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Abstract

We derive in this paper on-line algorithms for fault
diagnosis of Time Petri Net (TPN) models. The
plant observation is given by a subset of transi-
tions while the faults are represented by unobserv-
able transitions. The model-based diagnosis uses
the TPN model to derive the legal traces that obey
the received observation and then checks whether
or not fault events occurred. To avoid the consider-
ation of all the interleavings of the concurrent tran-
sitions, the plant analysis is based on partial orders
(unfoldings). The legal plant behavior is obtained
as a set of configurations. The set of legal traces in
the TPN is obtained solving a system of (max,+)-
linear inequalities called the characteristic system
of a configuration. We present two methods to de-
rive the entire set of solutions of a characteristic
system, one based on Extended Linear Comple-
mentarity Problem and the second one based on
constraint propagation that exploits the partial or-
der relation between the events in the configuration.

1 Introduction

This paper deals with the diagnosis of TPNs. TPNs are exten-
sions of untimed Petri Nets (PNs) where information about
the execution delay of some operations is available in the
model. In a TPN a transition can be fired within a given time
interval after its enabling and its execution takes no time to
complete. A trace in the plant comprises the transitions that
are executed in the TPN model (the untimed support) as well
as the time of their occurrence.

Since a transition can be executed at any time within an
interval after it has become enabled, the state space of TPNs
is in general infinite. Methods based on grouping states under
a certain equivalence relation onto so called state classes were
proposed in [2]. The state class graph was proved to be finite
iff the net is bounded, thus infinite state spaces can be finitely
represented and the analysis of TPN models is computable.
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We consider the plant observation given by a subset of
transitions whose occurrence is always reported. Moreover
the time when an observed transition is executed is measured
and reported according to a global clock. The unobservable
events are silent, i.e. the execution of an unobservable transi-
tion is not acknowledged to the monitoring system. The faults
are modeled by a subset of unobservable transitions.

The model-based diagnosis for TPNs comprises two
stages. First the set of traces that are legal and that obey the
received observation is derived and then the diagnosis result
of the plant is obtained checking whether some or all of the
legal traces include fault transitions.

The diagnosis of a TPN can be derived based on the com-
putation of the state class graph as proposed in [5]. How-
ever the analysis of TPNs is not tractable even for models of
reasonable size because of the interleaving of (unobservable)
concurrent transitions.

Partial orders were shown to be an efficient method to cope
with the state space explosion of untimed PNs because the
interleaving of concurrent transitions is filtered out [4],[8].
They were also found applicable for the analysis of PN mod-
els where the time is considered as quantifiable and continu-
ous parameter [1],[3].

In this paper we extend the results presented in [6],[7] pre-
senting on-line algorithms for the diagnosis of TPNs based
on partial orders. The plant analysis is based on time con-
figurations (time-processes in [1]). A time configuration is an
untimed configuration (a configuration in the net-unfolding of
the untimed PN support of the TPN model) with a valuation
of the execution times for its events. A time configuration is
legal if there is a time trace in the original TPN that can be ob-
tained from a linearization of the events of the configuration
where the occurrence times of the transitions in the trace are
identical with the valuation of their images in the time con-
figuration. A linearization of the events in a configuration is
a trace that comprises all the events of the configuration exe-
cuted only once such that the partial order between the events
in the configuration is preserved in the order in which they
appear in the trace.

The on-line diagnosis algorithm that we propose works as
follows. When the process starts we derive time traces in
the TPN model up to the first discarding time. A discard-
ing time is the time when in absence of any observation one
can discard untimed support traces and it corresponds with



the smallest value of the latest time when an observable event
could be forced to happen. The occurrence of an observable
transition before the first discarding time is taken in to ac-
count eliminating traces that are not consistent with the re-
ceived observation. Then the plant behavior is derived up to
a next discarding time.

The set of all legal time traces in the original TPN can
be obtained computing for each configuration the entire so-
lution set of a system of (max,+)-linear inequalities called
the characteristic system of the configuration.

The calculations involve time interval configurations. A
time interval configuration is an untimed configuration en-
dowed with time intervals for the execution of the events
within the configuration. A time interval configuration is le-
gal if for every event and for every execution time of the event
within its execution time interval there exists a legal time con-
figuration that considers the event executed at that time.

Thus, we need to derive for each configuration the entire
solution set of its characteristic system. The naive approach
to enumerate all the possible max-elements would imply to
interleave concurrent events which is exactly what we wanted
to avoid by using partial orders to represent the plant behav-
ior. To cope with this difficulty we present two methods that
avoid the explicit consideration of all the cases for each max-
term in the characteristic system.

The first method uses the Extended Linear Complementar-
ity Problem (ELCP) [10] for deriving the set of all solutions
of the characteristic system of the configuration. The solution
set can be represented as a union of faces of a polyhedron that
satisfy a cross-complementarity condition.

The second method is based on constraint propagation and
exploits the partial order relation between the events within
the configuration. We derive for each untimed configuration
a set of hyperboxes of dimension equal with the number of
events within the configuration such that the union of all the
subsets of solutions that are circumscribed by the hyperboxes
is a cover of the solution set.

The paper is organized as follows. In Section 2 we provide
definitions and the notation used in the paper. In Section 3 we
formalize the diagnosis problem for TPNs models. The anal-
ysis of TPNs based on partial orders is described in Section 4.
Section 5 and Section 6 present the two methods to derive the
solution set of a characteristic system of a configuration and
then in Section 7 we present the on-line diagnosis algorithm
that we propose. The paper is concluded in Section 8 with
final remarks and future work.

