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Min-Max Model Predictive Control for Uncertain

Max-Min-Plus-Scaling Systems

Ion Necoara, Bart De Schutter, Ton van den Boom and Hans Hellendoorn

Abstract— We extend the model predictive control (MPC)
framework that has been developed previously to a class of
uncertain discrete event systems that can be modeled us-
ing the operations maximization, minimization, addition and
scalar multiplication. This class encompasses max-plus-linear
systems, min-max-plus systems, bilinear max-plus systems and
polynomial max-plus systems. We first consider open-loop
min-max MPC and we show that the resulting optimization
problem can be transformed into a set of linear programming
problems. Then, min-max feedback model predictive control
using disturbance feedback policies is presented, which leads
to improved performance compared to the open-loop approach.

I. INTRODUCTION

An important class of discrete event systems is the class

of max-min-plus-scaling (MMPS) systems, the evolution of

which can be described using the operations maximization,

minimization, additions and scalar multiplication. Using the

results of [1], [2], we can prove that MMPS systems are

equivalent with continuous piecewise affine (PWA) systems.

PWA systems are defined by partitioning the state space of

the system in a finite number of polyhedral regions and

associating to each region a different affine dynamic. The

relation between PWA and MMPS systems is useful for

the investigation of structural properties of PWA systems

such as observability and controllability but also in designing

controller schemes like model predictive control (MPC).

MPC [3] is a popular control methodology in the process

industry. MPC provides many attractive features: it is an

easy-to-tune method, it can handle constraints in a systematic

way, it is applicable to multi-variable systems, and is capable

of tracking pre-scheduled reference signals. In MPC at each

sample step the optimal control inputs that minimize a given

performance criterion over a given prediction horizon are

computed, and applied using a receding horizon approach.

Using the work of [4] in which MPC for MMPS (and

equivalently for continuous PWA) systems for the deter-

ministic case without disturbances is proposed, we further

extend MPC for the cases with bounded disturbances. The

disturbances perturb the system by introducing uncertainty in

the system equations. Ignoring the disturbance can lead to a

bad tracking or even to unstable closed-loop behavior. The

disturbances must thus also be taken into account in MPC.

We model disturbances by including extra additive terms in

the system equations for MMPS systems.

I. Necoara, B. De Schutter, T.J.J. van den Boom and J. Hel-
lendoorn are with the Delft Center for Systems and Control,
Delft University of Technology, Delft, The Netherlands (e-mail:
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Note that there are some results in the literature on specific

classes of uncertain discrete event systems (see [5]–[7]) but

to the authors’ best knowledge this is the first time that

such an approach is used for the MMPS framework. Most

of the papers [5]–[7] focus on worst-case problems, which

basically involves finding the maximum of the cost criterion

over some bounded disturbance set and then minimization

over the feasible input set. In [5] dynamic programming

was used to solve the min-max problem for continuous

PWA systems with bounded disturbance. The core difficulty

with the dynamic programming approach is that optimizing

over feedback policies with arbitrary non-linear functions is

difficult, in general. In [6] it is proved that the worst-case

feedback MPC for max-plus systems is a convex problem

if some assumptions about the cost function and constraints

are fulfilled. In [7] we use multi-parametric tools in order

to solve the open-loop worst-case problem. Of course the

open-loop solution leads to poor performance in general.

This paper is organized as follows. First a brief review

of PWA and MMPS systems is given, and MPC for them

as it was developed in [4], [7] is presented in Section II. In

Section III we discuss open-loop MPC for uncertain MMPS

systems. We obtain an efficient MPC method that is based

on minimizing the worst-case cost criterion. We prove that

the optimization problem at each step of MPC can be trans-

formed into a set of linear programming problems, for which

efficient solution methods exist. It is well-known [8] that in

the presence of disturbance, a feedback controller performs

better than open-loop controller. Therefore, in Section IV

we introduce feedback in the worst-case MPC optimization

problem, optimizing over disturbance feedback policies. We

conclude with a worked example in Section VI.

