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MPC of Implicit Switching Max-Plus-Linear

Discrete Event Systems – Timing Aspects

Ton J.J. van den Boom and Bart De Schutter

Abstract— In this paper we consider the control of discrete
event systems that can be modeled as implicit switching max-
plus-linear systems. In switching max-plus-linear systems we
can switch between different modes of operation. In each mode
the discrete event system is described by an implicit max-plus-
linear state space model with different system matrices for
each mode. The switching allows us to change the structure
of the system, to break synchronization and to change the
order of events. We introduce implicit switching max-plus-
linear systems, and explain how model predictive control (MPC)
can be applied to them. Next, we discuss the timing aspects of
MPC for this type of discrete event systems.

I. INTRODUCTION

In general, models that describe the behavior of a discrete

event system are nonlinear in conventional algebra. However,

there is a class of discrete event systems — the max-plus-

linear discrete event systems — that can be described by a

model that is “linear” in the max-plus algebra [1], [5], which

has maximization and addition as its basic operations. The

max-plus-linear discrete event systems can be characterized

as the class of discrete event systems in which only synchro-

nization and no concurrency or choice occurs.

In the literature on control for max-plus linear discrete

event systems [3], [13] usually explicit input-output models

or explicit state space models are used. However, in this

paper we will consider implicit models in which the current

state appears both at the left-hand side and the right-hand

side of the state update equation, as this will offer some ad-

vantages when considering time-varying models (due to new

measurements that become available) and when considering

timing aspects of MPC for max-plus linear discrete event

systems.

In [15], [16] switching max-plus-linear systems were

introduced. The discrete event system can switch between

different modes of operation, such that in each mode the

system is described by an implicit max-plus-linear state

space model instead of by an explicit model as in [15],

[16]. The switching changes the structure of the system,

and so allows us to break synchronization and to change

the order of events. We consider model predictive control

(MPC) for the class of implicit switching max-plus linear

systems. In contrast to conventional MPC where the sample

counter is directly related to the clock/time, in discrete event

systems the counter is an event counter and there is no

direct relation between the counter and the current time. As

a result at a given time t and for a given event step k it
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could be that some of the components of the state x(k, t)
of the system are already known (because they happened

before time t) whereas other component are not yet known

(as their (estimated or predicted) value is larger than t). In

our previous papers on MPC for max-plus linear systems we

have not considered in a detailed way the possible problems

and intricacies caused by this timing issue. In this paper

however we will in particular focus on the timing aspects of

MPC for (implicit switching) max-plus linear systems.

II. MAX-PLUS ALGEBRA AND IMPLICIT SWITCHING

MAX-PLUS-LINEAR SYSTEMS

A. Max-plus algebra and max-plus-linear systems

Define ε =−∞ and Rε =R∪{ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as x⊕ y =
max(x,y) and x⊗ y = x+ y for numbers x,y ∈ Rε [1], [5],

and

[A⊕B]i j = ai j ⊕bi j = max(ai j,bi j)

[A⊗C]i j =
n

⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε is

the max-plus-algebraic zero matrix with (ε )i j = ε , ∀ i, j.

The matrix E is the max-plus-algebraic identity matrix with

[E]i j = 0 for all i = j, and (E)i j = ε for all i 6= j.

In [1], [5] it has been shown that discrete event systems

in which there is synchronization but no concurrency can be

described by a model of the form

x(k) = A0(k)⊗ x(k)⊕A1(k)⊗ x(k−1)⊕ . . .⊕

Am(k)⊗ x(k−m)⊕B(k)⊗u(k)

=
(

m
⊕

i=0

Ai(k)⊗ x(k− i)
)

⊕B(k)⊗u(k) (1)

The index k is called the event counter.So k indicates the

batch number, the operation cycle, etc. of the discrete event

system. For discrete event systems the state x(k) typically

contains the time instants at which the internal events occur

for the kth time, and the input u(k) contains the time instants

at which the input events occur for the kth time. The max-

plus-linear system (1) is called implicit, because on both

sides of the equality sign the state x(k) appear. Usually (1)

is transformed into an explicit equation of the form

x(k) = A′
1(k)⊗ x(k−1)⊕·· ·⊕A′

m(k)⊗ x(k−m)⊕B′⊗u(k)

with A′
i = A∗ ⊗ Ai and B′ = A∗ ⊗ B where A∗ = E ⊕ A ⊕

A⊗2
⊕ ·· · [1]. However, as we will argue later for some



applications (in particular those involving on-line adaptive

and/or predictive control) the implicit form is more suited.