2 Notation and definitions

2.1 Petri nets

A Petri Net is a structure N = (P, T , F ) where P denotes the
set of | P | places, T denotes the set of | T | transitions, and
F = Pre ∪ Post is the incidence function where Pre(p, t) :
P × T → {0, 1} and Post(t, p) : T × P → {0, 1} are the
pre- and post-incidence function that specify the arcs.

We use the standard notations: p•, •p for the set of input,
respectively output transitions of a place; similarly •t and t•

denote the set of input places to t, and the set of output places
of t respectively. A marking M of a PN is represented by a

| P |-vector, M : P → IN, that assigns to each place of N a
non-negative number of tokens.

The set LN (M0) of all legal traces of a PN, 〈N ,M0〉,
with initial marking M0 is defined as follows. A transi-
tion t is enabled at the marking M if M ≥ Pre(·, t).
Firing, an enabled transition t consumes Pre(p, t) tokens
in the input places p ∈ •t and produces Post(t, p) to-
kens in the output places p ∈ t•. The next marking is

M
′

= M + Post(t, ·) − Pre(·, t). A trace τ is defined as

τ = M0
t1−→ M1

t2−→ . . .
tk−→ Mk, where for i = 1 . . . k,

Mi−1 ≥ Pre(ti). M0
τ
−→ Mk denotes that the sequence τ

may fire at M0 yielding Mk.
A PN 〈N ,M0〉 is 1-safe if for every place p ∈ P we have

thatM(p) ≤ 1 for any markingM that is reachable fromM0.

2.2 Occurrence nets

Definition 1 Given a PN N = (P, T , F ) the immediate de-
pendence relation �1⊂ (P × T ) ∪ (T × P) is defined as:

∀(a, b) ∈ (P × T ) ∪ (T × P) : a �1 b if F (a, b) 6= 0

Define � as the transitive closure of �1 (�=�∗
1).

The immediate conflict relation ♯1 ⊂ T × T is defined as:

∀(t1, t2) ∈ T × T : t1♯1t2 if •t1 ∩
•t2 6= ∅

Define ♯ ⊂ (P ∪ T ) × (P ∪ T ) as ∀(a, b) ∈ (P ∪ T ) ×
(P ∪ T ): a♯b if ∃t1, t2 s.t. t1♯1t2 and t1 � a and t2 � b.

The independence relation ‖ ⊂ (P ∪ T ) × (P ∪ T ) is
defined as ∀(a, b) ∈ (P ∪ T )× (P ∪ T ):

a‖b⇒ ¬(a♯b) ∧ (a 6� b) ∧ (b 6� a)

Definition 2 Given two PNs N = (P, T , F ) and N ′ =
(P ′, T ′, F ′), φ is a homomorphism from N to N ′, denoted
φ : N → N ′ where i) φ(P) ⊆ P ′ and φ(T ) ⊆ T ′ and ii)
∀t ∈ T , the restriction of φ to •t respectively t• is a bijection
between •t and •φ(t) respectively between t• and φ(t)•.

Definition 3 An occurrence net is a net O = (B,E,�1)
such that: i) ∀a ∈ B∪E :¬(a � a) (acyclic); ii) ∀a ∈ B∪E
: | {b : a � b} |< ∞ (well-formed); iii) ∀b ∈ B : | •b |≤ 1
(no backward conflict).

In the followingB is referred as the set of conditions while
E is the set of events.

Definition 4 A configuration C = (BC , EC ,�) in the oc-
currence net O is defined as follows:

i) C is a proper sub-net of O (C ⊆ O)

ii) C is conflict free, i.e.
∀a, b ∈ (BC ∪ EC)× (BC ∪ EC) ⇒ ¬(a♯b)

iii) C is causally upward-closed, i.e.
∀b ∈ BC∪EC : a ∈ B∪E and a �1 b⇒ a ∈ BC∪EC

iv) min�(C) = min�(O)

Definition 5 Consider a PN 〈N ,M0〉 s.t. ∀p ∈ P :M0(p) ∈
{0, 1}. A branching process B of a PN 〈N ,M0〉 is a pair
B = (O , φ) where O is an occurrence net and φ is a homo-
morphism φ : O → N s.t.:

1. the restriction of φ to min�(O) is a bijection between
min�(O) and M0 (the set of initially marked places)



2. φ(B) ⊆ P and φ(E) ⊆ T

3. ∀a, b ∈ E : ( •a = •b) ∧ (φ(a) = φ(b)) ⇒ a = b

For a configuration C in O denote by CUT (C) the maxi-
mal (w.r.t. set inclusion) set of conditions in C that have no
successors in C:

CUT (C) = ((
⋃

e∈EC

e•) ∪ (min�(O)) \ (
⋃

e∈EC

•e)

Definition 6 Given a PN 〈N ,M0〉 and two branching pro-
cesses B,B′ of PN 〈N ,M0〉 then B′ ⊆ B if there exists an
injective homomorphism ϕ : B′ → B s.t. ϕ(min(B′)) =
min(B) and φ ◦ ϕ = φ′.

There exists a unique (up to an isomorphism) maximum
branching process (w.r.t. ⊆) that is the unfolding of 〈N ,M0〉
and is denoted UN (M0) [8].

Denote by C the set of all the configurations C of the oc-
currence net UN (M0). For a configuration C ∈ C denote by
〈EC〉� the set of strings that are linearizations of (EC ,�)
where a string σ = e1e2 . . . eυ is a linearization of (EC ,�)
if υ =| EC | and ∀eι, eλ ∈ EC we have that: i) eι = eλ ⇒
ι = λ and ii) for ι 6= λ, if eι � eλ then ι < λ.