II. PRELIMINARIES

A. Continuous PWA and MMPS systems

Definition 1: f :Rn →R
m is said to be a continuous PWA

function if there exists a finite family C1, . . . ,CN of closed

polyhedral regions that covers Rn and for each i∈ {1, . . . ,N},

j ∈ {1, . . . ,m}, the component f j of f can be expressed as

f j(x)=αT
i, j x+βi, j for any x∈Ci, with αi, j ∈R

n, βi, j ∈R and

f is continuous on the boundary between any two regions.

A continuous PWA system in state space representation is

a system of the form:

x(k+1) = Px(x(k),u(k)) (1)

y(k) = Py(x(k),u(k)), (2)

where Px and Py are continuous PWA functions, with input

u, output y, state x.



Definition 2: A scalar-valued MMPS function f : Rn →R

is defined by the recursive relation:

f (x) =xi|α|max( fk(x), fl(x))|min( fk(x), fl(x))|

fk(x)+ fl(x)|β fk(x),

where i ∈ {1, . . . ,n}, α,β ∈ R and fk, fl : Rn → R are again

MMPS functions, and | stands for “or”. For vector-valued

MMPS functions the above statements hold component-wise.

An MMPS system is written in the following form:

x(k+1) = Mx(x(k),u(k)) (3)

y(k) = My(x(k),u(k)), (4)

where Mx, My are vector-valued MMPS functions.

Proposition 1 ([4]): Any scalar-valued MMPS function

f : Rn → R can be written into min-max canonical form

f (x) = min
j∈{1,··· ,l̂}

max
i∈Tj

(αT
i, jx+βi, j), (5)

or into max-min canonical form

f (x) = max
j∈{1,··· ,l}

min
i∈S j

(γT
i, jx+δi, j), (6)

for some integers l̂, l, N; {S j}
l
j=1 and {Tj}

l̂
j=1 are families

subsets of {1, . . . ,N} and αi, j,γi, j ∈ R
n, βi, j,δi, j ∈ R.

Proposition 2 ([2]): Any continuous PWA function can

be written as an MMPS function and vice versa.

Corollary 1: Continuous PWA systems and MMPS sys-

tems are equivalent in the sense that for a given continuous

PWA model there exists an MMPS model (and vice versa)

such that the input-output behavior of both models coincides.

B. MPC for MMPS systems

Now we give a short overview of the main results of [4],

[7] about MPC for systems of the form (3)-(4). Note that in

[4] disturbances in the model are not included.

In MMPS-MPC we define at each sample step k a cost

criterion J(k) = Jout(k) + λJin(k) over the period [k,k +
Np − 1], where Np is the prediction horizon and λ > 0.

By optimizing J(k) we obtain an optimal input sequence

u∗(k), . . . ,u∗(k+Np − 1), but we apply only the first input

sample u∗(k) according to a receding horizon strategy. At

the next sample step the whole procedure is repeated.

Now we explain in more detail how MPC for MMPS

systems can be implemented efficiently in the case when

J(k) is an MMPS function of the input. Assuming that at

each step k, the state x(k) can be measured or predicted, we

can make an estimation of the output of the model (3)–(4):

ŷ(k+ j|k) = M j(x(k),u(k), . . . ,u(k+ j)) (7)

at sample step k+ j for j = 0, . . . ,Np −1 using the informa-

tion available up to sample step k. It is easy to verify that M j

is an MMPS function of x(k),u(k), . . . ,u(k+ j). Our goal is

to track a reference signal r. We define the vectors ũ(k) =
[uT (k), . . . , uT (k+Np−1)]T , ỹ(k) = [ŷT (k|k), . . . , ŷT (k+Np−
1|k)]T , and r̃(k) = [rT (k), . . . , rT (k+Np −1)]T .

