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Abstract: For several reasons, control of transportation networks like road traffic net-

works, power transmission networks, water distribution networks, etc. has to be done us-

ing a multi-agent control approach. We consider a multi-agent control approach in which

each control agent uses Model Predictive Control (MPC) to determine its actions. Each

control agent uses a model of its subnetwork and communication with its neighboring

control agents to come to agreement on the evolution of interconnections and to determine

optimal local inputs and states. The challenge that is addressed in this paper comes from

the situation that arises when the models that the agents use contain both continuous and

discrete elements, instead of one of the two exclusively. We propose an approach that

deals with this hybrid behavior and results in agreement between the agents with respect

to the evolution of interconnections and that moreover provides integer inputs to obtain

these evolutions.

Keywords: Multi-agent systems, model predictive control, transportation networks,

hybrid systems.

1. INTRODUCTION

Transportation networks, like road traffic networks,

power distribution networks, railway networks, water

distribution networks, gas networks, sewer networks,

etc. are usually large in size, consist of multiple sub-

networks, have many actuators and sensors, and there-

fore show complex dynamics. These transportation

networks can be considered at a generic level, at which

commodity is brought into the network at sources,

flows over links to sinks, and is influenced in its way of

flowing by elements inside the network. The similari-

ties between several types of transportation networks

are the motivation for studying these networks in a

generic way. Results obtained for generic transporta-

tion networks can then be specialized and fine-tuned

for specific domains.

Transportation networks can often be considered as

consisting of both continuous and discrete elements.

E.g., commodity flows or speeds could be expressed in

continuous variables, while control actions like traffic

signal or speed limit settings are often expressed in

discrete variables. Conventionally either only contin-

uous or only discrete elements are considered. We

consider both elements at the same time.

Control goals for transportation networks often in-

volve avoiding congestion of links, minimizing costs

of control actions, maximizing throughput, etc. For the

type of networks that we consider centralized control,

in which a single control agent determines the actions

for the whole network, is often not feasible or im-

practical for several reasons. Some of these reasons

are communication delays, too high computational

requirements, unavailability of information from one



network operator to another, etc. Also, robustness and

reliability of the network cannot be guaranteed when

the single control agent breaks down.

For these reasons, employing a multi-agent, or dis-

tributed, control approach for control of these net-

works is a necessity (Bertsekas and Tsitsiklis, 1997;

Siljak, 1991; Trave et al., 1989). We consider a sit-

uation in which a division of the overall network

into multiple smaller subnetworks is given. This is

a situation that typically appears in practice, where

different control authorities control different parts of

the transportation network, e.g., the freeway network

and the urban road networks are typically controlled

by different road authorities.

Our starting point is a multi-agent Model Predictive

Control (MPC) scheme that we introduced for control

of transportation networks consisting of only contin-

uous elements (Negenborn et al., 2006). This scheme

converges to an optimal overall solution in the case of

a convex overall control problem. However, when also

discrete variables are involved, e.g., as control actions,

the overall optimization problem, i.e., the single con-

trol problem of controlling the whole network, is no

longer convex. We now extend the scheme considered

earlier to the situation where discrete variables play a

role as local actions to the subnetworks, and where

continuous variables only show up in interconnect-

ing constraints between subnetworks. This situation

appears, e.g., in transportation networks, when local

actions consist of discrete speed limit settings and

interconnecting constraints between subnetworks are

expressed in terms of continuously modeled car flows.

This paper is organized as follows. In Section 2 we

introduce the way in which we model transportation

networks. In Section 3 we briefly discuss the multi-

agent MPC scheme that we employ. In Section 4 we

discuss the difficulties that arise when extending the

multi-agent MPC scheme to the case involving both

continuous and discrete variables and we propose an

approach to deal with these difficulties. In Section 5

we give an example that indicates the workings of the

proposed approach.

