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Abstract: The design of a traffic adaptive control system is as well a science as
an art. Along the way compromises have to be made in order to end up with
a workable system that is not only able to come up with good signal timings,
but is also able to deliver them on time. In this paper we propose a taxonomy
of the various traffic adaptive control algorithms based both on their underlying
principles and the compromises that were made to come up with a workable, albeit

less optimal system.
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1. INTRODUCTION

A common function of a traffic controller is to
seek to minimize the delay experienced by vehicles
through manipulation of the traffic signal timings.
There are various levels of sophistication in traffic
signal control system applications.

Basically, the modes of operation can be divided
into three primary categories:

pre-timed Under pre-timed operation, the tim-
ing plan is based on predetermined rates. These
predetermined rates are determined from his-
torical data. Pre-timed control frequently re-
sults in inefficient use of intersection capacity
because of the inability to adjust to variations
in traffic flow and actual traffic demand; this
inefficiency is pronounced when flows are sub-
stantially below capacity.

responsive In traffic responsive mode, signals

receive inputs that reflect current traffic con-
ditions, and use this data to choose an appro-
priate timing plan from a library of different
plans. In traffic responsive mode, the signal tim-
ing plan responds to current traffic conditions
measured by a detection system. The general
traffic responsive strategies in use are either
selection of a background signal timing plan
based on detector data, or online computation
of a background timing plan. The computation
time interval may range from one cycle length
to several minutes.

actuated Vehicle-actuated controllers operate in

real-time by applying a control in response to
the current traffic state. An actuated controller
operates based on traffic demands as registered
by the actuation of vehicle and/or pedestrian
detectors. There are several types of actuated



controllers, but their main feature is the abil-
ity to adjust the length of the currently active
phase in response to traffic flow. The green time
for a phase is a function of the traffic flow,
and can be varied between pre-timed minimum
and maximum lengths depending on flows. Al-
though vehicle-actuated controllers operate in
real-time, they attempt no systematic optimiza-
tion.

adaptive Traffic adaptive systems are currently
the most advanced and complex control sys-
tems available. Traffic adaptive systems apply
an optimization algorithm in real-time to create
optimal signal timings. They differ from vehicle-
actuated controllers because they incorporate
decision making. That is, the system evaluates
a set of feasible control actions and chooses
an action that is optimal with respect to its
current objectives. As traffic adaptive systems
incorporate information from further upstream
in their decision making (i.e. predicted arrivals)
traffic actuated controllers are considered to be
myopic (i.e. shortsighted) with respect to their
control actions.

With recent advances in communication net-
work, computer, and sensor technologies, there
is increasing interest in the development of traf-
fic adaptive signal control systems. Numerous
systems have been proposed including PRO-
DYN (Henry et al., 1983), (Barriere et al.,
1986),(Henry and Farges, 1989), UTOPIA-SPOT
(Mauro, 1990), OPAC (Gartner, 1983), (Gartner
et al., 1995),(Gartner et al., 1999), RHODES
(Sen and Head, 1997), (Mirchandani and Head,
2001), SPPORT (Dion and Hellinga, 2001), (Dion
and Hellinga, 2002) and ALLONS-D (Porche et
al., 1996), (Porche, 1998),(Porche and Lafortune,
2005). This overview is based on these references
and the references contained therein.

The design of a traffic adaptive control system
is as well a science as an art. Along the way
compromises have to be made in order to end
up with a workable system that is not only able
to come up with good signal timings, but is
also able to deliver them on time. Each adaptive
system mentioned above has a different approach
in dealing with the computational complexity of
determining the best set of signal timings.

All adaptive systems therefore have their own
specific strengths and weaknesses that make that
system more - or - less suited for particular
networks and traffic demand patterns. In this
paper we propose a taxonomy of the various traffic
adaptive systems based both on their underlying
principles and the compromises that were made

Fig. 1. decision tree

to come up with a workable, albeit less optimal
system.

2. A TAXONOMY OF APPROACHES

Traffic signal control essentially comes down to
making the right decisions at the right time. As
such the traffic signal control problem solved by all
traffic adaptive systems can be formulated in the
form of a general decision problem. This general
decision problem in turn can be represented as a
simple decision tree such as that shown in figure 1.