We consider only linear constraints on the input

P(k)ũ(k)+q(k)≤ 0. (8)

In practical situations, such constraints occur when we have

to guarantee that the input signal or the rate of variation of

the input signal must stay within certain bounds. As output

cost function, just as in [4] we could take:

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1, Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞, (9)

which reflect the tracking error, and are MMPS functions of

x(k), ũ(k), r̃(k). As input cost function one could take:

Jin,1(k) = ‖ũ(k)‖1, Jin,∞(k) = ‖ũ(k)‖∞, (10)

which are also MMPS functions of ũ(k). We introduce a

control horizon Nc such that

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1, (11)

to decrease the number of degrees of freedom for ũ(k) and

thus also the computational effort. Note that (11) can also

be expressed in the form (8).

Since after substitution of ỹ(k) using (7), the cost function

J(k) is an MMPS function of ũ(k) which can be written in

min-max canonical form, it follows that at each sample step

k we have to solve an optimization problem of the form

min
ũ(k)

min
j∈{1,...,l̂}

max
i∈Tj

(αT
i, jũ(k)+βi, j(k)) (12)

subject to: P(k)ũ(k)+q(k)≤ 0,

and thus for any j ∈ {1, . . . , l̂} we obtain a linear program-

ming (LP) problem:

min
ũ(k),t(k)

t(k) (13)

subject to:

{

P(k)ũ(k)+q(k)≤ 0

t(k)≥ αT
i, jũ(k)+βi, j(k)), for all i ∈ Tj.

The LP problems are easy to solve using the simplex method

or an interior point algorithm. Let [t∗(k) ũ∗T
( j)(k)]

T be the

optimal solution of (13). To obtain the solution of (12), we

solve (13) for j = 1, . . . , l̂ and afterward we select the ũ∗( j)(k)

for which maxi∈Tj
(αT

i, j(k)ũ
∗
( j)(k)+βi, j(k)) is the smallest.

C. Uncertain continuous PWA or MMPS systems

In this section we extend the continuous PWA (or equiv-

alently the MMPS) deterministic model (1)–(2) or (3)–

(4), without disturbances, to take also the uncertainty into

account (see also [7]). If we ignore the disturbance in the

plant, this can lead to errors in the system equations and

even an unstable closed-loop behavior. The MPC method is

based on a model of the system; the prediction of the future

behavior is made using the model. Therefore we must also

take into account the uncertainty when we implement MPC.

As in conventional linear systems, we model the distur-

bances by including an additive term in the system equations

for continuous PWA systems. Hence, we consider the uncer-

tain continuous PWA model:

x(k+1) = Px(x(k),u(k),e(k)) (14)

y(k) = Py(x(k),u(k),e(k)), (15)



where Px and Py are continuous vector-valued PWA func-

tions and the uncertainty caused by disturbances in the

estimation of the real system is gathered in the uncertainty

vector e(k). We assume that this uncertainty is included in a

bounded polyhedral set.

Using the link between continuous PWA and MMPS

systems, the uncertain continuous PWA model (14)–(15) can

be also written as an MMPS system:

x(k+1) = Mx(x(k),u(k),e(k)) (16)

y(k) = My(x(k),u(k),e(k)), (17)

where Mx, My are vector-valued MMPS functions.

We assume that at each step k of MPC, the state x(k)
is available (can be measured or estimated) and we gather

the uncertainty over the interval [k,k+Np −1] in the vector

ẽ(k) = [eT (k), . . . ,eT (k+Np − 1)]T ∈ Ẽ . We assume that Ẽ

is a bounded polyhedral set. Then it is easy to see that the

prediction ŷ(k+ j|k) of the future output for the system (16)–

(17) can be written in MMPS form, for j = 0, . . . ,Np −1.

Using as cost criterion a combination of (9) and (10):

J(k) = Jout(k)+λJin(k), and keeping in mind that all these

cost criteria are MMPS expressions, we get a min-max

canonical form of J(k):

J(ẽ(k), ũ(k),x(k)) = min
j∈{1,...,l̂}

max
i∈Tj

(αT
i, jx(k)+β T

i, jũ(k)+

γT
i, j ẽ(k)+δi, j), (18)

or a max-min canonical representation:

J(ẽ(k), ũ(k),x(k)) = max
j∈{1,...,l}

min
i∈S j

(ᾱT
i, jx(k)+ β̄ T

i, jũ(k)+

γ̄T
i, j ẽ(k)+ δ̄i, j). (19)

If the reference signal r depends on k then δi, j, δ̄i, j will

depend also on k (i.e., δi, j, δ̄i, j are affine expressions in r̃).