2. TRANSPORTATION NETWORK MODEL

Consider a transportation network partitioned into n

subnetworks, each controlled by a control agent that

has only a model of its own subnetwork. The inter-

connections between subnetworks are modeled using

so-called internetwork variables. These variables ex-

press, e.g., what the continuous flow of cars between

two subnetworks is. We distinguish two types of in-

ternetwork variables: internetwork input variables and

internetwork output variables. On one side, the model

of subnetwork i contains an internetwork input vari-

able w
ji
in,k ∈ R

nw,in,ji that represents the input caused

by subnetwork j on the state of subnetwork i at time

step k. On the other hand, the model of subnetwork

d1 d2

d3

u1
u2

u3

w12
in

w12
out

w13
inw13

out

w21
in

w21
out

w23
in w23
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w31
in w31
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w32

inw32
out

x1 x2

x3

Fig. 1. Each subnetwork model has a set of variables.

Internetwork variables form interconnecting con-

straints between variables of two subnetwork.

j contains an internetwork output variable w
ij
out,k ∈

R
nw,out,ij that represents the influence that subnetwork

j has on subnetwork i. In the physical network the in-

ternetwork input to subnetwork i from j must be equal

to the internetwork output from subnetwork j to i, e.g.,

the commodity flow going out from subnetwork j into

subnetwork i has to equal the commodity flow going

into subnetwork i coming out from subnetwork j. This

means that so-called interconnecting constraints have

to be satisfied between subnetwork i and its neighbor-

ing subnetworks j ∈ Ni, (where Ni = {ji1, . . . , j
i
mi

}
is the set of indexes of the mi subnetworks connected

to subnetwork i), i.e.,

w
ji
in,k = w

ij
out,k, w

ji
out,k = w

ij
in,k, ∀j ∈ Ni, (1)

at all time steps k, as illustrated in Fig. 1.

We model the dynamics of subnetwork i by a linear

discrete-time difference equation:

xi
k+1 = Aixi

k +Bi
1u

i
k +Bi

2d
i
k

+B
j1i
3 w

j1i
in,k + . . .+B

jmi
3 w

jmi
in,k (2)

w
j1i
out,k = C

j1i
out x

i
k, (3)

...
...

w
jmi
out,k = C

jmi
out xi

k, (4)

where at time step k, for subnetwork i, xi
k ∈ R

nx,i

are dynamic states, ui
k ∈ [ui

min, . . . , u
i
max] are discrete

inputs that take on discrete values of the interval from

ui
min until ui

max, dik ∈ R
nd,i are local disturbances,

and w
ji
in,k and w

ji
out,k are the continuous internetwork

input and output variables respectively. The matrices

Ai, Bi
1, B

i
2, B

i
3 are of appropriate dimensions and de-

termine how the different variables influence the state

of subnetwork i, while the matrix C
ji
out is of appro-

priate dimensions and contains 0 entries on each row,

except for a single 1 corresponding to a variable that

is an internetwork output of subnetwork i with respect

to subnetwork j.

Note that the inputs ui
k are limited to discrete values.

There are two different types of discrete inputs: dis-

crete inputs that have a direct meaning as a quantity

since they are represented as numbers, and discrete

inputs that only have a symbolic meaning. E.g., in

the former class of discrete inputs we have discrete



numbers of cars that are allowed to enter a road; in

the latter class we have, e.g., the switching of traffic

signals from red to green. Here we are interested in

the first class of discrete inputs. Note that however

the second class of discrete inputs can sometimes be

transformed into the first class of inputs.

Note moreover that with the inputs ui
k we refer to

the actions of controllers, and not the physical inputs

at the border of the network. The physical inputs to

the network and the physical demands leaving the

network at the border are modeled as disturbances dik.

In the following the elements of xi
k, u

i
k, and dik are

referred to as local variables zik of agent i, while the

variables w
ji
in,k and w

ji
out,k together are referred to as

internetwork variables w
ji
k of agent i.

3. MULTI-AGENT MPC

From here on, we assume that the network has been

divided into subnetworks, each subnetwork has been

assigned an agent, and each agent has a subnetwork

model (2)–(4) of its own subnetwork.

