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AbstractIn this paper we discuss dynamic traffic management of railway networks. The

main aim of the controller is to recover from delays in an optimal way by breaking

connections and changing the departure of trains (at a cost). To model the railway system

we use a switching max-plus-linear system description. We define the optimal control

design problem for the railway network, and we show that solving this problem leads to

an integer optimization problem. This problem can be solved with a genetic algorithm

or with a mixed integer linear programming algorithm. We also apply the algorithm to a

model of the Dutch railway network.

Keywords: Railway network management, switching max-plus-linear models, model

predictive control

1. INTRODUCTION

In recent years a lot of research effort has been ori-

ented towards the design of timetables that are robust

against propagation of delays in the network, caused

by technical failures, fluctuation of passenger vol-

umes, measures of railway personnel and weather in-

fluence (Subiono, 2000; Hansen, 2001; Peeters, 2003;

Goverde, 2005). In this paper we concentrate on the

operational-level management, and design a feedback

controller that takes the most effective actions, based

on measurements of the actual train positions. The

measures we can take are changing the train speed,

breaking train connections, or changing the order of

trains.

From (Braker, 1991; Braker, 1993b; de Vries et al.,

1998; de Waal et al., 1997; Minciardi et al., 1995)

we know that a railway network with rigid connection

constraints and a fixed routing schedule can be mod-
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eled using max-plus-linear models. A max-plus-linear

model is ‘linear’ in the max-plus algebra (Baccelli et

al., 1992), which has maximization and addition as

its basic operations. Max-plus-linear systems can be

characterized as discrete event systems in which only

synchronization and no concurrency or choice occurs.

Note that in the railway context, synchronization

means that some trains should give pre-defined con-

nections to other trains, and a fixed routing means that

the order of departure is fixed. However, in the case of

large delays, it is sometimes better — from a global

performance viewpoint — to break a connection or to

reschedule the order of trains, and to let a train depart

anyway. In this way we prevent an accumulation of

delays in the network. Of course, missed connections

should lead to a penalty due to dissatisfied passen-

gers. In (De Schutter and van den Boom, 2001; De

Schutter et al., 2002a) we have considered the con-

trol of railway networks using breaking connections

only as control measure. In (van den Boom and De

Schutter, 2004) we have extended the control handles



and rescheduled the trains by breaking connections

as well as changing train order. In this paper we will

model a controlled railway system using the switching

max-plus-linear system description of (van den Boom

and De Schutter, 2006). In this description we use a

number of MPL models, each model corresponds to a

specific mode, describing the network by a different

set of connection and order constraints. We control

the system by switching between different modes, al-

lowing us to break train connections and to change

the order of trains. In this paper we define a control

algorithm to optimize the performance of the network,

and we show that the resulting optimization problem

can be solved as a mixed integer problem or a mixed

integer linear programming problem. Although these

problems are in general NP-hard, recently several effi-

cient solvers have become available. The management

algorithm will be applied to a simulation model of the

Dutch railway network. Computational experiments

show that the proposed genetic algorithm approach

yields good results.

2. MODEL

Consider a railway operations system, which follows

a schedule with period T . In nominal operation mode,

we assume that all the trains follow a pre-scheduled

route, with fixed train order and pre-defined connec-

tions. If for some reason we have to break connec-

tions or change the train order, we will operate in

a perturbed mode. With every new schedule we can

associate a perturbed mode. First we will discuss the

nominal operation.

2.1 Nominal operation

Consider a railway operations system which is operat-

ing in nominal operation mode.

Each track of the railway network has a number and

a train allocated to it. For the sake of simplicity we

will say ‘(virtual) train j’ to denote the (physical)

train on track j, and ‘station j’ to denote the station

at the beginning of track j (cf. Figure 1). Let n be

the number of ‘virtual’ tracks in the network. We say

virtual to denote that some of the virtual tracks may

actually be the same physical track (corresponding

to different trains using the same track). This means

that the number of tracks is usually smaller than n.