D. Worst-case MMPS-MPC

The worst-case MMPS-MPC problem at step k is then

defined as in [7]:

J∗(x(k)) =min
ũ(k)

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k),x(k)) (20)

subject to: P(k)ũ(k)+q(k)≤ 0, (21)

where J(·) is given by (18) or (19).

For a given ũ(k),x(k) we define the inner worst-case

MMPS-MPC problem

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k),x(k)). (22)

We denote

ẽ∗(ũ(k),x(k)) = arg max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k),x(k)), (23)

J∗(ũ(k),x(k)) = J(ẽ∗(ũ(k),x(k)), ũ(k),x(k)). (24)

Proposition 3 ([7]): For a given ũ(k) and x(k),
ẽ∗(ũ(k),x(k)) given by (23) can be computed using a

set of LP problems.

III. OPEN-LOOP MPC FOR UNCERTAIN MMPS SYSTEMS

In [7], J∗(·) as defined in (24) was determined explicitly

using multi-parametric LP (MP-LP) tools. In the case when

the reference signal r is a non-zero sequence we cannot solve

the inner-worst case problem off-line, using MP-LP, because

the cost function depends also on r̃(k), unless we include r̃(k)
as additive parameters in the MP-LP program. Of course the

computational complexity increases in that case because the

vector of parameters ([x(k)T ũ(k)T r̃(k)T ]T ) has dimension

much larger than θ = [x(k)T ũ(k)T ]T , corresponding to the

case r = 0. We will show in this section that using the duality

theory of LP [9] we can avoid this drawback.

Note that the inner problem can be written equivalently as

max
j=1,...,l

max
ẽ(k)

min
i∈S j

(ᾱT
i, jx(k)+ β̄ T

i, jũ(k)+ γ̄T
i, jẽ(k)+ δ̄i, j)

subject to: S̃ẽ(k)≤ q̃. (25)

and then according to Proposition 3 for each j ∈ {1, . . . , l}
we must solve an LP problem

max
ẽ(k),t( j)(k)

t( j)(k) (26)

subject to:
{

t( j)(k)≤ ᾱT
i, jx(k)+β̄ T

i, jũ(k)+γ̄T
i, jẽ(k)+δ̄i, j, i ∈ S j

S̃ẽ(k)≤ q̃.
(27)

Note that the primal problem (26)-(27) can be written (for

simplicity we drop the index k):

(P):











maxẽ,t( j)
t( j)

subject to:

{

t( j)−γ̄T
i, jẽ≤ ᾱT

i, jx+β̄ T
i, jũ+δ̄i, j,∀i∈S j

S̃ẽ ≤ q̃.

We define ci, j(x, ũ)= ᾱT
i, jx+ β̄ T

i, jũ+ δ̄i, j, which is an affine ex-

pression in (x, ũ) and δ̄i, j depends affinely on r̃ which varies

with k. In matrix notation the primal problem becomes:

(P):























maxẽ,t( j)
t( j)

subject to:

[

1 −γ̄T
i, j

0 S̃

][

t( j)

ẽ

]

≤

[

ci, j(x, ũ)

q̃

]

for each i ∈ S j

Note that in primal problem (P) the variables t( j), ẽ are free.

The dual problem then has the following form:

(D):



















miny j
[c1, j(x, ũ), . . . ,c#S j , j(x, ũ), q̃1, . . . , q̃nS̃

]T y j

subject to:

[

1 0

−γ̄i, j S̃T

]

y j =

[

1

0

]

,∀i ∈ S j

y j ≥ 0,

where #S j denotes the cardinality of the set S j and nS̃ denotes

the number of rows of the matrix S̃.

