPARATIVE ASSESSMENT FOR PWA

SYSTEMS

Daniele Corona ∗ Bart De Schutter ∗

∗ Delft Center for System and Control, Delft University of

Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract: We propose the design of an adaptive cruise controller (ACC) of
a Smart vehicle as a benchmark set up for methods developed for piecewise
affine (PWA) systems based on model predictive control (MPC) arguments.
The control law of the system aims at achieving a trade-off between tracking
and fuel consumption while guaranteeing specific constraints, related to physical
limitations, safety/comfort issues, environment protection and energy saving. In
this paper we consider some PWA MPC control design methods, an on-line, an off-
line and a robust on-line and compare them with an on-line linear approximation
and an off-line gain scheduling approach. The results will be briefly described and
the algorithms will be tested in terms of key issues for real implementation and
accuracy of the solution.

Keywords: piecewise affine systems, model predictive control, engine control,
multi-parametric mixed integer linear programming.

1. INTRODUCTION

Recently, significant efforts of the control system
and computer science communities have been de-
voted to the study and design of hybrid systems.
Within this class particular attention was paid to
piecewise affine (PWA) systems, namely, a finite
set of affine system and a switching signal that

1 Supported by (1) the European 6th Framework Network
of Excellence “HYbrid CONtrol: Taming Heterogeneity
and Complexity of Networked Embedded Systems (HY-
CON)”, contract number FP6-IST-511368, (2) the BSIK
project “Transition Sustainable Mobility (TRANSUMO)”,
and (3) the Transport Research Centre Delft program
“Towards Reliable Mobility”, and (4) the Dutch Science
Foundation (STW), Grant “Model Predictive Control for
Hybrid Systems” (DMR.5675).

switches, internally or externally forced, from one
affine mode to another.

PWA systems arise from modeling processes that
integrate integer/logical behavior with continuous
variables or from quantized inputs (Elia and Mit-
ter, 1999), or from the linear spline approximation
of nonlinearities (Sontag, 1981). The discontinu-
ities implicitly hidden in the discrete behavior of
these systems make the control design a nontriv-
ial task, the complexity of which is additionally
increased if constraints are considered.

Nevertheless several methods that aim to design
the control law for this class were proposed in
the literature and some of them are MPC based.
An equivalent model, the mixed logical dynamical
(MLD) model (Bemporad and Morari, 1999), is
used to compute the control law implicitly or



Table 1. Entries of equation (1).

m: Mass of vehicle 800 kg
c: Viscous coefficient 0.5 kg/m
µ: Friction coefficient (dry asphalt) 0.01
b: Traction force 3700 N
g: Gravity acceleration 9.8 m/s2

α: Switching velocity 18.75 m/s

explicitly (Borrelli, 2003). Several variants that
consider robustness (Kerrigan and Mayne, 2002)
or stability properties (Lazar et al., 2005) were
also considered. Methods based on the construc-
tion of a piecewise Lyapunov function have been
developed in (Hedlund and Rantzer, 1999).

Despite the presence of several methods, an ap-
plicative comparison test bed that highlights their
main features is, to our best knowledge, missing.
Therefore in this paper a benchmark set up for
the design of MPC for a PWA system is proposed,
arising from an application that is focused on the
design of an adaptive cruise controller (ACC) for a
Smart vehicle within physical/safety constraints.

The paper is organized as follows: we first define
the PWA model of the system and the problem.
This is transformed into a minimization problem
with a mixed integer objective function. We then
describe the control methods that we use and we
present, in the last section, a comparison table.

2. MODEL AND PROBLEM DESCRIPTION

Model. In a basic ACC application 2 cars are
driving one after the other (see Figure 1.a). The
aim of an ACC is to ensure a minimal separation
between the vehicles and a speed adaptation. We
assume that the front vehicle communicates its
speed and position to the rear vehicle, which has
to track them. For the control design purpose we
only consider the dynamics of the rear vehicle, the
model of which is:

ms̈(t) + (cṡ2(t) + µmg)sgn(ṡ(t)) = bu(t), (1)

where s(t) is the position, b is the traction force,
u(t) is the normalized throttle/brake. Viscous and
static frictions are considered, braking will be
simulated by applying a negative u. Numerical
values are given in Table 1.