Let xj(k) be the time instant at which train j departs

from station j for the kth time. Let dj(k) be the

departure time for this train according to the time

schedule. Let pi(k) be the predecessor track of train

i, and let Cj(k) be the set of trains to which the kth

train j gives a connection. Let Fj(k) be the set of

trains that move over the same track as train j, in the

same direction as train j, and are scheduled behind

train j. Let Wj(k) be the set of trains that move over

the same track as train j, in the opposite direction of

j

i

station j

station i

track j
track i

Figure 1. A part of a railway network.

train j, and are scheduled behind train j. Furthermore,

let aj(k) be the traveling time on track j, define a

minimum connection time cmin
ij (k) for passengers to

get from train j to train i for each train j ∈ Ci(k)
and define a minimum stopping time smin

j (k) of train

j at station j to allow passengers to get off or on

the train. Finally, define a minimum separation time

fmin
j (k) between two different trains moving over

the same track and in the same direction as train j,

and a minimum separation time wmin
j (k) between two

different trains moving over the same track and in the

opposite direction.

Now we have the following constraints for the kth

departure time xi(k) of train i:

• Time schedule constraint:

xi(k) > di(k) .

• Continuity constraints: This constraint synchro-

nizes two trains that are ‘physically’ the same

train. For train j = pi(k) we have
xi(k) > xj(k − δ∗ij(k)) + aj(k) + smin

j (k)

where δ∗ij(k) is equal to 1 if the (k − 1)th train j

continues as the kth train i, and 0 if the kth train

j continues as the kth train i (and if some trips

last longer than the twice the cycle time T of the

schedule, δ∗ij(k) might be equal to 2, and so on

— see also the example in Section 4). In general,

δ∗ij may depend on k. However, for the sake of

simplicity, we only consider constant δ∗ij’s with

a value that is either 0 or 1 in this paper.

• Connection constraints: This constraint synchro-

nizes two trains that have to make a connection.

For each train i ∈ Cj(k) we have

xi(k) > xj(k − δ∗ij) + aj(k) + cmin
ij (k)

where the role of δ∗ij is similar as for the continu-

ity constraint, so δ∗ij = 1 if the (k − 1)th train j

gives a connection to the kth train i, and δ∗ij = 0
if the kth train j gives a connection to the kth

train i.

• Follow constraints: This constraint synchronizes

two subsequent trains on the same track moving

in the same direction . For each train i ∈ Fj(k)
we have

xi(k) > xj(k − δ∗ij) + fmin
j (k)

(δ∗ij is defined similarly as above).

• Wait constraints: This constraint synchronizes

two trains on the same track moving in opposite

direction. For each train i ∈ Wj(k) we have

xi(k) > xj(k − δ∗ij) + aj(k) + wmin
j (k)
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(δ∗ij is defined similarly as above).

Since we let a train depart as soon as all connection

conditions are satisfied, we have

xi(k) = max
(

di(k),

(xpi(k)(k − δ∗ipi(k)
) + api(k)(k) + smin

pi(k)
(k)),

max
j∈Ci(k)

(xj(k − δ∗ij) + aj(k) + cmin
ij (k)),

max
l∈Fi(k)

(xl(k − δ∗il) + fmin
l (k)),

max
m∈Wi(k)

(xm(k − δ∗im) + am(k) + wmin
m (k))

)

(1)

Note that in a undisturbed, well-defined time schedule

the term di(k) in (1) will be the largest. However, if

due to unforeseen circumstances (an incident, a late

departure, etc.) one of the trains (pi(k),l or m) has

a delay the corresponding term can become larger

than the others, then train i will depart later than the

scheduled departure time di(k) and will therefore also

be delayed. By defining the appropriate matrix A0
m,

m = 0, . . . ,mmax, (where mmax = max(δ∗ij) we can

rewrite equation (1) as:

xi(k) = max

(

di(k),max
j,m

(

xj(k−m) + [A0
m]i,j

)

)

(2)

where [A0
m]i,j is the (i, j)th entry of the matrix A0

m.

Now we introduce some notation from max-plus alge-

bra. Define ε = −∞ and Rε = R ∪ {ε}. The max-

plus-algebraic addition (⊕) and multiplication (⊗) are

defined as follows (Baccelli et al., 1992):

x⊕ y = max(x, y) x⊗ y = x+ y

for x, y ∈ Rε and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for A,B ∈ R
m×n
ε , C ∈ R

n×p
ε . The matrix ε is the

max-plus-algebraic zero matrix: [ε]ij = ε for all i, j.

In max-plus notation, equation (2) becomes

xi(k) = di(k)⊕
n

⊕

j=1

M
⊕

m=1

xj(k −m)⊗ [A0
m]i,j

and in matrix-notation we obtain

x(k) = A0
0 ⊗ x(k)⊕A0

1 ⊗ x(k − 1)⊕ . . .