There are algorithms (e.g., the double description method

of [10]) to compute a compact explicit description of the

elements of the polyhedral cone:

K j =
{

y j ≥ 0 :

[

1 0

−γ̄i, j S̃T

]

y j =

[

1

0

]

, i ∈ S j

}



These elements can be expressed as follows:

y j =
N j

∑
i=1

αi jy
i
j +

M j

∑
i=1

βi jz
i
j

with ∑i αi j = 1,αi j ≥ 0 and βi j ≥ 0. The yi
j are called

finite vertexes and the zi
j are called extreme rays (using

the definitions of [9], [11]). Because we assume that the

primal problem (P) has a finite optimum, we are interested

only in the finite vertexes (as extreme rays give rise to

infinite solutions): {y1
j , . . . ,y

N j

j }. Note that the finite vertexes

y1
j , . . . ,y

N j

j do not depend on the reference signal r̃(k), since

r̃(k) appears linearly in the δ̄i, j which are present in the

expressions of ci, j but not in the expression of the polyhedral

cone K j. According to strong duality theorem for linear

programming we have:

t∗( j)(x, ũ) = min(cT
j (x, ũ)y

1
j , . . . ,c

T
j (x, ũ)y

N j

j ) (28)

where c j(x, ũ)= [c1, j(x, ũ), · · · ,c#S j , j(x, ũ), q̃1, · · · , q̃nS̃
]T Then

J∗(x,ũ) = max
j∈{1,··· ,l}

(t∗( j)(x, ũ)) =

max
j∈{1,··· ,l}

min(c j(x, ũ)y
1
j , . . . ,c j(x, ũ)y

N j

j ) (29)

So we obtained directly the max-min canonical form of J∗(·).
For a given x(k), the outer worst-case MMPS-MPC prob-

lem is now defined as:

min
ũ(k)

J∗(ũ(k),x(k)) (30)

subject to P(k)ũ(k)+q(k)≤ 0. (31)

Proposition 4 ([7]): Given x(k), the outer worst-case

MMPS-MPC problem can be solved using a set of LP

problems.

Based on the results discussed above we now present an

algorithm to solve the worst-case MMPS-MPC problem.

Step 1: Solve off-line the inner worst-case MMPS-MPC

problem (22) using duality. Then, J∗(x,u) is an MMPS

function. Compute also off-line the min-max canonical form

of this function.

Step 2: Compute on-line (at each step k) the solution of the

outer worst-case MMPS-MPC problem (30)-(31) according

to Proposition 4.

According to this algorithm, the open-loop worst-case

MMPS-MPC problem can be solved using a set of LP prob-

lems. Moreover the associated controller is a PWA function

of x(k). An advantage of this approach in comparison with

the algorithm from [7] is that the computations of the finite

vertexes does not depend on the reference signal r. Therefore,

we can compute off-line the expression of J∗ even when

r 6= 0, keeping the computations low.

IV. DISTURBANCE FEEDBACK MPC FOR UNCERTAIN

MMPS SYSTEMS

It is well-known [8] that in the presence of disturbances,

the MPC controller performs better if we optimize over

feedback policies in the worst-case optimization problem

(20)–(21). Another approach to controlling an uncertain

MMPS system is to include feedback by searching over

the set of affine functions of the past disturbances [12],

[13]. Since full measurements of the state are assumed (in

the case of discrete event systems this assumption is not

restrictive since the states represent times and therefore they

can be easily measured), it follows that the past disturbance

sequence is easily calculated as the difference between the

actual state and the state predicted with the nominal system

(i.e., in the absence of disturbance).Therefore, we consider

disturbance feedback policies of the form:

u(k+ i) =
i−1

∑
j=0

Mi, je(k+ j)+ v(k+ i), (32)

for all i ∈ {0, · · · ,Np−1}, where each Mi, j ∈R
m×s and v(k+

i) ∈ R
m. Let us denote with ũ = [uT (k) uT (k+ 1) · · ·uT (k+

Np −1)]T , ṽ = [vT (k) vT (k+1) · · ·vT (k+Np −1)]T and

M̃ =











0 0 · · · 0

M1,0 0 · · · 0
...