To determine which actions to take each agent uses

an MPC scheme (Maciejowski, 2002; Morari and

Lee, 1999). Advantages of MPC are its explicit way of

dealing with constraints and its easy way of integrat-

ing forecasts. For transportation networks MPC pro-

vides a convenient way to include, e.g., capacity limits

on links, maximums on queue lengths, measurements

from upstream sensors, profiles of demands, etc.

In MPC, each agent has to determine inputs ui
k to

its actuators that give good local and overall perfor-

mance over a horizon of N steps according to an

objective function J i
z(z̃

i
k), where the symbol ˜ over

a variable indicates variables over the horizon, e.g.,

z̃ik = [(zik)
T . . . (zik+N−1

)T ]T . In this paper we

take the local cost term to have a quadratic structure,

i.e., J i
z(z̃

i
k) = (z̃ik)

TQi
z z̃

i
k, where Qi

z is a weighting

matrix, although the following can also be extended to

the case where we would have a tracking cost term of

the form J i
z(z̃

i
k) = (z̃ik − z̃iref,k)

TQi
z(z̃

i
k − z̃iref,k).

Since the subnetwork model that each agent has de-

pends on neighboring subnetwork models through the

internetwork input and output variables and the inter-

connecting constraints, the agents have to use a nego-

tiation scheme to obtain agreement on how these vari-

ables should evolve over the prediction horizon. Using

such a scheme, the agents reduce the uncertainty in

making predictions of the evolution of the variables

of their own subnetwork model. To obtain agreement,

the agents perform at each decision step a series of

iterations of solving the following problem:

min
z̃i
k
,w̃i

k

J i
z(z̃

i
k) +

∑

j∈Ni

J i
w(w̃

ji
k ), (5)

subject to the dynamics of the subnetwork (2)–(4) over

the horizon, where the additional cost term J i
w(w̃

ji
k )

deals with the internetwork variables. The particular

structure of this additional cost term depends on the

negotiation scheme used. Its shape is adjusted at the

end of each iteration in such a way that at the end of

the iterations, ideally, the interconnecting constraints

(1) are satisfied and moreover the actions that the

agents choose are overall optimal.

The multi-agent MPC scheme that we employ is a

serial scheme that is the result of using a Block Coor-

dinate Descent (Bertsekas and Tsitsiklis, 1997; Royo,

2001) to decompose an Augmented Lagrangian for-

mulation (Bertsekas, 2003) of the control problem

at hand. The scheme is serial in the sense that one

agent after another minimizes its problem (5) to de-

termine its optimal local and internetwork variables,

while the variables of the other agents stay fixed.

When the agents have reached agreement on the in-

ternetwork variables after a number of iterations, the

iterations terminate and the determined actions are

implemented. We use this serial implementation since

in earlier studies this scheme showed to outperform a

parallel implementation in terms of convergence speed

and required computations (Negenborn et al., 2006)

The serial implementation uses the following structure

for the additional cost term J i
w(w̃

ji
k ):

J i
w(w̃

ji
k ) =

[

(λ̃ji
s )

T (−λ̃ij
s )

T
]

[

w̃
ji
in,k

w̃
ji
out,k

]

+
c

2

∥

∥

∥

∥

∥

[

I 0
0 I

]

[

w̃
ij
in, prev,k

w̃
ij
out, prev,k

]

−

[

0 I

I 0

]

[

w̃
ji
in,k

w̃
ji
out,k

]∥

∥

∥

∥

∥

2

,

where given are:

• the information w̃
ij
prev,k = w̃

ij

s+1|k computed at

the current iteration s for each agent j ∈ Ni

that has solved its problem before agent i in the

current iteration s,

• the information w̃
ij
prev,k = w̃

ij

s|k computed at the

previous iteration for the other agents,

and where c is a positive scalar penalizing intercon-

necting constraint violations, and where the λs are

Lagrangian multipliers, updated at the end of each

iteration to encourage convergence to internetwork

variables that satisfy the interconnecting constraints.