B. Implicit switching max-plus-linear systems

In this paper we will consider implicit switching max-

plus-linear systems, i.e. discrete event systems that can

switch between different modes of operation. The switching

allows us to change the structure of the system, to break

synchronization and to change the order of events. In each

different mode ℓ = 1, . . . ,nm, the implicit switching max-

plus-linear system is described by an implicit max-plus-linear

state equation

x(k, t) = A
(ℓ(k,t))
0 (k, t)⊗ x(k, t)⊕A

(ℓ(k,t))
1 (k, t)⊗ x(k−1, t)

⊕ . . .⊕A
(ℓ(k,t))
m (k, t)⊗ x(k−m, t)⊕B(ℓ(k,t))(k, t)⊗u(k, t)

(2)

=
(

m
⊕

i=1

A
(ℓ(k,t))
i (k, t)⊗ x(k−i, t)

)

⊕B(ℓ(k,t))(k, t)⊗u(k, t)

in which the matrices A
(ℓ)
i , i = 1, . . . ,m and B(ℓ) are the

system matrices for the ℓ-th mode, and x(k, t), u(k, t) and

ℓ(k, t) denote the state, input and mode signal, respectively,

for the kth cycle as they are known, measured, estimated or

predicted at time t. For implicit switching max-plus-linear

systems we need time t explicitly as an argument to be able

to switch within a cycle.

The motivation for introducing implicit switching max-

plus-linear systems is the following. In [15], [16] we have

introduced switching max-plus-linear systems of the form

(2) with only A
(ℓ)
1 present (so A

(ℓ)
0 = ε and A

(ℓ)
i = ε for

i = 2, . . . ,m). The main disadvantage of this description is

that we are not able to consider the intermediate switching

explicitly in time, but we can only concentrate on the final

result ℓ(k). For systems where the A-matrices are uncertain

and may change in time (which is usually the case, when

the entries of the A matrices correspond to production times

or traveling times), we will find it is more appropriate to

describe the different modes over both the event axis (k) and

the time axis (t).

The moments of switching are determined by a switching

mechanism. Consider the system (2) at a time t, for which

a switching might take place. To distinguish between the

signals before and after the switching we will denote t−

as the time just before switching, and t+ as the time just

after switching. Consequently, x(k, t−) and u(k, t−) denote

the state and input just before the switching, and x(k, t+) and

u(k, t+) denote the state and input just after the switching.

Note that some of the events in x(k, t−) may already have

taken place (xi(k, t
−)< t) and others still have to taken place

(xi(k, t
−) ≥ t). Let Nx(k, t) be the set of indices that corre-

spond to states that already have taken place (so xi(k, t
−)< t

for i ∈ Nx(k, t)), and define a vector xpast(k, t
−), consisting

of all entries of xi(k, t
−), i ∈ Nx(k, t). In the same way, let

Nu(k, t) be the set of indices for which u j(k, t
−) < t for

j ∈ Nu(k, t))
We define the switching variable z(k, t), which consists of

the time variable t, the state x(k, t), the mode ℓ(k, t), the input

variable u(k, t) and an (additional) control variable v(k, t):

z(k, t) =



























t

xpast(k, t
−)

...

xpast(k−m, t−)
ℓ(k, t−)

ℓ(k−1, t−)
u(k, t−)
v(k, t)



























∈ R
nz
ε . (3)

We partition R
nz
ε in nm subsets Z (i), i = 1, . . . ,nm. The mode

ℓ(k, t) is now obtained by determining in which set z(k, t) is

for event k and for time t. So if z(k, t)∈Z (i), then ℓ(k, t) = i.

Note that due to causality it is important to guarantee

that events that already have taken place at switching time t

should not be changed anymore. We therefore introduce the

following causality conditions:

xi(k, t
+) = xi(k, t

−), for all i ∈ Nx(k, t) (4)

u j(k, t
+) = u j(k, t

−), for all j ∈ Nu(k, t) (5)

In practice this means that mode transitions that will change

xpast(k, t
−) will not be allowed.