Model (1) is valid as long as the speed is signifi-
cantly different from zero, hence we impose that
the velocity is always above a minimum value.

A least square approximation (Figure 1.b) of the
nonlinear friction curve V = cv2 leads to a PWA
system:

ms̈(t) + ciṡ(t) + fi = bu(t), i = 1, 2.

Table 2. Values of the constraints.

x2,min: Min. velocity 5.0 m/s
x2,max: Max. velocity 37.5 m/s
dsafe: Max. position overshoot 5.0 m
aacc: Max. acceleration 2.5 m/s2

adec: Min. acceleration -1 m/s2

ξ: Comfort jerk 2.0 m/s3

umax: Max. throttle/brake 1
∆u: Max. throttle/brake variation 0.2

Mode i = 1(2) is active when ṡ(t) < (≥)α. The
coefficients ci, fi are derived using the data shown
in Figure 1.b 2 .

The discrete-time state-space representation (sam-
pling time T = 1s, zero order hold) is

x(k+1) = Aix(k)+Biu(k)+Fi, x2(k) < α (2)

with

A1 =

[

1 0.97
0 0.99

]

, B1 =

[

2.31
4.61

]

, F1 = −

[

0.05
0.10

]

,

A2 =

[

1 0.98
0 0.96

]

, B2 =

[

2.28
4.54

]

, F2 =

[

0.22
0.44

]

,

where x1(k) is the position and x2(k) is the
velocity of the rear vehicle.

Constraints. Safety, comfort and economy or
environmental issues, as well as limitations on the
model, constrain the performance of the system.
Since some methods require bounded variables we
assume a minimum (x1,min = 0m) and a max-
imum (x1,max = 2000m) position. In particular
we consider limitations on the state x(k) and on
the input u(k). More precisely, ∀ k,

xmin ≤ x(k) ≤ xmax

x1(k) ≤ η1(k) + dsafe
adecT ≤ x2(k + 1)− x2(k) ≤ aaccT

|x2(k + 1)− 2x2(k) + x2(k − 1)| ≤ ξT 2.

(3)

The above equations express, respectively, the op-
erative range of the state, the tracking of the
leading vehicle trajectory η(k) = [η1(k), η2(k)]

T

within a given overshoot dsafe, bounds on acceler-
ation and jerk. We have, ∀ k, for the control input:

|u(k)| ≤ umax

|u(k + 1)− u(k)| ≤ ∆u.
(4)

Numerical values are listed in Table 2. Note that
although some of these constraints may be vio-
lated without causing major damages, i.e., colli-
sion or engine breakdown, we decided to consider
all of them as hard.

2 For the sake of simplicity we only consider one break-
point, leading to a PWA composed of two operating modes.
A finer approximation is also possible, by setting more than
one breakpoints on the nonlinear curve.
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Fig. 1. (a) ACC set up and (b) nonlinear to PWA approximation.

Optimal control problem. The control signal
u(k) is designed by minimizing the following cri-
terion, in an MPC receding horizon fashion.

min
ũ(Np)

J(θ(k), ũ(Np)) ,

Np
∑

j=1

||Qε(k + j)||1 + ||Ru(k + j − 1)||1,
(5)

s.t., (2), (3) and (4). Here ε(k+j) = x(k+j)−η(k+
j) is the tracking error, ũ(Np) = [u(k), . . . , u(k +
Np − 1)] the sequence of control inputs, Q, R

are weight matrices, θ(k) , [u(k − 1), x(k −
1)T, x(k)T, η(k + 1)T, . . . , η(k + Np)

T]T is a set
of parameters. In this framework the front vehicle
communicates the prediction of Np samples ahead
of its trajectory.

Note that an appropriately tuned shorter control
horizon Nc < Np may also be studied, i.e., u(k +
j) = u(k + Nc − 1), j = Nc, . . . , Np − 1. This
choice has the general advantage of reducing the
number of variables and of providing a smoother
solution. Nevertheless here we only consider Np =
Nc because a tuning issue was beyond the scope
of this paper. The ℓ1-norm allows the use of
(mixed integer) linear programming and usually
results in better performance than the ℓ∞-norm
(Borrelli, 2003).