The serial multi-agent MPC implementation can now

be outlined as follows: at decision step k, iteration s:

(1) For i = 1, . . . , n, one agent after another:

(a) Agent i determines z̃i
s+1|k, w̃

ji

s+1|k by solv-

ing (5).

(b) Agent i sends to agent j ∈ Ni the computed

values w̃
ji

s+1|k.

(2) After all agents have solved their problems at one

iteration, they update their Lagrangian multipli-

ers using:

λ̃
ji
s+1 = λ̃ji

s + c(w̃ji

in,s+1|k − w̃
ij

out,s+1|k) (6)

λ̃
ij
s+1 = λ̃ij

s + c(w̃ij

in,s+1|k − w̃
ji

out,s+1|k). (7)



(3) Each agent moves to the next iteration s+1, and

the cycle starts over, unless the infinity norm of

the terms w̃
ji

in,s+1|k − w̃
ij

out,s+1|k is below a small

positive threshold ǫ.

The λ variables can be initialized arbitrarily, although

choosing them closer to optimal λ∗ yields improved

performance in terms of convergence speed. There-

fore, initializing the Lagrangian multipliers with val-

ues computed at the previous decision step yields im-

proved performance in terms of number of iterations

required.

Depending on the problem at hand, convergence will

or will not appear. For the case of an overall convex

problem, thus involving only continuous variables,

this scheme will indeed converge to an overall optimal

solution (Negenborn et al., 2006), or at least as opti-

mal as indicated by the magnitude of ǫ. The closer ǫ is

to zero, the closer the found solution is to the overall

optimal solution, since at the overall optimal solution

the update (6)–(7) will not change the Lagrangian

multipliers anymore.

However, when discrete inputs appear in the control

problem, the overall control problem is no longer

convex and measures have to be taken to guarantee

that the iterations terminate with at least a feasible

solution, and even better with a solution that is close

to or equal to an overall optimal solution. In the next

section we propose an approach to this problem.

4. DEALING WITH DISCRETE VARIABLES

We consider the case where the local actions to the

subnetworks are modeled with integer variables that

take on values from the finite set {ui
min, . . . , u

i
max}.

When discrete elements appear in the optimization

problem, the optimization problem (5) for each agent

i can be formulated as a mixed-integer quadratic pro-

gramming problem. Due to the discrete elements, the

convexity assumption that guarantees that the scheme

discussed in the previous section converges to an over-

all optimal solution does not hold anymore.

In this situation it may be the case that the agents can-

not come to agreement on the internetwork variables,

while choosing locally optimal integer inputs. So, a

periodic sequence might arise of agents making sug-

gestions for values of the internetwork variables that

not all other agents agree with. This periodic sequence

will continue without converging.

In practice at some point a decision has to be made on

which actions to implement. A common approach to

deal with integer inputs is to relax them to continuous

variables and at the end of the optimization round

them to the closest integer value. In particular when

making predictions over a longer horizon this round-

ing can cause at least sub-optimality and sometimes

even infeasibility. This is due to the fact that in general

a rounded input has a different influence on the evolu-

tion of the network over a time step then a continuous

input would have. So in practice the evolution of the

network will be different than the evolution used in

the optimization. In the following we discuss a num-

ber of alternative approaches, ultimately leading to an

approach that does not relax the integer inputs to con-

tinuous variables and that moreover ensures that the

evolution of the network as used in the optimization is

the same as the evolution that will be encountered in

practice.

That the iterations continue means that the stopping

criterion is not met. We discuss 5 ways to deal with

this and to make the iterations stop:

1. Accuracy threshold increments. The accuracy thresh-

old ǫ is used in the stopping criterion to determine

when the iterations should stop. If this threshold is

increased, the iterations will sooner stop. However,

this of course reduces the quality of the determined

solutions. In addition, ignoring the violations of the

interconnecting constraints can obviously lead to sub-

optimally chosen inputs and since no agreement has

been achieved on the values of the internetwork vari-

ables the predictions that each agent has over the evo-

lution of its subnetwork will be inaccurate.