2.3 Time Petri nets

A Time Petri Net (TPN) N θ = (P, T , F, Is), consists of
an (untimed) Petri Net N = (P, T , F ) (called the untimed
support of N θ) and the static time interval function Is : T →
I(Q+), Ist = [Lst , U

s
t ], L

s
t , U

s
t ∈ Q+, representing the set of

all possible time delays associated to transition t ∈ T .
In a TPN 〈N θ,Mθ

0 〉 we say that a transition t becomes
enabled at the time θent then the clock attached to t is started
and the transition t can and must fire at some time θt ∈ [θent +
Lst , θ

en
t +Ust ], provided t did not become disabled because of

the firing of another transition. Notice that t is forced to fire
if it is still enabled at the time θent + Ust .

Definition 7 A state at the time θ (according to a global
clock) of a TPN 〈N θ,Mθ

0 〉 is a pair Sθ = (M,FI) where
M is a marking and FI is a firing interval function associ-
ated with each enabled transition in M (FI : T → I(Q+)).

If t is executed at the time θt ∈ Q+ we write

(M,FI)
〈t,θt〉
−−−→ (M ′, F I ′) or simply S

〈t,θt〉
−−−→ S′ where:

1. (M ≥ Pre(·, t) ∧ θt ≥ θent + Lst ) ∧ (∀t′ ∈ T s.t.
M ≥ Pre(·, t′) ⇒ θt ≤ θent′ + Ust′)

2. M ′ =M − Pre(·, t) + Post(t, ·)

3. ∀t′′ ∈ T s.t. M ′ ≥ Pre(·, t′′) we have:

(a) if t′′ 6= t and M ≥ Pre(·, t′′) then
FI(t′′) = [max(θent′′ + Lst′′ , θt), θ

en
t′′ + Ust′′ ]

(b) else θent′′ = θt and FI(t′′) = [θent′′ +L
s
t′′ , θ

en
t′′ +U

s
t′′ ]

A legal time trace τθ in a TPN N θ satisfies: τθ =

S0

〈t1,θt1 〉−−−−−→ S1

〈t2,θt2 〉−−−−−→ . . .
〈tυ,θtυ 〉
−−−−−→ Sυ where

Sι
〈tι+1,θtι+1

〉
−−−−−−−−→ Sι+1 for ι = 0, . . . , υ − 1.
In the following for a time trace τθ we use the notation τ to

denote its untimed support. For the initial state S0 we use also
the notation Mθ

0 . Denote LθN θ (M
θ
0 ) the set of all legal time

traces that can be executed in 〈N θ,Mθ
0 〉. We call LθN θ (M

θ
0 )

the time language of the TPN 〈N θ,Mθ
0 〉.

LN θ (Mθ
0 ) is the untimed support language of the time lan-

guage LθN θ (M
θ
0 ) i.e. LN θ (Mθ

0 ) =
{
τ | ∃τθ ∈ LθN θ (M

θ
0 )
}

.

3 Diagnosis of TPNs

We consider the following plant description:

1. the TPN model 〈N θ,Mθ
0 〉 is untimed 1-safe

2. T = To ∪ Tuo where To is the set of observable transi-
tions and Tuo is the set of unobservable transitions

3. lo is the observation labeling function lo : T → Ωo ∪
{ǫ} where Ωo is a set of labels and ǫ is the empty label.
lo(t) = ǫ if t ∈ Tuo and lo(t) ∈ Ωo if t ∈ To

4. when an observable transition to ∈ To is executed in the
plant the label lo(t

o) is emitted together with the global
time θlo(to) when this execution of to took place

5. the execution of an unobservable transition does not emit
anything (is silent)

6. the faults are modeled by a subset of unobservable
events, Tf ⊆ Tuo; lf : Tuo → Ωf ∪ {ǫ} is the fault la-
beling function (Ωf is a set of labels and ǫ is the empty
label); lf (t) = ǫ if t ∈ Tuo \Tf and lf (t) ∈ Ωf if t ∈ Tf

7. the faults are unpredictable, i.e. ∀t ∈ Tf , ∃t′ ∈ T \ Tf
s.t. i) •t′ ⊆• t and ii) Lst′ ≤ Ust .

The plant observation at the time the nth observed
event is executed in the plant is denoted as Oθ

n =
〈obs1, θobs1〉, . . . , 〈obsn, θobsn〉, where obs1, . . . , obsn ∈ Ωo
are the labels that are received and θobs1 ≤ θobs2 . . . ≤ θobsn
are the occurrence times of the corresponding events.

Denote by Oθ
n,ξ the plant observation at the time ξ > θobsn ,

i.e. Oθ
n,ξ includes also the information that no observable

event occurred in the interval [θobsn , ξ].
LθN θ (Oθ

n) is the set of all time traces that are feasible in

〈N θ,Mθ
0 〉 up to the time of the last observation θobsn and

that obey the received observation Oθ
n where τθ ∈ LθN θ (Oθ

n)

if: i) τθ ∈ LθN θ (M
θ
0 , θobsn) (τθ is legal); ii) lo(τ) =

obs1, . . . , obsn (τθ obeys the ”untimed” observation), and
iii) for each observable transition tok ∈ To, k = 1, . . . , n we

have that lo(t
o
k) = obsk ⇒ θtk = θobsk (τθ obeys the execu-

tion times of the observed transitions).
Similarly LθN θ (Oθ

n,ξ) is the set of all time traces that are

feasible in 〈N θ,Mθ
0 〉 up to the time ξ and that obey the re-

ceived observation Oθ
n,ξ.