⊕ [A0]mmax
⊗ x(k −mmax)⊕ d(k)

=
(

mmax
⊕

m=0

A0
m ⊗ x(k −m)

)

⊕ d(k) (3)

2.2 Perturbed operation

In the nominal operation we have assumed that some

trains should give pre-defined connections to other

trains, and the order of trains on the same track is

fixed. However, if one of the preceding trains has a

too large delay, then it is sometimes better — from a

global performance viewpoint — to let a connecting

train depart anyway or to change the departure order

on a specific track. This is done in order to prevent

an accumulation of delays in the network. In this pa-

per we will consider the switching between different

operation modes, where each mode corresponds to

a different set of pre-defined or broken connection

and a specific order of train departures. We allow the

system to switch between different modes, allowing

us to break train connections and to change the order

of trains. Note that any broken connection or change

of train order leads to a new model, similar to the

nominal equation (3), but now with adapted system

matrices (Aℓ) for the ℓ-th model. We have the follow-

ing system equation for the perturbed operation 2 :

x(k) =
(

mmax
⊕

m=mmin

Aℓ
m ⊗ x(k −m)

)

⊕ d(k) (4)

3. THE RAILWAY CONTROL PROBLEM

3.1 Timing aspects

Switching max-plus-linear systems are different from

conventional time-driven systems in the sense that the

event counter k is not directly related to a specific

time. A time instant t in cycle k (so (k − 1)T ≤ t <

kT ), some of the components of x(k) may already

be known while other components of x(k) may still

lie in the future (Recall that x(k) contains the time

instants at which the internal activities or processes of

the system start for the kth time). Therefore, we will

now present a method to address the timing issues in

control of switching MPL systems.

We consider the case of full state information 3 , since

the components of x(k) correspond to departure times,

which are in general easy to measure.

Consider time instant t in cycle k, so (k − 1)T ≤
t < kT . We have measurements of departure times

xpast(k) and traveling times apast(k) of trains that have

arrived at their destination. Sometimes there is infor-

mation available about the estimated traveling time for

trains that have not yet arrived at their destination at

time t. With this information we can make an esti-

mation âest(k|t) (with the same dimension as a(k))
of the future traveling times. If no further information

is available on a specific traveling time we take the

nominal traveling time [âest(k|t)]i = ai,nom.

2 Usually mmin = 0. However, in perturbed operation it may oc-

casionally happen that a delayed train of the kth cycle is rescheduled

behind a train in the (k + 1)th cycle. In that case we will have

mmin = −1.
3 Note that measurements of occurrence times of events are in

general not as susceptible to noise and measurement errors as

measurements of continuous-time signals involving variables such

as temperature, speed, pressure, etc.
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3.2 Control problem

Next we have to define the set U(k|t) of possible

future control actions (i.e. breaking connections or

changing train order). Certain control actions are not

feasible any more (e.g. if a connection has been bro-

ken in the past and the connecting train has already

departed, it is impossible to ‘repair’ this connection.).

We define the vector u(k|t) ∈ U(k|t), where each

element corresponds to a specific control action, so

a specific (scheduled) connection or specific (sched-

uled) train order. We assume u(k|t) to be binary,

where ui(k|t) = 0 corresponds to the nominal case,

and ui(k|t) = 1 to the perturbed case (the connection

is broken or the order of two trains is switched, see

also Section 3.3).

To select the optimal set of possible future control ac-

tions, we define the following optimal control problem

at time instant t ((k − 1)T ≤ t < kT ):

min
{u(k|t),u(k+1|t),u(k+2|t),...}

J(k|t) (5)

where the performance index J(k|t) is given by

J(k, t) =

∞
∑

j=0

n
∑

i=1

Qi êi(k+ j|t)+

nu
∑

ℓ=1

Rℓ uℓ(k+ j|t)

(6)

where ê(k+j|t) is the vector with the expected delays

(êi(k+ j|t) = x̂i(k+ j|t)−di(k+ j) ≥ 0), and Q, R

are weighting matrices. The first term of (6) is related

to the sum of all predicted delays, and the second term

denotes the penalty for all broken connections and

switched train orders during cycle k + j.