2. Discretization refinements. By making the dis-

cretization of the inputs finer, at some point the dis-

cretization will be fine enough to let the Lagrangian

multipliers converge to values that make the stopping

condition satisfied. For a specific tolerance ǫ there is

a certain minimum discretization at which the itera-

tions converge to Lagrangian multipliers that satisfy

the stopping condition. If a coarser discretization is

chosen, then the periodic behavior could emerge. In

practice, however, the discretization of the inputs may

be given and may not be adjustable.

3. Addition of continuous dummy inputs. Continuous

dummy inputs can be included in the optimization

problems to compensate constraint violations of the

interconnecting constraints by providing the remain-

ing part of the desired input that the integer input

cannot provide. A very high cost will be associated

with this type of input such that it will only be used if it

is really not worth changing the integer inputs. Due to

the dummy inputs the agents can obtain agreement on

the internetwork variables. The dummy inputs indicate

how much more or less control action the agent has to

provide in order to fulfill the agreements that an agent

made.

4. Penalty term increments. The penalty term c can

be increased to a very high value once the periodic

behavior has been detected, which can be done by

either waiting a minimum number of iterations or by

monitoring the sequence of solutions. In this way the

interconnecting constraints are forced to be satisfied,

and the inputs that come with this can be imple-

mented. However, by the time that the periodic behav-



ior emerges, the agents have already determined cer-

tain local values for their local variables. By imposing

a very high c, it will still take a significant number

of iterations before the agents obtained values that do

make the interconnecting constraints satisfied.

5. Integer input fixations. The integer inputs can be

fixed once the periodic behavior has been detected.

E.g., the integer inputs can be fixed to the locally

most optimal integers, or they can be fixed to the

most frequently appearing value for the integer inputs

over the last periodic cycle. The remaining overall

optimization problem will become convex and the iter-

ations will converge to optimal values for the remain-

ing variables. The remaining variables will be optimal

with respect to the fixed setting of the integer inputs,

which however may be sub-optimal from a network-

wide perspective. More importantly though, at the end

of the iterations the interconnecting constraints will

be satisfied and thus the agents will have agreed on

how the internetwork variables should evolve over the

prediction horizon. Furthermore, they will have deter-

mined inputs that ensure that this agreement is fulfilled

within a reasonable number of iterations (contrarily to

the previous case).

In the following section we experimentally assess the

performance of this last scheme. We consider this

last scheme, since this is the only scheme that both

guarantees agreement between the agents within a

reasonable number of iterations and provides feasible

integer inputs. The scheme has the following outline:

(1) Start as in the continuous case with a fixed, low,

value for c, e.g., 1 or 10, arbitrarily initialized

Lagrangian multipliers, and, e.g., ǫ = 0.00001.

(2) If the iterations converge to a fixed solution, then

the interconnecting constraints will be satisfied

and the resulting integer inputs will be optimal.

(3) Otherwise, if a periodic switching between solu-

tions of different agents is detected, the integer

inputs are fixed to the value that appeared most

frequently over the last periodic cycle. After this,

the iterations continue as before, but with fixed

integer inputs.

By fixing the integer inputs, the optimization problems

become convex and the subsequent iterations will

bring the internetwork variables to values that make

the interconnecting constraints satisfied with feasible,

although not necessarily optimal, integer inputs.

5. EXAMPLE

5.1 Setup

We consider a general transportation network divided

into two subnetworks, each being controlled by a

control agent, see Fig. 2. Through the network there

is a flow of a continuous commodity, e.g., a flow

of cars. The two subnetwork are connected to each

d1 d2

model of subnetwork 1 model of subnetwork 2

subnetwork 1 subnetwork 2

u1 u2

w12
in

w12
outw21

in

w21
out

x1 x2

Fig. 2. Illustration of an abstract transportation net-

work consisting of two subnetworks (top), and

the variables of the subnetwork models consid-

ered by the 2 control agents (bottom).