3. DESIGN METHODS

In this section we describe the design methods
that we have used on the problem above. For all
methods we employed the weight matrices Q =
diag(0.8, 0.1) and R = 0.01.

Since some of these methods require the trans-
formation of the PWA system into a mixed logical

dynamical (MLD) form, we show for completeness
how this was performed in our setup.

PWA to MLD transformation. The PWA
system (2) is transformed into an MLD system
by the introduction of a binary variable δ(k)
(Bemporad and Morari, 1999). The value of δ(k)

equals 0(1) when the active mode is system 1(2).
Hence the new model of the system is:

x(k + 1) = A1x(k) + Lv(k) + F1, (6)

where L = [A2 − A1|B2 − B1|F2 − F1|B1] and
v(k) = [z(k)T, y(k), δ(k), u(k)]T (with z(k) =
x(k)δ(k), y(k) = u(k)δ(k), δ(k) ∈ {0, 1}) is the
auxiliarymixed logical control input. The variables
z(k), y(k) are nonlinear, but they can be converted
into equivalent mixed-integer linear inequalities
(Bemporad and Morari, 1999):

xminδ(k) ≤ z(k) ≤ xmaxδ(k)
−xmax(1− δ(k)) ≤ z(k)− x(k) ≤ −xmin(1− δ(k))

|y(k)| ≤ umaxδ(k)
|y(k)− u(k)| ≤ umax(1− δ(k)).

(7)
The switching condition leads to

−δ(k)(vmin − α) ≤ x2(k)− vmin

δ(k)(α− vmax) ≤ −x2(k) + α.
(8)

Method 1: on-line direct approach. This
method (Bemporad and Morari, 1999) solves
problem (5) s.t. the MLD model (6), the addi-
tional constraints (7) and (8). This is appropri-
ately converted into a mixed integer linear pro-
gram (MILP) as it follows:

J(θ(k))∗ = min
ỹ

c′ỹ

s.t. Eỹ ≤ G+ Eθθ(k),
(9)

where the variable ỹ includes the prediction of
the control variable ṽ and the dummy variables
introduced to convert the ℓ1 problem into a linear
problem. In a receding horizon fashion, the prob-
lem is solved on-line and the best control action is
computed at step k. At the next step k+1 the set
of parameters is updated and a new optimization
problem is formulated.

Method 2: off-line explicit approach. Prob-
lem (9) can be solved parametrically, as proposed
in (Bemporad et al., 2000), based on the theo-
retical results described in (Dua and Pistikopou-
los, 2000). This leads to an mp-MILP (multi
parametric mixed integer linear programming) as
described in (Borrelli, 2003), Chapter 8.
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Fig. 2. Approximation of the nonlinear curve via a
gain scheduling approach; m1,m2,m3,m4 indicate
the different affine models.

The mp-MILP solver provides a partition of con-
vex polyhedra in the parameter space θ, and a
PWA control law of the form ỹ(θ) = Fiθ + Gi,
that serves as a look-up table during the real time
evolution. The software we used for this case is
part of the Multi-Parametric-Toolbox release

2.5 (Kvasnica et al., 2004).

Method 3: on-line linear approximation. In
alternative to the hybrid optimization we also con-
sidered a locally linear approximation approach.
The method consists in using a locally linearized
prediction model. As detailed in (Beccuti et al.,
2005), this technique is appealing for relatively
slow processes. The manipulated variables are
computed on the base of the linear model, that
approximates the nonlinear friction force V = cv2

with its tangent line, i.e., V = cv2 ≈ 2cvtv − cv2t .

Method 4: off-line linear approximation.

The previous method also suggests an off-line ver-
sion, in a gain scheduling fashion. The nonlinear
curve depicted in Figure 1.b, is approximated into
M = 4 affine models m1,m2,m3,m4 in point
to point secant approximation, as illustrated in
Figure 2.

For each affine model mi we solve an off-line
mp-LP problem of the form (9). More precisely
we construct M = 4 look-up tables, each valid
for a given range of velocity. In the simulation
the controller selects the table according to the
current value of the speed.