Remark 1: Let G (A
(ℓ)
i ) = (N (A

(ℓ)
i ),D(A

(ℓ)
i )) be the

precedence graph (or communication graph) associated with

matrix A
(ℓ)
i , where N (A

(ℓ)
i ) denote the set of nodes and

D(A
(ℓ)
i ) the set of arcs of the graph [11]. For systems of

the form (2) we will find that the nodes will not change

and so N (A1
i ) = . . . = N (Anm

i ) for all i. In that case

switching means changing the arcs of the graph, i.e. adding

or removing arcs or changing the weights of the arcs. Now

let us restrict ourselves to systems in which the weights

of the arcs (=entries of A
(ℓ)
i ) are either ε or non-negative

(for physical systems this is usually the case). Further let

Npast(k, t) be the set of nodes that correspond to the past

state xpast(k, t
−). In that case condition (4) means that the

incoming arcs at nodes Npast(k, t) are not allowed to change

(i.e. all existing incoming arcs should stay and keep the same

weight and new incoming arcs should not be added).

Remark 2: Due to causality, the mode switching is only

determined by the past values of the states and input signals.

In some cases the switching may be dependent on a predicted

value of the state. In that case this predicted state can always

be computed using the values of xpast(k− j, t−), j = 1, . . . ,m,

together with the values of A
(ℓ(k− j,t))
i (k− j, t) and the future

mode and input sequence.

III. THE MODEL PREDICTIVE CONTROL PROBLEM

Consider the switching max-plus-linear model (2)–(3). We

have two possible input signals, v(k, t) and u(k, t). The input

signal u(k, t) correspond to time a specific input event occurs,

the input signal v(k, t) is an additional (usually integer

valued) signal that gives some additional control of the

switching mechanism. For more background on the choices

of the input signals we refer to [15], [16]. Just as in conven-

tional Model Predictive Control (MPC) [12] we define the



input sequences ũ(k, t) =
[

uT (k, t), . . . ,uT (k+Np −1, t)
]T

and ṽ(k, t) =
[

vT (k, t), . . . ,vT (k+Np −1, t)
]T

where Np

is the prediction horizon. Let V (k, t) and U (k, t) be the

sets of feasible future control sequences ṽ(k, t) and ũ(k, t),
respectively.

We now aim at computing the optimal ũ(k, t) and ṽ(k, t)
that minimize a cost criterion J(k, t), possibly subject to

linear constraints on the inputs and the states. The cost

criterion reflects the input and output cost functions (Jin and

Jout, respectively) in the event period [k,k+Np −1]:

J(k, t) = Jout(k, t)+λJin(k, t) , (6)

where λ is a weighting parameter. The output cost function

is usually chosen as

Jout(k, t) =
Np−1

∑
j=0

‖ e(k+ j, t)‖ ,

where ‖·‖ is an appropriate norm (usually the two-norm, the

one-norm or the infinity-norm), and e is the due date error

ei(k, t) =max(xi(k, t)−ri(k, t),0), where r(k, t) is the desired

due date of the state. The input cost function consists of two

parts, Jin = Jin,u +Jin,v. The first part Jin,u depends on ũ(k, t)
and is usually chosen as

Jin,u(k, t) =−
Np−1

∑
j=0

‖u(k+ j, t)‖ ,

(see also [7]). The second part Jin,v is a function of ṽ(k, t). For

different applications, Jin,v will have different appearances.

If the input signal v(k, t) has no influence on the switching

(i.e. the partition R
nz
ε in nm subsets Z (i) does not depend

on v(k, t)), then we will choose Jin,v = 0. If v(k, t) has an

influence on the switching, then Jin,v is usually chosen as

Jin,v(k, t) =
Np−1

∑
j=0

nv

∑
i=1

‖wi vi(k+ j, t)‖ ,

where wi are weighting constants, that penalizes an increase

of the variable vi(k+ j, t).
Since the input signal u(k, t) corresponds to consecutive

event occurrence times, we have the additional condition for

j = 0, . . . ,Np −1:

∆u(k+ j, t) = u(k+ j, t)−u(k+ j−1, t)≥ 0 .