To compute the predictions of x̂(k + j|t) we make

use of the fact that at time t we have apast(k|t) and

âest(k+j|t) available and using that we can determine

the estimates Âℓ(k + j|t) of all future Aℓ(k + j).
Now x̂(k + j|t) for j≥ 1 can be found by successive

substitution

x̂(k + j|t)=Âℓ(k + j − 1|t)⊗ x̂(k + j − 1|t)

⊕ d(k + j) (7)

In principle we have all elements to solve the optimal

control problem (5). Note that if the railway network

is well-defined and there is some margin in the sched-

ule 4 , there will always be an integer N such that in

the nominal case (u(k + j|t) = 0 for all j ≥ 0)

the delays will have vanished (ê(k + j|t) = 0 for

all j ≥ 0). In the performance index (6) we may

then replace the infinite sum by a finite one (with an

optional constraint ê(k + N |t) = 0). We now have

an integer optimal control problem with nN binary

parameters. We can solve this problem efficiently with

genetic algorithms (Davis, 1991) or with tabu search

(Glover and Laguna, 1997).

4 If the max-plus eigenvalue (Braker, 1993a) of the matrix A0 is

strictly smaller than T , there is ‘some margin’ in the schedule.

3.3 Initial solution

To find a good initial guess for the integer optimization

we first solve an easier problem, in which we structure

the input signal. This is done by defining a decision

mechanism, where we use thresholds on (expected)

delays to decide whether a connection should be bro-

ken or train orders should be switched. First consider

the case where variable ul(k) is related to the con-

nection of train j to train i, with nominal connection

constraint

xi(k) > xj(k − δ∗ij) + aj(k) + cmin
ij (k)

and let di(k) > t. Define ẑj(k − δ∗ij |t) = x̂j(k −
δ∗ij |t)+[âest]j(k|t) as the expected arrival-time of train

j. Now we choose
{

ul(k) = 0 if ẑj(k−δ∗ij |t)+cmin
ij (k)−di(k) ≤ τ

ul(k) = 1 otherwise,

where τ is a non-negative threshold. Next consider the

case where variable ul(k) is related to the order of two

trains j and i moving over the same track in the same

direction, with nominal following constraint

xi(k) > xj(k − δ∗ij) + fmin
j (k)

and let xi(k) ≥ t (that means that at time t train xi(k)
has not departed yet). Now we choose
{

ul(k) = 0 if x̂j(k−δ∗ij |t)+fmin
j (k)−di(k) ≤ φ

ul(k) = 1 otherwise,

where φ is a non-negative threshold. Finally consider

the case where variable ul(k) is related to the order of

two trains j and i moving over the same track in the

same direction, with nominal waiting constraint

xi(k) > xj(k − δ∗ij) + aj(k)

and let di(k) > t. Now we choose
{

ul(k) = 0 if ẑj(k − δ∗ij |t)− di(k) ≤ ω

ul(k) = 1 otherwise,

where ẑj(k − δ∗ij |t) is the expected arrival-time and

ω is a non-negative threshold. In this structured-input

case we end up with the minimization of (6) using the

three parameters, giving us a non-linear optimization

problem over the variables (τ, φ, ω). In the worked

example in the next Section we first optimize over

the structured inputs, and use the resulting sequence

u(k + j|t) as an initial value for the general case,

solved with a genetic algorithm.

Remark: The problem above can also be recast as a

mixed integer linear programming problem (MILP)

using techniques that are similar to the ones used

in (Bemporad and Morari, 1999; De Schutter et al.,

2002b). We will now briefly outline the main ideas

behind this transformation. Note that the objective

function J is linear in u and x̂ (via e). The max-

plus equation (7) can be transformed into a system of

mixed-integer linear inequalities as follows. Consider

an equation of the form α = max(β, γ). Hence, we

have α − β > 0 and α − γ > 0. Now assume that
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α, β and γ are bounded (in practice such bounds are

often known due to the operational constraints or due

to physical constraints; in our case we could assume

that all events take place within the same day). Hence,

Mαβ > α− β > 0

Mαγ > α− γ > 0

where Mαβ and Mαγ are upper bounds for α− β and

α − γ respectively. If we now introduce two binary

variables δ1, δ2 ∈ {0, 1}, then the system of equations

Mαβδ1 > α− β > 0 (8)

Mαγδ2 > α− γ > 0 (9)