The plant diagnosis DN θ (Oθ
n,ξ) based on the received

observation Oθ
n,ξ comprises the untimed strings obtained

by projecting the untimed support traces contained in
LN θ (Oθ

n,ξ) onto the set of fault transitions Tf :

DN θ (Oθ
n,ξ) =

{
τf | τθ ∈ LθN θ (Oθ

n,ξ) and τf = lf (τ)
}

The diagnosis result DRN θ (Oθ
n,ξ) indicates that a fault for

sure happened if all the traces contain fault events, i.e.
DRN θ (Oθ

n,ξ) = {F} ⇔ ǫ /∈ DN θ (Oθ
n,ξ)



If DN θ (Oθ
n,ξ) contains only the empty string ǫ then the diag-

nosis result is normal, i.e.
DRN θ (Oθ

n,ξ) = {N} ⇔ DN θ (Oθ
n,ξ) = {ǫ}.

Otherwise the diagnosis result is uncertain, i.e. a fault could
have happened but did not necessarily happen [9].

4 The analysis based on partial orders

The partial order reduction techniques developed for untimed
PN [8] are shown in [1],[3] to be applicable for TPN. Con-
sider a configuration C in the unfolding UN (M0) of the un-
timed PN support of a TPN. Then consider a valuation Θ of
the execution times at which the events e ∈ EC in the con-
figuration C are executed, that is for each e ∈ EC consider a
time value θe ∈ TT (TT the time axis) at which e occurs and Θ
is an | EC |-tuple representing the execution times of all the
events e ∈ EC .

An untimed configuration C with a valuation Θ ∈ TT|EC |

of the execution time for its events is called a time configura-
tion of the TPN. A time configuration is legal if there is a legal
trace τθ ∈ LθN θ (M

θ
0 ) in the TPN 〈N θ,Mθ

0 〉 whose untimed
support τ is a linearization of the partial order relation of the
events in the configuration (i.e. τ = φ(σ) and σ ∈ 〈EC〉�)
while the execution time θt of every transition t considered in
the trace τθ is identical with the valuation of the event e for
which t is its image via φ.

Consider an untimed configuration C ∈ C. The TPN Cθ =
(BC , EC ,�, min�(UN ), Is) is obtained by attaching to each
event e ∈ EC the static interval Ist that corresponds in the
original TPN to transition t s.t. φ(e) = t.

Denote by K̃Cθ the following system of inequalities:

K̃Cθ

{
max
e′∈••e

(θe′) + L
s
e ≤ θe ≤ max

e′∈••e
(θe′) + U

s
e ∀e ∈ EC

(1)

where in (1) ••e = ∅ implies maxe′∈••e(θe′) = 0.

Proposition 1 ∀τθ ∈ LθN θ (M
θ
0 ) we have that if τ = φ(σ)

and σ ∈ 〈EC〉�, then Θ is a solution of K̃Cθ , where Θ =
(θt1 , . . . , θt|EC |

) = (θe1 , . . . , θe|EC |
) with φ(ei) = ti, i =

1, . . . , | EC |.

Proof: The proof is straightforward. ✷

Denote by Sol(K̃Cθ ) the set of all solutions of K̃Cθ . The

| EC |-hyperbox Ĩ that circumscribes Sol(K̃Cθ ) is easily

obtained as: ∀e ∈ EC , Ĩ(e) = [L̃(e), Ũ(e)] with L̃(e) =

maxe′∈••e(L̃(e
′))+Lse and Ũ(e) = maxe′∈••e(Ũ(e′))+Use

where ∀e ∈ EC s.t. ••e = ∅, L̃(e) = Lse and U(e) = Use .

Example 1 Consider the TPN displayed in Fig. 1. Static in-
tervals are attached to each transition. The observable tran-
sitions are t4, t7 and t10 and they emit the same label. t3 and
t9 are faulty transitions.

In Fig. 2 a part of the unfolding UN (M0) is displayed

where attached to each event e ∈ E is the interval Ĩ(e).

We cannot claim yet that for C ∈ C there exists at least a
legal time configuration that corresponds with C because for
a general TPN the enabling of a transition does not guaran-
tee that it eventually fires because some conflicting transition
may be forced to fire beforehand.
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Denote by ĔC the set of conflicting events of a configura-

tion C ∈ C where ĔC comprises the events that could have
been executed but are not included in EC :

ĔC = {ĕ ∈ E \ EC | •ĕ ⊆ BC}

The characteristic system KCθ of configuration C ∈ C is

obtained by adding to K̃Cθ inequalities regarding the con-
flicting events :

KCθ =





max
e′∈••e

(θe′) + L
s
e ≤ θe ≤ max

e′∈••e
(θe′) + U

s
e ∀e ∈ EC

min
e′♯1ĕ

(θe′) ≤ max
e′′∈ ••ĕ

(θe′′) + U
s
ĕ ∀ĕ ∈ ĔC

Proposition 2 Given an arbitrary time ξ we have that τθ ∈
LθN θ (M

θ
0 , ξ) iff: i) τ = φ(σ), σ ∈ 〈EC〉� and C ∈ C; ii)

Θ is a solution of KCθ , iii) ∀e ∈ EC ⇒ θe ≤ ξ, and iv)
∀e ∈ ENABLED(C), θe ≥ ξ.