The root of a decision tree represents the current
state s;,s; € S, where i is the current time index
and S is the set of all states. States in the decision
tree of figure 1 are represented by open circles
and actions by solid circles. The cost involved
in order to transition to the subsequent state,
Si+1 when deciding for an action w; is denoted
by ¢;. In figure 1 there are two possible successor
states depicted for each action which permits the
specification of stochastic outcomes.

In general, the nodes of a search tree represent
choices. These choices are mutually exclusive and
therefore partition the search space into two or
more simpler sub-problems. At each time step, the
controller observes the system’s current state s;,
and selects a control action, u € U;, where u is the
action and U; is the finite set of actions available
to a controller in state s;. When the controller
chooses an action u € U;, the cost incurred by
taking that action and subsequently transition to
state s; with probability p; ;(u), is denoted by
¢(i). The objective of a traffic adaptive system is
to find an optimal sequence of actions.

Looking at the various traffic adaptive systems we
can discern the following features on which they
differ:

e the optimization method. Is the optimal se-
quence of actions found by searching the de-
cision tree using a rule-based method, or an



approach based on dynamic programming or
branch-and-bound?

e the possible actions (u;) considered in the
optimization. Is the order in which phases
can be given green to predetermined or can
this be determined (and optimized) on-line?

e the length and resolution of the planning
horizon over which an optimal sequence of
actions is sought (i.e. the depth of the deci-
sion tree). Is the length of the horizon fixed
(e.g. 2 minutes) or dependent on current traf-
fic conditions? Is the resolution static (e.g. is
the horizon divided into 5 seconds intervals)
or is it dynamic (e.g. dependent on projected
arrival times)?

e the update frequency. How often can the
optimization be done (i.e every 0.5 seconds
or every 5 seconds)?

e the delay model. How is the performance
(¢;) of each evaluated action (u;) evaluated?
How accurate is the model used in optimizing
the signal timings? Is a fast vertical queuing
model used instead of a slow but possibly
more accurate simulation model?

The following sections elaborate on each of these
features and how each traffic adaptive system
differs in how these features are filled in.

3. OPTIMIZATION METHOD

The objective of the system is to operate such
that the total cost over the entire planning hori-
zon is minimized. Thus, the task of the con-
troller is to obtain a sequence of control actions
[wo,u1, ... ur], also referred to as a policy or con-
trol trajectory, such that the expected cost is mini-
mized. In the case of an infinite planning horizon,
a discount factor, v < 1, is typically applied to
future costs to obtain a finite estimate of the cost-
to-go from the current state i, denoted by f(i).
The optimal cost-to-go value, denoted by f*(7),
is a function of the immediate cost of applying
the control plus the expected cost-to-go from the
subsequent state, a relationship encapsulated in
the following recursive expression which is also
known as Bellman’s Equation.
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As the decision space has a tree-like structure,
the search for the optimal sequence of decisions
corresponds to building the tree. An exhaustive
search of the entire decision space results in a
full tree being built. Since search space size grows
exponentially with problem size, it is not possible
to explore all assignments except for the smallest
problems. The only way out is to not look at
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Fig. 2. Different approaches to not having to build

the entire search tree

the whole search space. Efficiency in searching
the decision space is considered by the degree
to which the entire tree will not have to be
built to find an optimal path. In (Shelby, 2004)
several well-known algorithms are assessed based
on computational speed and on the quality of the
results (in terms of delay).

Although the resulting state of traffic is subject to
probabilistic outcomes as depicted in figure 1, all
adaptive systems reviewed have chosen to employ
a deterministic model. Due to this simplification,
decision tree diagrams corresponding to the traffic
signal control problem will generally neglect the
use of explicit actions nodes as each action results
in only one possible next state.

Dynamic programming and branch-and-bound
(and combinations thereof) are the techniques
that are predominantly used in traffic adaptive
systems.