δ1 + δ2 6 1 (10)

is equivalent to α = max(β, γ). Indeed, (10) states

that δ1 = 0 or δ2 = 0. Hence, by (8)–(9) α = β or

α = γ. So α = max(β, γ). Furthermore, we could

assume that Âℓ can be written as

Âℓ(k + j) =

nu
∑

i=1

Âℓ,i(k + j)ui(k + j|k) , (11)

which is a linear equation. Now the only nonlinear

characteristic problem is the multiplication of entries

of Âℓ — hence, of u by (11) — with entries of x̂

due to equation (7). As mentioned in (Bemporad and

Morari, 1999) these products can be eliminated as

follows: consider the product δy of a bounded real

variable y ∈ [m,M ] with a binary variable δ ∈ {0, 1}.

This product is eliminated by introducing an auxiliary

real variable z, whose value will be equal to z = δy.

More specifically, z = δy is equivalent to

z ≤ Mδ z ≤ y −m(1− δ) (12)

z ≥ mδ z ≥ y −M(1− δ) . (13)

Hence, we finally end up with an MILP. This problem

can then be solved using one of the several existing

commercial and free solvers for MILP problems (such

as, e.g., CPLEX, Xpress-MP, GLPK, lp solve, etc. —

see (Atamtürk and Savelsbergh, 2005; Linderoth and

Ralphs, 2004) for an overview).

4. EXAMPLE: THE DUTCH RAILWAY SYSTEM

We consider a simulation example of a simplified ver-

sion of the Dutch railway system (see Figure 2). The

Dutch railway system operates a periodic timetable

with a cycle time of 1 hour. There are 3 types of trains

running in the network: intercity trains, interregional

trains and local trains. In this example we only con-

sider the system of intercity and interregional trains,

which means that the network consists of 40 stations,

110 tracks, 164 trains, 381 train movements per hour,

271 follow constraints, and 67 connection constraints.

Each train departs as soon as all the relevant connec-

tions are guaranteed (except for connections that are

broken), the passengers have gotten the opportunity to

change over, and the earliest departure time indicated

in the timetable has passed.

Figure 2. Dutch railway network

We obtain a state space description of the railway

system in the form of (2) for nominal operation, and

(4) for perturbed operation where x(k) has 381 states.

The criterion function is given by (6) where Q = I ,

and R is a diagonal matrix with Rℓ,ℓ = 5 when uℓ

is related to a connection constraint and Rℓ,ℓ = 10
when uℓ is related to a follow constraint. We solve the

optimal control problem (5) for the structured input

case and the general case (without structuring). In the

last optimization we use the result of the structured

input as an initial value to start the optimization. We

assume the system is at nominal schedule for k < 0
and we introduce random delays in the running times

of 18 trains in the cycles k = 1, 2, 3. The maximum

delay is 19.9 min, the minimum delay is 0.12 min,

and the average delay is 11.9 min. For every cycle

k we first optimize the threshold values (τ, φ) (there

are no single tracks taken into consideration), and

compute the corresponding optimal structured input

signal ustructured(k + j|t), j ≥ 0. Subsequently we

optimize the (unstructured) input signal u(k + j|t)
with a genetic algorithm, using the earlier computed

sequence ustructured(k + j|t) as an initial value.

In Figure 3 the maximum delay emax(k) = max(e(k))
in each cycle k is given for the optimal controlled case,

and for the uncontrolled case (so u(k + j|t) = 0 for

all j > 0). We see that the delay in the controlled case

decays much faster than the uncontrolled case.

5. DISCUSSION

We have presented a control design method for a rail-

way network. The control action consists in breaking

certain connections or changing the order of departure

to prevent delays from accumulating. These control

moves can only be done at a certain cost. We have

shown that the resulting optimization problem can be

5
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Figure 3. Maximum delay for uncontrolled and opti-

mal controlled railway system

solved using integer optimization methods, for exam-

ple genetic algorithms or tabu search.

Good initial values for the integer optimization are ob-

tained by first solving a low-dimensional real-valued

optimization problem using a structured input se-

quence. This structured input sequence is based on a

decision mechanism, where we use thresholds on (ex-

pected) delays to decide whether a connection should

be broken or the order of the trains should be switched.

Due to the use of a receding horizon this method can

be used in on-line applications and it can deal with

(predicted) changes in the system parameters. So if

we can predict the delays that will occur due to an

incident or to works, then we can include this infor-

mation when determining the optimal control input for

the next cycles of the operation of the network.
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