Proof: ⇒ Since the PN is 1-safe we have that for any legal
untimed trace τ there exists a unique configuration C s.t. τ ∈
〈EC〉�. Condition 1, 3 and 4 are trivial and the proof that
Θ = (t1, . . . , tn) is a solution of KCθ is simply by induction.
⇐ The proof is trivial. ✷

The problem the we should answer next is: ”Up to what
time ξ to make the calculations for the on-line monitoring ?”.

There are different solutions to answer this question, de-
pending on the computational capability, the plant behavior,
and the requirements for the diagnosis result.

Solution 1: Calculations in advance

The first solution is appropriate for a plant known to have a
cyclic operation, where each operation cycle is initiated by
the plant operator.

Having derived the plant behavior up to the time ξ̂ that cor-
responds with the completion of an operation cycle, the plant
is monitored on-line in the following way:



1. the received observation is taken in to account adding
(in)equality constraints to the characteristic system of a
configuration.

2. or configurations are discarded when the current time
exceeds the latest execution time of an observable event
in a configuration.

The main drawback of this method is that a large amount
of calculations is performed in advance and then discarded
because of the received observation.

Solution 2: Calculations after each observation

The second solution is to perform calculations each time an
event is observed in the plant. E.g. when the first observable
event is executed in the plant we derive the plant behavior up
to the time θobs1 in the following way.

Let the first observation be Oθ
1 = 〈obs1, θobs1〉. Consider

the set of configurations C(Oθ
1) s.t. C ∈ C(Oθ

1) if:

1. EC contains only one event eo s.t. φ(eo) ∈ To and

lo(φ(e
o)) = obs1, and θobs1 ∈ Ĩ(eo)

2. ∀e ∈ •CUT (C) : L̃(e) < θobs1

3. ∀e ∈ ENABLED(C) : Ũ(e) > θobs1

where ENABLED(C) denotes the set of events that corre-
spond to transitions that are enabled from φ(CUT (C)).

The characteristic system KCθ (Oθ
1) of configuration Cθ ∈

C(Oθ
1) is obtained by adding to K̃Cθ inequalities regarding

the conflicting events and the received observation.
This method requires less computation but the price to be

paid is that a fault may be detected with a delay. This is be-
cause no calculations are performed until a new observation
is received, thus the fact that the current time of the plant ex-
ceeds the latest execution time of an observable event is not
taken in to account.

However this method is practically useful when the fre-
quency of observations is high, i.e. the time interval in be-
tween two observations is short and control actions are in-
evitably taken with some latency. Moreover this method is
also suitable when the plant observation is known to be un-
certain, i.e. the observation of an event can be lost because of
a sensor failure. This is because in between two observations
the diagnosis result w.r.t. the detection of the faults that for
sure happened does not change if the observation is uncertain.

Solution 3: Calculations up to a discarding time

A discarding time is the earliest time when in absence of any
observation one can discard untimed support traces because
it can be proved that they are not valid. E.g. the first discard-
ing time is the smallest latest execution time of an observable
transition in the plant.

Definition 8 A configuration Cν ∈ C is derived up to

the time ξ if: i) maxe∈ •CUT (Cυ)(L̃υ(e)) ≤ ξ and ii)

mine∈ENABLED(Cυ)(Ũυ(e)) > ξ. Given a configuration

Cν ∈ C that is derived up to a time ξ′, denote by Cν(ξ) the set
of extensions of Cν up to the time ξ > ξ′ where Cℓν ∈ Cν(ξ)
if: i) Cν ⊆ Cℓν (Cℓν is a continuation of Cν) and ii) Cℓν is
derived up to the time ξ.

The first discarding time θ̂ is calculated iteratively as fol-

lows. θ̂ is initiated with a big value (say +∞ for simplic-
ity) and then starting from the initial configuration C⊥ =
(B⊥, E⊥,�1) we construct an initial part of the net unfold-
ing by appending events as in the untimed case, the only
difference being that among all the enabled events denoted
by ENABLED(C) only the events with the smallest upper

limit Ũ(e) are appended, until the first observable event say
eo is encountered.

The discarding time is set equal to Ũ(eo) and then the
configurations that contain eo are extended up to the time

Ũ(eo). Denote this set by Cnewobs . Then for each configuration
Cν ∈ Cnewobs we calculate Sol(KCθ

ν
) and for those configura-

tions that have a non-empty solution set we calculate Uν(e
′o),

i.e. the smallest latest time when an observable event e′o can
be executed. Obviously Uν(e

′o) ≤ Ũν(e
o).

The discarding time θ̂ is set as the smallest latest time when
an observable event can be forced to execute considering all
Cν ∈ Cnewobs . Notice that a configurationCν may contain some
other observable events and after calculating Sol(KCθ

ν
) some

other observable event may have the smallest latest time for
its execution. Then recursively all the configurations that con-
tain only unobservable events are extended up to the new dis-

carding time θ̂ by appending event(s) selected among all the

enabled with the smallest upper limit Ũ(e). Continue this op-
eration until either a new observable event is encountered or
no more events can be appended.

Notice that because θ̂ is calculated recursively some con-
figurations (that contain at least one observable events) are

derived up to times bigger than θ̂. However this does not af-
fect the diagnosis result since the events that can be executed

after the time θ̂ are seen as a prognosis.
The on-line diagnosis algorithm works as follows. When

the process starts we derive the set of configurations up to the
first discarding time and then we have two cases:

Case 1 If no observation is received before the time θ̂ then:

1. the configurations that contain observable events having

the upper limit equal to θ̂ are discarded

2. for all the other configurations that contain observable
events inequalities of the form:

Kobs =
{
θeo > θ̂ | eo ∈ ECν

and φ(eo) ∈ To
}

are added to the characteristic systems KCθ
ν

and we de-
rive the entire solution set

3. for all the configurations Cυ ∈ Cuno that contain only
unobservable events we check only if Sol(KCθ

υ
) has an

non-empty set of solutions.