3.1 Dynamic Programming

The applicability of the approach depends on the
opportunities for state aggregation within the de-
cision tree. The strength of dynamic programming
is that it can prevent that optimal solutions to
subproblems it has already solved are recomputed.
In order to do this, the solutions to already solved
problems are saved. This approach is called memo-
ization (not memorization, although this term also
fits). It is however only possible to reuse a previous
solution when states and thus the correspond-
ing subproblems can be considered equal. This
is why approaches like RHODES and PRODYN
use an approximate state equivalence relation to
attain greater efficiency. Figure 2(b) shows how
dynamic programming can assist in not having to
build the entire search tree as depicted in 2(a).
RHODES, PRODYN, OPAC and SPPORT all
employ dynamic programming as their method of
optimization.



3.2 Branch-and-Bound

Branch-and-bound is a general method for finding
optimal solutions of various optimization prob-
lems, especially in discrete and combinatorial op-
timization. It belongs to the class of implicit
enumeration methods. One way to do this is by
proving that certain areas of the space contain
no solutions. The core of the approach is the
simple observation that (for a minimization task)
if the lower bound for a sub-problem A from the
search tree is greater than the upper bound for any
other (previously examined) sub-problem B, then
A may be safely discarded from the search. This
is the bounding-part of the branch-and-bound ap-
proach. Figure 2(c) shows how branch-and-bound
can assist in not having to build the entire search
tree depicted in figure 2(a). Of the adaptive sys-
tems reviewed only ALLONS-D and SPOT em-
ploy the branch-and-bound method in its pure
form. RHODES employs a hybrid system in which
branch-and-bound techniques are applied within a
dynamic programming framework.

In order to obtain a tight upper bound an initial
path must be established through the search tree
for which it is most likely to obtain a good solu-
tion. This involves that initially parts of the search
space that are unlikely to contain good solutions
are ignored. This is done by using heuristics.
Heuristics are used to explore promising areas of
the search tree first. This can be done by using
problem specific knowledge (often borrowed from
current practices in tuning traffic responsive and
vehicle-actuated controllers) or by reusing infor-
mation gained from previous optimizations.

4. ACTION SPACE

The width of the tree to be searched is dependent
on the number of decisions that can be made at
each point in time. In its simplest form the choice
available is that between extending the current
phase or switching to the next phase. This is the
approach taken in OPAC, ALLONS-D, PRODYN
and SPPORT. Although this approach signifi-
cantly reduces the number of options to consider,
it does not allow arbitrary phase sequencing. In
its most elaborate form the choice available is
that between phases. This approach allows the
arbitrary sequencing of phases but comes at a cost
in the width of the search tree. This is the ap-
proach chosen by UTOPIA-SPOT. Both of these
approaches are shown in figure 3.

A compromise between these two extremes is
found in allowing phase skipping. When the skip-
ping of phases is allowed any phase sequence can
be attained. This is shown in figure 4. This is the
approach taken in the COP-system. The downside
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Fig. 4. phase skipping vs. selection

of this approach is that when the initial phase
sequence is chosen wrong the gain in width is
counteracted with an increase in tree depth. This
is not strictly necessary however. It is in principle
possible to choose the next phase dynamically.

5. PLANNING HORIZON

Traffic adaptive systems employ a traffic model
to evaluate alternative traffic signal timings over
a planning horizon. The length of the planning
horizon as well as how the horizon is split up into
successive intervals differs between each adaptive
system. Typically however the horizon has a fixed
length (of typically 1 to 2 minutes) and is subdi-
vided into fixed intervals. From their descriptions
we can deduce that OPAC, PRODYN, SPPORT,
and ALLONS-D all use or have used 5-second
time-steps.

If the horizon is chosen to short and the optimiza-
tion algorithm is faced with the choice whether
to a) completely serve a phase dispersing at a
slow rate, or b) preempt that phase in order to
switch to a phase with a higher dispersion rate,
it would counter-intuitively chose for the latter.
This is why many of the adaptive systems that
employ shorter horizons have introduced terminal
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Fig. 5. Different approaches regarding the length
of the planning horizon

costs in order to penalize residual queues at the
end of the horizon (Newell, 1998), (Shelby, 2004).