other through an interconnecting link, e.g., a shared

road or highway. Each subnetwork i ∈ {1, 2} has

as control input a controllable source or sink, that

generates or consumes commodity ui
k in discrete steps

respectively. E.g., an on-ramp metering installation at

the border of each subnetwork with sufficiently high

demand represents a source, while a forced queuing

of cars represents at some times a sink, while at

others a source. In addition, each subnetwork has as

local disturbance an unexpected addition or removal

of commodity, dik, e.g., a flow of cars that come and

go to a car park or a shopping mall outside the control

of the control agents. The state of subnetwork i is

denoted by xi
k and may encode, e.g., the average

number of cars in each part of the subnetworks over

a time step. We assume that the dynamics of the

subnetworks can be modeled by (2)–(4). See for more

details of such a model (Negenborn et al., 2006).

In order to make good local decisions, the agents have

to obtain agreement on the commodity flowing over

the line from subnetwork i to j. To compute this flow

elements of both the state xi
k and the state x

j
k have

to be known. These elements are the internetwork

variables that form the interconnecting constraints be-

tween the control problems of both agents.

Assume in subnetwork i a sudden commodity injec-

tion. In order to prevent the subnetwork from ending

up in an undesirable state, e.g., a state with traffic con-

gestion, the agents controlling the subnetworks have to

come to agreement on how much commodity should

be transported over the interconnecting link.

5.2 Results

Figure 3 shows a typical evolution of the constraint

violation of the interconnecting constraint associated

with a prediction step. This constraint violation is

simply the difference between the internetwork input

variable of one agent and the corresponding inter-

network output variable of the other agent, and can

represent, e.g., the mismatch between the commodity

flow that each of the two agents wants to send over
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terconnecting constraint associated with the first

prediction step. At iteration step 40, the integer

input fixation function is activated.
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Fig. 4. Evolution of the integer inputs as computed by

the two agents over the iterations. From iteration

step 40, the integer inputs are kept fixed.

the interconnecting link. As can be seen, the agents

are not able to come to agreement on values for the

interconnecting constraints over the first 40 steps. This

is also seen in Figure 4, which shows the integer inputs

as computed by the two agents for the first prediction

step. We clearly see that the inputs do not converge

to an optimal input, but keep switching. At iteration

step 40 the input fixation function is activated and the

integer inputs are kept fixed at the values that appeared

most frequently over the last periodic cycle. Once

the integer inputs have been fixed the agents quickly

obtain agreement on the interconnecting constraint.

6. CONCLUSIONS & FUTURE RESEARCH

In this paper we have considered control of trans-

portation networks, like road traffic networks, power

networks, water distribution networks, and so on using

multi-agent Model Predictive Control (MPC), to be

used when a single-agent approach is inapplicable.

In this setting, the network is divided into a number

of subnetworks, each being controlled by a control

agent that uses a model of its subnetwork and MPC to

determine its actions. We have focused on approaches

that deal with subnetwork models that contain both

continuous and discrete elements, contrarily to con-

ventional approaches where only either one of the two

is considered. In our setup, discrete elements appear

in the form of discrete control actions, while continu-

ous elements appear due to, e.g., continuous flows of

commodity over the network.

We have started with a serial multi-agent MPC scheme

that converges to optimality for convex overall op-

timization problems, involving only continuous vari-

ables. We have pointed out why this scheme may not

converge (and therefore not stop) when also discrete

variables are included. We have discussed a number

of approaches that could be considered to make the

scheme terminate. We have chosen an approach that

may give sub-optimal integer inputs, but that will en-

sure that the interconnecting constraints between sub-

networks are satisfied. An example confirms this.

Future research lies in determining how large the sub-

optimality of the resulting solutions is compared to

a hypothetical centralized controller that has access

to all relevant information. Moreover, the detection

of when periodic solutions start appearing can be

improved to reduce the number of iterations required

before termination. We will also perform experiments

on transportation networks of more realistic size to

further assess the potential of the proposed approach.

And finally, we will investigate in which situations a

multi-agent approach is more efficient than a single-

agent approach.
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