...
. . .

...

MNp−1,0 MNp−1,1 · · · 0











(33)

so that the disturbance feedback policy becomes

ũ = M̃ẽ+ ṽ (34)

Under this type of policy, the worst case MMPS-MPC

problem becomes:

J∗(x(k)) = min
M̃,ṽ

max
ẽ∈Ẽ

J(ẽ,M̃ẽ+ ṽ,x(k)) (35)

subject to: P(k)(M̃ẽ+ ṽ)+q(k)≤ 0, ∀ẽ ∈ Ẽ (36)

The inner worst-case problem is formulated as:

J∗(M̃, ṽ,x(k)) =max
ẽ

max
j∈{1,...,l}

min
i∈S j

(ᾱT
i, jx(k)+

(β̄ T
i, jM̃+ γ̄T

i, j)ẽ+ β̄ T
i, jṽ+ δ̄i, j)

subject to: S̃ẽ(k)≤ q̃,

Using similar arguments as in Proposition 3, we conclude

that for a given (M̃, ṽ), J∗(M̃, ṽ,x(k)) can be computed

efficiently using a set of LP problems. Note that in this

particular case we cannot obtain an explicit expression for

J∗(M̃, ṽ,x(k)) as in (29).

The outer worst-case problem becomes:

min
M̃,ṽ

J∗(M̃, ṽ,x(k)) (37)

subject to P(k)(M̃ẽ+ ṽ)+q(k)≤ 0, ∀ẽ ∈ Ẽ (38)

Note that the constraints (38) are nonlinear in the variables

M̃ and ẽ but we write them as P(k)M̃ẽ ≤−P(k)ṽ−q(k) for

all ẽ ∈ Ẽ or [maxẽ∈Ẽ
(P(k)M̃)1ẽ · · ·maxẽ∈Ẽ

(P(k)M̃)nP
ẽ]T ≤

−P(k)ṽ− q(k), where (P(k)M̃)i denotes the ith row of the

matrix P(k)M̃. Therefore, using duality for LP problems and

the fact that Ẽ = {ẽ : S̃ẽ≤ q̃} is a polytope and thus compact,

it follows that the constraint (38) are equivalent with:

P(k)M̃ = ZT S̃, ZT q̃+P(k)v+q(k)≤ 0, Z ≥ 0



where by Z ≥ 0 we mean a matrix with all entries non-

negative (i.e., Zi j ≥ 0 for all i, j). It follows that the outer

worst-case problem is written as:

min
M̃,ṽ,Z

J∗(M̃, ṽ,x(k))

subject to: P(k)M̃=ZT S̃, ZT q̃+P(k)v+q(k)≤0,Z≥0

Now the constraints are linear in M̃, ṽ and Z. This problem

can be solved using a gradient projection algorithm. In each

iteration step ℓ of the algorithm for the outer problem the

function values of J∗ (and its gradient, which can be obtained

using numerical approximation) have to be computed in the

current iteration point (Mℓ,vℓ). This involves solving the

inner problem for the given Mℓ, and vℓ, which can be done

efficiently by solving a set of LP problems as shown before.

Note that in the case when Mi, j = 0 for all i, j we obtain

the open-loop controller derived in the previous section.

Remark 1 If we consider a nominal cost, corresponding

to a most probable value of the disturbance (without loss

of generality we may assume that the nominal value of the

disturbance is e = 0) then we can replace the worst-case

approach with a disturbance feedback MPC scheme with a

nominal cost as in [13]:

J∗(x(k)) = min
M̃,ṽ

J(0,M̃0+ ṽ,x(k))

subject to: P(k)(M̃ẽ+ ṽ)+q(k)≤ 0, ∀ẽ ∈ Ẽ

Since J(0,M̃0+ ṽ,x(k)) is an MMPS function it can be writ-

ten as J(0,M̃0 + ṽ,x(k)) = min j∈{1,...,l̂} maxi∈Tj
(αT

i, jx(k) +

β T
i, j ṽ+ δi, j). In conclusion we have to solve the following

optimization problem:

min
M̃,ṽ,Z

min
j∈{1,...,l̂}

max
i∈Tj

(αT
i, jx(k)+β T

i, jṽ+δi, j)

subject to: P(k)M̃=ZT S̃, ZT q̃+P(k)v+q(k)≤0,Z≥0

or equivalently for each j ∈ {1, . . . , l̂} we must solve the

following LP problem:

min
M̃,ṽ,Z

max
i∈Tj

(αT
i, jx(k)+β T

i, jṽ+δi, j)

subject to: P(k)M̃=ZT S̃, ZT q̃+P(k)v+q(k)≤0,Z≥0.

Therefore, in this case we also have to solve on-line a set of

LP problems.

V. COMPUTATIONAL COMPLEXITY

From a computational point of view, both approaches

that we derived before (open-loop scheme and disturbance

feedback scheme) consist of two steps. In first step we

have to solve the maximization problem corresponding to

the worst-case uncertainty. This can be done computing

the vertexes of some polyhedral cones as in Section III,

or some LP problems as in Section IV. In the second

step we have to solve on-line a set of LP problems or to

apply iterative procedures, in order to determine the optimal

MPC input. The main advantage of the second approach

is that by introducing feedback, the corresponding MPC

controller will perform better than the open-loop controller.

This improvement in performance is obtained at the expense

of introducing
Np(Np−1)

2
m s + nP nS̃ extra variables and

nP + nS̃ extra inequalities (where nP and nS̃ denotes the

number of rows of the matrices P and S̃, respectively).

Note that the reduction to canonical form is computation-

ally intensive, but can be done off-line (for both the inner

and the outer worst-case MMPS-MPC problems).

In the worst-case MMPS-MPC problems (20)–(21) or

(35)–(36), considered in this paper state constraints are not

taken into account. It is well-known in the literature [8],

that in the presence of state constraints, the open-loop for-

mulation is conservative (we can have infeasibility) and we

should consider optimization over feedback laws, as it was

done in Section IV. However, as we mentioned previously,

in this paper we do not consider state constraints. So, in

this case both optimization problems (20)–(21) and (35)–(36)

will be always feasible. If we consider reference tracking (the

reference signal r 6= 0) using dynamic programming approach

we must include r̃ as a parameter in the multi-parametric

program, which increases the computational complexity.

Moreover, in the dynamic programming approach [5] we

cannot consider variable input constraints (e.g., bounded rate

variation m ≤ u(k+ 1)− u(k) ≤ M). Note that these issues

can be easily handled with our approaches (open-loop or

disturbance feedback MPC).

VI. EXAMPLE

Consider a room with a basic heat source and an additional

controlled heat source. Let u be the contribution to the

increase in room temperature per time unit caused by the

controlled heat source (so u ≥ 0). For the basic heat source,

this value is assumed to be constant and equal to 1. The

temperature in the room is assumed to be uniform and obeys

the first-order differential equation

Ṫ (t) = α(T (t))T (t)+u(t)+1+ e1(t) ,

the disturbance being gathered in the scalar variable e1. We

assume that the temperature coefficient has the following

piecewise constant form: α(T ) = 1 if T < 0, and α(T ) =−1

if T ≥ 0. We assume that the temperature is measured, but the

measurement is noisy: y(t) = T (t)+ e2(t). Using the Euler

discretization scheme, with a sample time of 1 time unit

and denoting the state x(k) = T (k ·1), we get the following

continuous discrete-time PWA system:

x(k+1)=

{

2x(k)+u(k)+e1(k)+1 if x(k)< 0

u(k)+ e1(k)+1 if x(k)≥ 0
(39)

y(k) = x(k)+ e2(k). (40)

Assume that we have −2 ≤ e1(k),e2(k)≤ 2, e1(k)+e2(k)≤
1. The equivalent MMPS representation of (39)–(40) is

x(k+1) = min(2x(k)+u(k)+ e1(k)+1,u(k)+ e1(k)+1)

y(k) = x(k)+ e2(k).