The ALLONS-D algorithm takes a different ap-
proach wherein the length of the horizon depends
on the current traffic situation. The ALLONS-D
algorithms enlarges the horizon until it finds a
solution in which all projected arrivals are cleared.
Although the idea of a horizon that shrinks or
grows dependent on the traffic situation sounds
attractive, it might not turn out this way in the
case of the ALLONS-D algorithm. In saturated
conditions - with many projected arrivals - the
length of the horizon might become so large that
the optimization method used by ALLONS-D
might be unable to come up with an answer in
time.

The approach where both the length of the plan-
ning horizon and the length of the time intervals
in which it is subdivided are variable is not applied
by any of the algorithms reviewed.

6. UPDATE FREQUENCY

Traffic adaptive systems rely on predicted arrivals.
As the distance over which these arrivals are pre-
dicted increases the reliability of these predictions
often decreases. This is why a rolling horizon is
often applied. The concept of a rolling horizon
originated in operations research and is used to
determine a short term policy based on a longer
term analysis. All adaptive systems reviewed that
depend on arrival predictions employ the concept
of a rolling horizon. These algorithms implement
only the first (few) action(s) of the control plan
after which a new optimization is performed.

The rolling horizon concept is visualized in fig-
ure 6, where each horizontal bar denotes the cal-
culated control plan for a decision horizon. The
system commits to this control plan until the opti-
mization process refreshes it. The period between
updates is denoted by the commitment period.

| decision horizon ,
1

commitment period 1 decision interval

(o}

Fig. 6. Rolling Horizon

The amount of time that passes between each sub-
sequent optimization (the roll - or - commitment
period) is, for all adaptive systems reviewed, equal
to the length of the intervals which subdivide
the planning horizon. For most adaptive systems
reviewed the length of the interval is typically
equal to 5 seconds. Waiting 5 seconds between
decisions to switch or extend the current phase
can however have a significant impact on delay.

Consider, for example, the case where a queue
dissipates earlier than predicted. With a 5 second
commitment period, an adaptive system may take
up to 5 seconds to realize the error, resulting in the
waste of green time. With a 1-second decision res-
olution, controllers could quickly terminate phases
as queues clear out, reallocating this time or ca-
pacity to phases that do have traffic to serve.

Note that, as all adaptive systems choose their
commitment period equal to the length of the in-
terval in which the planning horizon is subdivided,
switching from a 5 second to a 1-second decision
resolution increases the number of time-steps in
the planning horizon by a multiple of 5. This
imposes too much of an increase in computational
effort for many algorithms to solve in real-time.
Thus, the typical trade-off is to also decrease the
duration of the planning horizon.

7. DELAY MODEL

All adaptive systems reviewed consider individual
vehicles in determining the control delay brought
about by a chosen control plan. In that respect
all adaptive models can be considered to use a
microscopic model. However, because the delay
model is applied many times when exploring the
search tree, all models have to make some sac-
rifices with respect to the level of detail on the
employed model.

Known, commercially available, microscopic sim-
ulation models like Paramics, VISSIM, and AIM-
SUN are unfit for use in real-time optimization.
This is why simple event-based and cellular au-
tomaton models are predominantly used within
adaptive systems. At first these models employed
vertical queuing models, but many adaptive sys-
tems have since switched to using horizontal queu-
ing models so that queue spill backs to upstream



intersections can explicitly be considered in the
optimization.

8. CONCLUSIONS

The previous has shown that there are many dif-
ferent ways to configure a traffic adaptive system.
Although the core of each of the traffic adaptive
systems reviewed is based on the idea of finding
a short term policy on the basis of a long term
analysis, they differ with respect to the search
algorithm applied, the length and resolution of
the planning horizon, the update frequency and
the delay model used.

Unfortunately computational boundaries still pre-
vent the configuration of a traffic adaptive system
in which no compromises have to be made in order
to end up with a workable system that is a) able
to come up with good signal timings and b) is able
to deliver them on time.

As the base performance of an adaptive system is
at least as good as that of an actuated controller
there are considerable advantages to the deploy-
ment of an adaptive system. However, in order to
gain the full advantage of traffic adaptive control,
the system should be carefully tuned. Computa-
tionally complexity, geometry of an intersection,
and demand patterns should be considered.
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