Method 5: Positively invariant set. This on-
line approach (Lazar et al., 2005) is aimed to
determine a positively invariant set XNp

for the
PWA system, within which a strictly linear control
action may be used. The cost function of the form

J(θ(k), ũ(Np)) ,
Np
∑

j=1

||Qjε(k + j)||1 + ||Ru(k + j − 1)||1,
(10)

where Qj = Q ∀ j = 1, . . . , Np − 1, is employed as
a candidate Lyapunov function to construct (a) an

ε 2
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p
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Fig. 3. Positively invariant set, used as end point con-
straint in method 5, centered on the last point of the
predicted reference trajectory.

additional end point constraint and (b) a terminal
cost matrix QNp

. The method (Lazar et al., 2005)
is conceived for the ℓ∞-norm, but it can be easily
adapted to the ℓ1-norm.

The reformulation of problem (5) with the addi-
tional conditions (a) and (b) has the important
advantage of providing a stabilizing control law for
the hybrid system. Hence we compute an on-line
MPC controller over the MLD model (6), enriched
with an end point constraint.

In this specific tracking problem, the end point
constraint (Figure 3) computed off-line, is centered
in the Np-th point of the reference trajectory. The

terminal cost matrix is QNp
=

[

4.58 0.45
5.14 4.15

]

.

4. COMPARISON ISSUES AND RESULTS

The five methods are implemented in Matlab 7,
Linux 2.4.22OS on an INTEL Pentium 4, 3 GHz.
All optimizations, LP and MILP, are performed
via the solvers embedded in TOMLAB v5.1, except
for method 2 (CDD Criss Cross solver).

The prediction model for methods 3 and 4 is
a linear approximation and an MLD model for
methods 1, 2 and 5. Simulation is carried out
over the nonlinear continuous time system (1).
Methods 3 and 4 are really competitive as long
as the system and prediction model are close 3 .
On the other hand, methods 1, 2 and 5, based on
PWA approximation of the nonlinearity, are not
significantly affected by the model mismatch. The
integration of equation (1) is done with Matlab

ode45 with relative and absolute tolerances

1.0× 10−8, max step size 1.0× 10−3.

We have considered two references: (a) a smooth
trajectory, with constant velocity and (b) irregular
trajectory, with variable velocity, depicted in Fig-
ure 4. Some other features of the common setup

3 The sampling time plays a fundamental role in this
specific application.
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Table 3. General data and initial conditions.

Prediction horizon Np 3
Control horizon Nc 3

Sample time T 1 s
Simulation time 75 s

Number of variables MLD: 24, Linear: 12
of which dummy 9
of which integer MLD: 3, Linear: −

Number of parameters 11
Number of constraints (MLD) 85 (89 for method 5)
Number of constraints (Linear) 78

Input initial condition u(−1) = 0
State initial condition x(0) = [0, 5]T

State past condition x(−1) = [−5, 5.3]T

and initial condition of the simulations are listed
in Table 3.

Tables 4 and 5 collect the data obtained by
running the methods for both references, constant
and time varying velocity. In particular Table 4
shows the performance of the methods with the
former and Table 5 with the latter.

We believe that the most interesting aspect (from
an application point of view) in Tables 4 and 5 is
the computational time, both on-line (average and
maximum along the simulation period) and off-
line, as well as the memory requirements. These
entities are related to the size of the optimization
problem, in our particular case to the length of
the prediction horizon.

Let us observe that the on-line methods based on
the MLD transformation are reasonably fast for
low values of Np, and their velocity is comparable
with the purely linear method. For higher values
of the horizon, the computational time of method
3 is not significantly affected as it is for methods 1
and 5, due to their inner mixed integer structure.

In terms of on-line memory usage we point out
that the off-line methods perform quite poorly. In
fact the number of the faceted polyhedra grows
exponentially with Np (as the number of parame-
ters depends onNp) and each number should be in
double precision. However it should be remarked

that off-line methods do not require the optimizer
on board, which can be relevant in an integrated

design that also takes into account budget issues.