Furthermore, in order to reduce the number of decision

variables and the corresponding computational complexity

we introduce a control horizon constraint on the signals

∆u(k, t) and v(k, t), which means that these signals should

be constant from the point k+Nc −1 on, so

∆u(k+ j, t) = ∆u(k+Nc −1, t) ,

v(k+ j, t) = v(k+Nc−1, t) ,

for j = Nc, . . . ,Np − 1. Now the MPC control problem for

event step k and time t can be defined as:

min
{ũ(k,t)∈U ,ṽ(k,t)∈V (k,t)}

J(k, t) (7)

subject to

x(k+ j, t) =
(

m
⊕

i=0

A
(ℓ(k+ j,t))
i (k+ j, t)⊗ x(k+ j− i, t)

)

⊕B(ℓ(k+ j,t))(k+ j, t)⊗u(k+ j, t) (8)

z(k+ j, t) ∈ Z
(ℓ(k+ j,t)) (9)

∆u(k+ j, t)≥ 0 (10)

∆v(k+ l, t) = 0 (11)

∆u(k+ l, t)−∆u(k+Nc −1, t) = 0 (12)

Ac(k, t)ũ(k, t)+Bc(k, t)x̃(k, t)≤ cc(k, t) (13)

for j = 0, . . . ,Np−1, l = Nc, . . . ,Np−1

where (13) may represent additional linear constraints on the

inputs and the states.

MPC uses a receding horizon principle. This means that

after computation of the optimal future control sequences

ũ(k, t) and ṽ(k, t), only the first control samples u(k, t) and

v(k, t) will be implemented, subsequently the horizon is

shifted one sample, and the optimization is restarted with

new information of the measurements.

In principle we have all elements to solve the receding

horizon control problem (7)–(13). In general we will have

an optimal control problem with both real parameters and

integer parameters. As was already discussed in [15], [16],

the optimization problem can often be recast in a form for

which reliable algorithms are available1

Timing

MPC for (switching) MPL systems is different from con-

ventional MPC in the sense that the event counter k is

not directly related to a specific time [16]. So far we have

assumed that x(k− j, t), j = 0, . . . ,m are available when we

want optimize over the future control sequence at time t.

However, only the components of xpast(k− j, t) are available

at time instant t. Therefore, we will now present a method

to address the timing issues of the controller.

We consider the case of full state information2. Let

[xtrue(k − j, t)]i, j = 0, . . . ,m be the measured (true) occur-

rence time of the (k − j)th occurrence of internal event

i ∈ N(k− j, t) at time t, and let [xest(k− j, t)]i, j = 0, . . . ,m
be an estimation of the (k− j)th occurrence time of internal

event i 6∈ N(k− j, t) at time t. The estimation can be done

using the following procedure: Let p(t) be the smallest

integer such that [xtrue(k − p(t))]i < t for all i = 1, . . . ,n.

1In some particular cases, the problem can be recast as a Extended Linear
Complementary Problem (ELCP) that can be solved efficiently [7], [8]. If
the optimization is over a binary valued vector v(k) we obtain an integer
optimization problem (without any real valued variables), which can be
solved using genetic algorithms [6], tabu search [10], or a branch-and-
bound method [4]. In some particular cases the problem can be recast as a
Mixed Integer Linear Programming (MILP) or a Mixed Integer Quadratic
Programming (MIQP) [2], [9].

2Since the components of x correspond to event times, they are in general
easy to measure. Also note that measurements of occurrence times of
events are in general not as susceptible to noise and measurement errors
as measurements of continuous-time signals involving variables such as
temperature, speed, pressure, etc.



Hence, [xtrue(k− p(t))]i is completely known at time t. If we

define xest(k − p(t), t) = xtrue(k − p(t)), we can reconstruct

the unknown state components using the recursion

xest(k− j, t) =
(

m
⊕

i=0

A
(ℓ(k− j,t))
i (k, t)⊗ xest(k− i− j, t)

)

⊕B(ℓ(k− j,t))(k, t)⊗u(k− j, t)

z(k− j, t) ∈ Z
(ℓ(k− j,t))

for j = 0, . . . , p(t)−1, where for the components of u(k− j, t)
that are less than t we take the actually applied input times,

and for the other components we take the computed esti-

mated values. The value of the state x(k, t), j = 0, . . . , p(t)−1

that can be used to compute the MPC controller at time

t is given by x(k − j, t) with components [x(k − j, t)]i for

i = 1, . . . ,n such that

[x(k− j, t)]i =

{

[xtrue(k− j, t)]i if i ∈ N(k− j, t)