Because at sample step k the input u(k) has no influence on

y(k), we take Np = 3,Nc = 2, ỹ(k) = [ŷ(k+1|k) ŷ(k+2|k)]T ,



TABLE I

OPEN-LOOP COMPUTES THE CONTROLLER BASED ON SECTION II-D;

DIST. FEEDBACK COMPUTES THE CONTROLLER BASED ON SECTION IV;

MP-LP USES THE APPROACH FROM [5].

off-line1 on-line

Np 2 3 4 2 3 4

No. of LPs 7 12 18 4 8 16

Time Open-loop (s) 0.35 0.9 2 0.06 0.08 0.1

Time Dist. feedback (s) 0.65 1.3 3.5 0.09 0.3 0.95

Time MP-LP (s) 5.7 – – 0.07 – –

r̃(k) = [r(k+ 1) r(k+ 2)]T , ũ(k) = [u(k) u(k+ 1)]T . Let the

uncertainty vector e(k) be e(k) = [e1(k) e2(k+ 1)]T . There-

fore, ẽ(k) = [eT (k) eT (k + 1)]T . We consider the following

constraints on the input: −4 ≤ ∆u(k) = u(k+ 1)− u(k) ≤ 4

and u(k)≥ 0 for all k. As cost criterion we take

J(k) = Jout,∞(k)+λJin,1(k) = ‖ỹ(k)− r̃(k)‖∞ +λ‖ũ(k)‖1.

The first term of J(k) expresses the fact that we penalize the

maximum difference between the reference and the output

signal, while the second term penalizes the absolute value of

the control effort. Because u(k)≥ 0, we have ‖u(k)‖1 = u(k)
and therefore we get the following formula for J(k) :

J(k) = max(y(k+1)− r(k+1)+λu(k)+λu(k+1),

r(k+1)− y(k+1)+λu(k)+λu(k+1),

y(k+2)− r(k+2)+λu(k)+λu(k+1),

r(k+2)− y(k+2)+λu(k)+λu(k+1)).

Therefore, we can also write J(k) in max-min canonical

form. We compute now the closed-loop MPC controller

over a simulation period [1,20], with λ = 0.1, initial state

x(0) =−6, u(−1) = 0 and the reference signal {r(k)}20
k=1 =

−5,−5,−5,−5,−5,−3,−3,1,3,3,8,8,8,8,10, 10, 10, 7, 7,

7, 4, 3, 1, 1, 6, 7, 8, 9, 11, 11 using the methods given in

Section II-D and IV. For N > 2 we cannot apply MP-LP

approach [5] since we consider variable input constraints.

After off-line computation of the max-min canonical form

of J∗(x, ·) and elimination of the redundant terms we obtain a

min-max canonical form of J∗(x(k), ·) that gives rise to only

4 LP problems that must be solved on-line at each sample

step k in both cases (open-loop approach and disturbance

feedback approach). Table I gives more computation details

for the three MPC approaches discussed in this paper.

Figure 1 represents the output of the disturbance feedback

approach and the open-loop approach. We see that the MPC

controller obtained using disturbance feedback policies per-

forms the tracking better than the open-loop MPC controller.

VII. CONCLUSIONS

We have extended the MPC framework for MMPS (or

equivalently for continuous PWA) systems to include also

bounded disturbances. We have considered the disturbances

1The off-line computation time does not include the transformation into
canonical form and elimination of redundant terms as this operation was
done by hand.
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Fig. 1. Worst-case MPC for uncertain MMPS system (39)–(40): disturbance
feedback (full), open-loop approach (star line), reference signal r (dashed).

as an extra additive term on the system equations. This

allowed us to design a worst-case MMPS-MPC controller

for such systems based on optimization over open-loop input

sequences and disturbance feedback policies. We have shown

that the resulting optimization problems can be computed

efficiently using a two-level optimization approach.
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