We also provide the number of times when infeasi-
bility occurred during the simulation period. This
index is related to the length of the prediction
horizon, and it should decrease as the value of Np

increases. The next row of the tables report the
cost of the evolution of the obtained control law.

For the on-line methods the item Maximum

tractable Np is obtained by choosing the smallest
Np for which the computational time required by
the optimizer is lower than the sampling time
and the solution is 100% feasible for the whole
simulation period. We observe that this is possible
for PWA approximations, but not for methods 3
and 4, for which increasing the prediction horizon
does not provide significant improvement on the
feasibility of the solution.

Method 5 contains an additional terminal con-
straint, and it is completely infeasible for low
values of Np. The minimum Np that guarantees
100% feasibility is Np = 17(19) (reference b), but
unfortunately for this size the computation time
becomes longer than the sample time (T = 1 s).

For the off-line methods, namely 2 and 4, the
value ofMaximum tractable Np is based on reason-
able on-line computational time and data storage
requirements. As it is shown in Tables 4 and 5
the look-up process to the partition table requires
more time than the sampling time T . Neverthe-
less, the look-up process may be improved by use
of appropriate binary search algorithms (Tøndel
et al., 2003), the complexity of which is logarith-
mic.

One major limitation of off-line methods is that
the look-up table is only valid for a specific con-
figuration of the system. Thus these methods are
not able to handle possible variation of the system
parameters values, and a recomputation of the
table may be required.

5. CONCLUSIONS

Some methods conceived for computing control
laws of PWA systems were used to design an ACC
for a Smart vehicle. We have made a comparison
among several methods. In particular, methods
based on MLD transformation (1 and 5) appear
to be very reliable and accurate although they
require to perform an on-line optimization. On
the other side, off-line methods seem to be more
efficient in terms of feasibility, but they suffer of
high complexity of the data structure, and their
exponential complexity is practically prohibitive
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Table 4. Methods applied on the ACC design, with a constant velocity reference.

Method 1 2 3 4 5
Time on-line (avg) (s) 0.09 0.90 0.19 1.16 0.09
Time on-line (max) (s) 0.57 1.64 0.16 8.31 0.18

Time off-line (s) 0.16 6.84× 103 0.002 1.13× 105 0.21
Memory usage on-line (Mb) 4.43+optimizer 28.5 3.5+optimizer 62 4.53+optimizer
Memory usage off-line (Mb) 0.05 28.5 0.01 62 0.06

Infeasibility (%) 62 1.3 60 27 100
Cost of evolution 337.71 5.38× 103 474.15 365.32 −

Maximum tractable Np 18 2 > 30 2 17
Number of regions − 4541 − 19311 −

Table 5. Methods applied on the ACC design, with time-varying velocity reference.

Method 1 2 3 4 5
Time on-line (avg) (s) 0.09 1.13 0.19 1.79 0.07
Time on-line (max) (s) 0.17 1.91 0.39 8.56 0.44

Time off-line (s) 0.09 6.84× 103 0.003 1.13× 105 0.21
Memory usage on-line (Mb) 4.45+optimizer 28.5 3.5+optimizer 62 4.45+optimizer
Memory usage off-line (Mb) 0.05 28.5 0.01 62 0.05

Infeasibility (%) 84 1.3 77 56 100
Cost of evolution 334.68 1.59× 103 456.83 391.41 −

Maximum tractable Np 15 2 > 30 2 19
Number of regions − 4541 − 19311 −

for a high number of variables. In a further de-
velopment we intend to consider also a model
with discrete input, the gear shift. We will also
consider the performance of some other interesting
techniques, (Hedlund and Rantzer, 1999; Raković
et al., 2004), that appear to be suitable for the
described problem.
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F.J. Christophersen (2004). Multi-Parametric

Toolbox MPT: User’s Manual. (ETH) Zurich.
See: http://control.ee.ethz.ch/∼mpt.

Lazar, M., W.P.M.H. Heemels, S. Weiland, A. Be-
mporad and O. Pastravanu (2005). Infin-
ity norms as Lyapunov functions for model
predictive control of constrained PWA sys-
tems. In: LNCS: Hybrid Systems: Computa-

tion and Control. number 3414. Springer Ver-
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