[xest(k− j, t)]i if i 6∈ N(k− j, t)

Finally, before the implementation of the controller can be

done, one has to determine at what time instants a new

optimization should be done. In principle, the appropriate

input sequences ũ(k, t) and ṽ(k, t) should be recomputed as

soon as a new measurement of state [xtrue(k− j, t)]i comes

available. If the measured [xtrue(k− j, t)]i is equal to the

estimated [xest(k− j, t)]i, an optimization is superfluous and

the already computed input sequences will be optimal.

IV. EXAMPLE: A RAILWAY NETWORK

In this example we consider the railroad network of

Figure 1, which is a refined version of the network, presented

in [14]. There are 4 stations in this railroad network (A, B, C

and D) that are connected by 6 single tracks (1/7, 2/4, 3, 5,

6/8, 9). There are three trains available. The first train follows

the route D → A → B → D, the second train follows the

route A → B →C → A, and the third train follows the route

D → A → C → D. We assume that there exists a periodic

timetable that schedules the earliest departure times of the

trains. The period of the timetable is T = 60 minutes. So if

a departure of a train from station B is scheduled at 5.30

a.m., then there is also scheduled a departure of a train from

station B at 6.30 a.m., 7.30 a.m., and so on.

✡
✡
✡
✡
✡
✡
✡
✡✡✣ ❏

❏
❏
❏
❏
❏
❏
❏❏❫✛

✑
✑

✑
✑

✑✑✰ ◗
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◗
◗

◗◗❦
❄

✻

✐

D

✐
A

✐

C

✐

B

1/7 2/4

3

5

68

9

Fig. 1. The railroad network.

Each track of the railway network has a number and a

train allocated to it. For the sake of simplicity we will say

“(virtual) train j” to denote the (physical) train on a specific

track. The number of tracks in the network is equal to 6, the

number of physical trains in the network is equal to 3, and the

number of virtual trains in the network is equal to 9. (We say

virtual to denote that some of the virtual trains are actually

the same physical train). Let d j(k, t), j = 1, . . . ,9 be the time

instant at which train j departs from its departure station in

the kth period, and let a j(k, t), j = 1, . . . ,9 be the time instant

at which train j arrives at its arrival station in the kth period.

Let r j(k) be the departure time for this train according to the

time schedule, and let τ j(k, t) be the transportation time for

this train j.

TABLE I

THE NOMINAL TRANSPORTATION TIMES AND THE DEPARTURE TIMES

tr
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m
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e
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n

n
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o

n
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o
w

w
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t
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r
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v
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o
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1 D-A 12 00-12 3− 9− 7−

2 A-B 12 15-27 1 6− 4−

3 B-D 20 30-50 2

4 A-B 12 19-31 6− 7− 2

5 B-C 10 34-44 4

6 C-A 25 47-12 5 8

7 D-A 12 04-16 9− 1

8 A-C 25 19-44 7 6−

9 C-D 10 47-57 8 5

Note: 3− denotes train 3 in the previous cycle

Table I summarizes the information in connection with the

nominal transportation times and the departure times. All the

times are measured in minutes.

The continuity constraints are that the trains on tracks 1,

2 and 3 are physically the same train, and the same holds

for the trains on tracks 4, 5 and 6 and for the trains on

tracks 7, 8 and 9. Connection constraints are introduced to

allow the passengers to change trains. In this network, train

1 has to wait for train 9 in the previous cycle with minimum

connection time cmin = 3. In the same way, train 2 waits for

train 6 in the previous cycle, train 4 wait for train 7, and train

9 waits for train 5. The minimum stopping time of train j at

station j to allow passenger to get off or on the train is fixed

at smin = 1. Follow constraints are introduced to guarantee

sufficient separation time between two trains on the same

track (moving in the same direction). In this network, train

4 is scheduled behind train 2 (train 4 follows train 2) with

a minimum separation time f min = 4. In the same way, train

2 follows train 4 in the previous cycle, train 7 follows train

1, and train 1 follows train 7 in the previous cycle. Finally,

a wait constraint is introduced to guarantee that two trains

(moving in opposite direction) are not on the same track at

the same time: Train 6 is scheduled behind train 8 (train 4

waits for train 2) with a minimum separation time wmin = 1.