4. denote by E(Oθ

0,θ̂
) the set of traces that are obtained as

linearizations of the set of events of the configurations
that are not discarded.

5. the diagnosis Dpo

N θ (O
θ

0,θ̂
) is obtained projecting E(Oθ

0,θ̂
)

onto the set of fault transitions Tf
Case 2 If the first observation 〈obs1, θobs1〉 is received be-

fore the time of the process becomes θ̂ then:



1. the set of configurations Cunu that contain only unob-
servable events is discarded

2. for each configuration Cν ∈ Cobs that contains observ-
able events an equality relation:

K′
obs1

= {θeo = θobs1 | lo(e
o) = obs1 ∧ e

o ∈ Cν}

and for observable events other than eo inequalities of
form:

K′′
obs1

=
{
θe′o > θ̂ | e′o ∈ EC and φ(e′o) ∈ To

}

are added to the characteristic system KCθ
ν

and then we
derive the entire solution set

3. denote by E(Oθ
1) the set of traces that are obtained as

linearizations of the set of events of the configurations
that are not discarded.

4. Dpo

N θ (O
θ
1) is obtained projecting E(Oθ

1) onto Tf
Notice that the plant diagnosis is derived either at the time

of the first observed event Dpo

N θ (O
θ
1) or in absence of any

observation at the first discarding time θ̂, Dpo

N θ (O
θ

0,θ̂
).

Theorem 1 Given a TPN model 〈N θ,Mθ
0 〉 we have that:

1. when the first observable event is executed:
DRN θ (Oθ

1) = {F} ⇔ DRpo

N θ (O
θ
1) = {F}

2. if no observation is received until the first discarding θ̂:
DRN θ (Oθ

0,θ̂
) = {F} ⇔ DRpo

N θ (O
θ

0,θ̂
) = {F}

3. and for any time ξ ≤ θ̂, in absence of any observation,
the diagnosis result is different from F :

DRN θ (Oθ
0,ξ) 6= {F}

Proof: (1) and (2) have a similar proof. Based on Propo-
sition 2 we calculate the set of legal traces up to given time
ξ. However some configurations include events that are ex-

ecuted after the time θobs1 or θ̂. Since the faults are unpre-
dictable the consideration of some events that can be executed
after the time θobs1 or θ̂ does not change the diagnosis result
w.r.t. the detection of faults that for sure happened. (3) is
proved straightforwardly by the assumption that the faults are
unpredictable. ✷

Remark 1 Obviously by imposing the inequality that all the
events in a configuration have execution times smaller than

θobs1 or θ̂ allows one to derive exactly the diagnosis result
by removing the events that can be executed after the time

θobs1 respectively θ̂. However this is not efficient for practical
calculations especially when the frequency of observations is
high. Notice also that calculations in advance are not fully
developed, thus it may be that an event that is considered ex-
ecuted after θobs1 might not be executed since an event that is
successor of the observed event can pre-empt its execution.

In what follows we present two methods to derive the so-
lution set of the characteristic system of a configuration. The
first method is based on the ELCP and derives the entire so-
lution set as a union of faces of a polyhedron that satisfy the
cross-complementarity condition [10].

The second method is based on constraint propagation and
derives for a configuration C a set of | EC |-hyperboxes s.t.
the union of the subsets of solutions that are circumscribed by
the | EC |-hyperboxes is a cover of the entire solution set.

5 The method based on ELCP

The ELCP is defined as follows (see [10]). Given A ∈
IRw×z , G ∈ IRq×z , c ∈ IRw, d ∈ IRq , and m index sets
ψ1, . . . , ψm ⊆ {1, . . . , w}, find x ∈ IRz such that

Ax ≥ c, Gx = d (2)
m∑

j=1

∏

i∈ψj

(Ax− c)i = 0 . (3)

Condition (3) can be interpreted as follows. Since Ax ≥ c,
all the terms in (3) are nonnegative. Hence, (3) is equivalent
to

∏
i∈ψj

(Ax − c)i = 0 for j = 1, . . . ,m. So we could

say that each set ψj corresponds to a group of inequalities in
Ax ≥ c, and that in each group at least one inequality should
hold with equality. In [10] we have developed an algorithm
to find all solutions of an ELCP. This algorithm yields a de-
scription of the complete solution set of an ELCP by finite
points, generators for extreme rays, and a basis for the linear
subspace associated with the maximal affine subspace of the
solution set of the ELCP.

Let us now explain how (max,+) equations of the form

max
i∈J

(θi) + L ≤ θ ≤ max
i∈J

(θi) + U (4)

can be recast as an ELCP. First we introduce a dummy vari-
able γ = maxi∈J θi. Then (4) reduces to

γ + L ≤ θ ≤ γ + U , (5)

which already fits the ELCP format. Let us now look at the
equation γ = maxi∈J θi. This can be recast as

γ ≥ θi for all i ∈ J , (6)

where for at least one index i ∈ J equality should hold, i.e.,
∏

i∈J

(γ − θi) = 0 . (7)

Clearly, equations (5)–(7) constitute an ELCP.
Thus KCθ can be treated as an ELCP. First we derive the

polyhedron that provides the set of solution for the system of
linear (in)equalities given by 2. The solution set of the ELCP
is obtained as a union of faces of a polyhedron that satisfy the
cross-complementarity condition [10].

6 The method based on constraint

propagation

Before formally presenting the second algorithm we intro-
duce first the definition of a time interval configuration.

A time interval configuration C(I) is an untimed configu-
ration C ∈ C endowed with time intervals for the execution
of the events within the configuration. I is a vector of dimen-
sion | EC | that comprises for each event e ∈ EC the time
interval I(e) in which the event e is assumed executed.

Definition 9 Given the observation Oθ
1 and a configuration

C ∈ C(Oθ
1) we have that the time interval configuration

C(I) is legal if for any event ei (∀ei ∈ EC) and for any
execution time θei of the event ei (∀θei ∈ I(ei)) there ex-
ist execution times for all the other events within the config-
uration (∃θej ∈ I(ej) for all ej ∈ EC \ {ei}) s.t. Θ =
(θe1 , . . . , θei , . . . θe|EC |

) is a solution of the characteristic

system KCθ (Θ ∈ Sol(KCθ )).



Given a hyperbox Iν ⊆ I denote by [Lν(e), Uν(e)] the
execution time interval for the event e. Then for a conflicting
event ĕ denote by Lν(ĕ) = maxe′∈••ĕ(Lν(e

′)) + Usĕ and
Uν(ĕ) = maxe′∈••ĕ(Uν(e

′)) + Usĕ the earliest respectively
the latest time when ĕ is forced to fire. We have that.

Proposition 3 C(Iν) is a legal time interval configuration if
the following conditions hold true:

1. Iν ⊆ Ĩ such that Lν(e) ≤ maxe′∈••e(Lν(e
′)) +Use and

Uν(e) ≥ maxe′∈••e(Uν(e
′)) + Lse

2. ∀ĕ ∈ ĔC , ∃e ∈ EC s.t. e♯1ĕ and

Lν(e) ≤ L̆ν(ĕ) and Uν(e) ≤ Ŭν(ĕ).

3. θobs1 = θeo for eo ∈ EC , φ(eo) = l(obs1)

4. ∀e ∈ •CUT (C) ⇒ Uν(e) ≤ θobs1

5. ∀e ∈ ENABLED(C) ⇒
maxe′∈••e(Lν(e

′)) + Use ≥ θobs1 .

Proof: The proof is lengthy and is omitted. ✷

In the following we present an algorithm that derives a
set of | EC |-hyperboxes, {Iν | ν ∈ V} (V the set of in-
dexes) s.t. for each | EC |-hyperbox Iν , C(Iν) is a le-
gal time interval configuration and the union of the subsets
{Solν(KCθ ) | ν ∈ V} that are circumscribed by Iν is a cover
of the entire solution set Sol(KCθ ), i.e.

⋃
ν∈V Solν(KCθ ) =

Sol(KCθ ), where Solν(KCθ ) = Sol(KCθ ) ∩ Iν .

The idea behind developing the algorithm that we propose

is as follows. First we calculate the hyperbox Ĩ that circum-

scribes Sol(K̃Cθ ). Then we should impose the timing con-
straints imposed by the conditions 2− 5 in Proposition 3. We
have three kinds of constraints. Denote by Kconf , K′

obs, and
K′′
obs the set of constraints imposed by the set of conflicting

events (condition (2)), the equality constraint required by the
observation of the label lobs1 (condition (3)), and respectively
the set of constraints that require that the time configuration
is complete w.r.t. the time θobs1 (none of the concurrent parts
of the process are left behind in time).

Consider a constraint κe on the time interval Ĩ(e) =

[L̃(e), Ũ(e)] of an event e ∈ EC where:

κe :=
{
I ′(e) = [L′(e), U ′(e)] | L′(e) > L̃(e) or U ′(e) < Ũ(e)

}

The set of solutions of K̃Cθ that satisfy κe, denoted

Sol(K̃Cθ ∧κe), is obtained propagating the constraint κe for-
ward to its successors and backwards to its predecessors:

- forward propagation: for all eυ ∈ e••:

L′(eυ) = max(L̃(e) + Lseυ , L̃(eυ)) and

U ′(eυ) = min(Ũ(e) + Useυ , Ũ(eυ))

- backward propagation:

i) for all eυ ∈ ••e:

U ′(eυ) = min(Ũ(e)− Lse, Ũ(eυ))

ii) for each eυ ∈ ••e s.t. L̃(e)− Use > Ũ(eυ)
consider a different case ν ∈ V ′:

ii.1) L′
ν(eυ) = L̃(e)− Use

ii.2) for all eι ∈ ••e, eι 6= eυ : L′
ν(eι) = L̃(eι).
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Figure 3:

The backward propagation of a constraint κe may require
to split an | EC |-hyperbox considering different cases. No-
tice that the number of cases is not bigger than the number of
concurrent predecessor events of the event e to whom the con-
straint κe is applied. For each hyperbox Iν′ , ν′ ∈ V ′ the set
of constraints is updated since in general it may be that new
constraints appear while some of the previous constraints are
satisfied. If a constraint cannot be imposed the case is aborted
while if the set of constraints is empty the algorithm returns
an hyperbox that circumscribes a subset of solutions of KCθ .

The constraint propagation algorithm works as follows:

1. first step is to impose the constraints of kind K′
obs and

K′′
obs (required by the received observation)

2. the second step is to impose for each | EC |-hyperbox
that results after step 1, the set of constraints Kconf .
E.g. for Iν consider that ∃ ĕ ∈ EC s.t. condition 2
in Proposition 3 is not satisfied. Then for each e ∈ EC
s.t. e♯1ĕ consider a different case and impose a con-
straint κe := {L′

ν′(e) = Lν′(ĕ)} if Lν′(ĕ) ≤ Lν′(e) or
κĕ = {U ′

ν′(ĕ) = Uν(e)} if Uν′(ĕ) ≤ Uν′(e).