In the same way train 8 waits for train 6 in the previous

cycle.

Each train departs as soon as all the connections are

guaranteed (except or a connection when it is broken), the



passengers have gotten the opportunity to change over and

the earliest departure time indicated in the timetable has

passed.

Now we write down the equations that describe the

evolution of the a j(k, t)’s and d j(k, t)’s. First we consider

the train on track 1 and we determine d1(k, t), the time

instant at which this train departs from station A for the

kth time. The train has to wait at least until the train

has arrived in station A for the (k − 1)th time3 and the

passengers have got the time to get out of the train so we

have d1(k, t)≥ a3(k−1, t)+1. Furthermore, the train on track

1 has to wait for the passengers of the train on track 9 in

the (k−1)th cycle, which arrives in station B at time instant

a9(k−1, t). The passengers have cmin = 3 minutes to change

trains. Further the train on track 1 has to follow the train

on track 7 in the previous cycle with a minimum separation

time f min = 4. According to the timetablethe train on track 1

can only depart after time instant 00+k 60. Hence, we have

d1(k, t) = max(a3(k−1, t)+ smin,d7(k−1, t)+ f min,

a9(k−1, t)+ cmin,r1(k))

= max(a3(k−1, t)+1,d7(k−1, t)+4,

a9(k−1, t)+3,k 60 )

for k = 1,2, . . . with a3(0) = a9(0) = ε . The nominal arrival

time of train 1 is now equal to the departure time plus the

transportation time (d1(k, t)+ τ1(k, t)). However, train 1 can

never take over train 7 from the previous and so a1(k, t) ≥
a7(k−1, t)+ f min. So the final arrival time becomes:

a1(k, t) = max(d1(k, t)+ τ1(k, t),a7(k−1, t)+ f min )

= max(d1(k, t)+ τ1(k, t),a7(k−1, t)+4)

Using a similar reasoning, we find that the other departure

and arrival times are given by

d2(k, t) = max(a1(k, t)+1,a6(k−1, t)+3,

d4(k−1, t)+4,15+ k 60)

d3(k, t) = max(a2(k, t)+1,30+ k 60)

d4(k, t) = max(a6(k−1, t)+1,a7(k−1, t)+3,

d2(k, t)+4,19+ k 60)

d5(k, t) = max(a4(k, t)+1,34+ k 60)

d6(k, t) = max(a5(k, t)+1,a8(k, t)+1,47+ k 60)

d7(k, t) = max(a9(k−1, t)+1,d1(k, t)+4,4+ k 60)

d8(k, t) = max(a7(k, t)+1,a6(k−1, t)+1,19+ k 60)

d9(k, t) = max(a8(k, t)+1,a5(k, t)+3,47+ k 60)

3Under nominal operations the kth train on track 1 (e.g., the one that
departs from station D at 10.00 a.m.) proceeds to the (k − 1)th train on
track 3 (which has departed from station B at 9.30 a.m.) and not to the kth
train on track 3 (which will depart from station B at 10.30 a.m.).

a2(k, t) = max(d2(k, t)+ τ2(k, t),a4(k−1, t)+4)

a3(k, t) = d3(k, t)+ τ3(k, t)

a4(k, t) = max(d4(k, t)+ τ4(k, t),a2(k, t)+4)

a5(k, t) = d5(k, t)+ τ5(k, t)

a6(k, t) = d6(k, t)+ τ6(k, t)

a7(k, t) = max(d7(k, t)+ τ7(k, t),a1(k, t)+4)

a8(k, t) = d8(k, t)+ τ8(k, t)

a9(k, t) = d9(k, t)+ τ9(k, t)

for k = 0,1,2, . . . with d j(−1) = ε , a j(−1) = ε for all j. By

defining

x(k, t) =
[

d1(k, t) . . . d9(k, t) a1(k, t) . . . a9(k, t)
]T

and r̄(k) =
[

rT (k) ε
]T

we can rewrite this system as

x(k, t) = A
(1)
0 (k, t)⊗ x(k, t)⊕

A
(1)
1 (k, t)⊗ x(k−1, t)⊕ r̄(k) (14)

which is of the form (2) with m = 1 and u(k, t) = r̄(k).

In the nominal operation we have assumed that some

trains should give pre-defined connections to other trains,

and the order of trains on the same track is fixed. However,

if one of the preceding trains has a too large delay, then it is

sometimes better — from a global performance viewpoint

— to let a connecting train depart anyway or to change the

departure order on a specific track. This is done in order to

prevent an accumulation of delays in the network. In this

paper we consider the switching between different operation

modes, where each mode corresponds to a different set of

pre-defined or broken connections and a specific order of

train departures. We allow the system to switch between

different modes, allowing us to break train connections

and to change the order of trains. Note that any broken

connection or change of train order leads to a new model,

similar to the nominal equation (14), but now with adapted

system matrix A(ℓ) for the ℓ-th model. We have the following

system equation for the perturbed operation for ℓ= 2, . . . ,nm:

x(k, t) = A
(ℓ(k,t))
0 (k, t)⊗ x(k, t)⊕

A
(ℓ(k,t))
1 (k, t)⊗ x(k−1, t)⊕ r̄(k)

In this railway network the switching variable z(k, t) is

equal to the control vector v(k, t), and each entry of v(k, t)
corresponds to a specific control action, so a specific (sched-

uled) synchronization or specific (scheduled) event order. We

assume v(k, t) to be binary, where vi(k, t) = 0 corresponds

to the nominal case, and vi(k, t) = 1 to a perturbed case

(a synchronization is broken or the order of two events is

switched). Each combination v1(k, t),. . . ,vnv(k, t) corresponds

to a fixed routing schedule with a specific train order and

specific connections.

If for example the order of departure (and thus arrival) of

train 1 and 7 is changed in cycle k, the equations for d1(k, t),



d7(k, t), a1(k, t), and a7(k, t) are replaced by:

d1(k, t) = max(a3(k−1, t)+1,d7(k, t)+4,

a9(k−1, t)+3,k 60 )

d7(k, t) = max(a9(k−1, t)+1,d1(k−1, t)+4,4+ k 60)

a1(k, t) = max(d1(k, t)+ τ1(k, t),a7(k, t)+4)

a7(k, t) = max(d7(k, t)+ τ7(k, t),a1(k−1, t)+4)

We now assume u(k, t) = r̄(k) is fixed and v(k, t) is a binary

parameter vector. We solve the optimal control problem of

solving cost function

J(k, t) =
Np−1

∑
j=0

9

∑
i=1

di(k+ j)− ri(k+ j)+
nv

∑
l=1

λl vl(k+ j)

subject to constraints (8)–(13), where Np is chosen

sufficiently large. This results in an integer optimization

problem. We assume the system is at nominal schedule for

k < 0. At time t = 15 a measurement is received for a delay

of train 7 in cycle k = 0, and at time t = 125 a measurement

is received for a delay of train 1 in cycle k = 2, so

τ7(0, t) =

{

12 for t < 15

35 for t ≥ 15
,

τ1(2, t) =

{

12 for t < 125

32 for t ≥ 125

We choose λl = 500 for inputs vl related to connections and

λl = 10 for the other inputs. The input signal is optimized

with a branch-and-bound algorithm and we obtain the

optimal sequence (for more details about an good initial

guess for the optimization, see [14]).

In Figure 2 the maximum delay emax(k, t) = max(e(k, t))
in each cycle k is given for both the uncontrolled case (so

v(k+ j) = 0 for all j > 0) and for the controlled case (with

v∗(k+ j)). We see that the delay in the MPC controlled case

decays much faster than the uncontrolled case.

V. DISCUSSION

We have introduced implicit max-plus-linear systems, a

class of discrete event systems that can operate in different

modes, for which in each mode the dynamics can be

described by a model that is “linear” in the max-plus algebra.

The implicitness of the system equations is appropriate

if we consider systems for which the system matrices

may be uncertain or vary in time. It is straightforward to

derive the matrices (Ai(k, t),Bi(k, t)), i = 1, . . . ,m and the

timing aspects in MPC when measurements and estimations

become available in time, is easier and transparent. The

MPC design technique has been discussed for the implicit

switching max-plus-linear systems, and we have applied the

control design method to a railway system.
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Fig. 2. Maximum delay for an uncontrolled railway system and a railway
system using MPC