3. an arbitrary constraint κe or κĕ is selected and then it
is imposed backwards. If new constraints appear on
the time intervals of the predecessor events of e or ĕ
then one of these constraints is selected and it is im-
posed further backwards until a decision is achieved.
Then constraints are propagated forward for the | EC |-
hyperboxes that are not aborted. The maximum number
of different cases that result propagating recursively a
constraint backwards is smaller than the size of maxi-
mum set of concurrent events in the configuration

4. a decision is achieved for each case in finite time since
the corner points of each | EC |-hyperbox are rational
numbers and each constraint that is applied either re-
duces one edge of the | EC |-hyperbox or returns suc-
cess/abort.

Example 2 Consider for the configuration C displayed in
Fig. 3 that the first observation is received at the time 13
and consider the case when e4 is the event that was observed.
Let κ′e4 = {θe4 = 13}. κ′4 is propagated backwards and
a new constraint κ′e3 appears where κ′′e3 = {Ie4 = [5, 9]}.
κ′e3 is propagated backwards but no new constraints appears.
Then e10 is required to be executed after θe4 = 13, i.e.
κ′′e10 = {θ10 ∈ [13, 17]}. κ′′e10 is propagated backwards and



a constraint κe9 appears where κ′′e9 = {Ie9 = [4, 8]}. κ′′e9 is
propagated backwards and no new constraint appears.

Then the timing constraints required by the conflicting
events ĕ1 and ĕ12 are satisfied. What is left is the conflicting
event ĕ6. We have that e3♯ĕ6 and e9♯ĕ6 and I(e3) = [5, 9],
I(e9) = [4, 8], and I(ĕ6) = [3, 7].

We have two cases. First consider e3♯ĕ6. We have κĕ6 ={
L′
e6

= 5
}

and κe3 =
{
U ′
e3

= 7
}

. κĕ6 is propagated back-

wards and we have two cases: either I1(e5) = [2, 5] and
I1(e8) = [1, 4] or I2(e5) = [1, 5] and I2(e8) = [2, 4].
κe3 =

{
U ′
e3

= 7
}

does not produce new constraints. We ob-
tain two hyperboxes and if we consider the case when e9♯ĕ6
we obtain in a similar way another two hyperboxes.

7 The on-line diagnosis

In the previous sections we have presented the plant diagnosis
up to the first observation or in absence of any observation up
to the first discarding time. Then the on-line diagnosis is per-
formed calculating the plant behavior up to a new discarding
time.

Theorem 2 Given a TPN model 〈N θ,Mθ
0 〉 we have that:

1. when an observable event is executed:
DRN θ (Oθ

n) = {F} ⇔ DRpo

N θ (O
θ
n) = {F}

2. for θ̂ the first discarding time after the time when the nth

observed event is reported:
DRN θ (Oθ

n,θ̂
) = {F} ⇔ DRpo

N θ (O
θ

n,θ̂
) = {F}

3. and in absence of any observation, the diagnosis result
w.r.t. the detection of the faults that for sure happened
calculated any time in between the last observed event

and the discarding time is constant, i.e. ∀ξ ∈ [θobsn , θ̂):
DRN θ (Oθ

n,ξ) = {F} ⇔ DRpo

N θ (O
θ
n) = {F}.

Proof: The proof is similar to the proof of Theorem 1. ✷

8 Final remarks and future work

We have derived in this paper on-line algorithms for the di-
agnosis of TPN models. The plant behavior is derived up to
a discarding time, i.e. up to a time when in absence of any
observation one can discard untimed support traces because
they are not consistent with the plant behavior. The analysis
is based on partial orders and it requires to derive the solution
set of systems of (max,+)-linear inequalities.

We have presented two algorithms to derive the entire solu-
tion set, one based on the ELCP and the second one based on
constraint propagation. Both algorithms are NP-hard prob-
lems. Beside the number of events, the number of conflict-
ing events, and the maximum number of predecessors respec-
tively successors of a node in a configuration, the computa-
tional complexity of both methods strongly depends on the
structure of the system.

However there are a few reasons that allow us to claim that
the two methods are computationally more efficient than the
ones ([1], [5]) presented in the literature. Comparing with
the method based on the state class graph computation [5]

our methods have the advantage that not all the interleav-
ing of the concurrent events are considered. Moreover the

computational complexity depends in our case on the size
of the largest subnet that contains unobservable transitions
whereas the computation complexity in [5] depends on the
size of the entire net. The algorithm in [1] solves a system
of (max,+)-inequalities enumerating all the cases for each
max-term. This combinatorial approach is known in the lit-
erature to be computational less efficient than the ELCP.

Finally notice that for the above example the ELCP pro-
vides 8 subsets while constraint satisfaction only finds 4 sub-
sets. The reason is that each face of a polyhedron that satis-
fies a cross-complementarity condition provides a legal time
interval configuration but the converse is not true. The subset
of solutions that is circumscribed by the hyperbox of a time
interval configuration may be obtained as a union of faces of
a polyhedron that satisfy a cross-complementarity condition.

However the set of hyperboxes obtained running the al-
gorithm based on constraint propagation does not allow one
to calculate the minimum and maximum time separation be-
tween the execution of two events unless a further refinement
of the calculations is performed.

We plan to extend the methodology for a distributed setting
where the strong assumptions considered in [6] to be relaxed.
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