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A hybrid MPC approach to the design of a

Smart adaptive cruise controller

Daniele Corona and Mircea Lazar and Bart De Schutter and Maurice Heemels

Abstract— In this paper we investigate the possibility
of applying the hybrid Model Predictive Control (MPC)
framework to solve a control problem regarding tracking
of a moving vehicle. The study originates from the
design of an adaptive cruise controller (ACC) of a Smart
car, that aims to closely follow a reference trajectory
transmitted by a leading vehicle. The physical behavior
of the Smart and the constraints arising from the
specifications related to safety and security issues make
the hybrid MPC framework suitable for this task. An
adaptation of the terminal cost and constraint set MPC
approach, which is commonly used for fixed set-point
regulation, is employed in order to achieve good tracking
of a time-varying reference trajectory. The simulation
results indicate the effectiveness of the developed hybrid
MPC algorithm and the industrial feasibility with respect
to on-line computation restrictions.

I. INTRODUCTION

PieceWise Affine (PWA) systems are a class of

hybrid systems that received an increased attention

in the recent years from researchers active in many

fields. PWA systems are equivalent, under certain mild

assumptions [8], with several other relevant classes

of hybrid systems, such as Mixed Logical Dynamical

systems (MLD) [2], max-min-plus-scaling systems [5]

or linear complementarity systems [15]. They also

arise from the linear spline approximation of nonlin-

earities [14].

The application of several control techniques devel-

oped for linear or smooth non-linear systems to control

hybrid systems is prohibited by the presence of inte-

ger variables, which yield complex numerical prob-

lems. Nevertheless, a considerable number of control

methods were proposed in the literature. The results

obtained by Bemporad and Morari in [2] showed that,

under general conditions, a Model Predictive Control

(MPC) based approach can be successfully used to

control hybrid systems, by solving on-line a mixed

integer optimization problem. In other approaches the
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control law may also be obtained off-line (see for in-

stance [4]) by means of solving a parameterized mixed

integer (linear or quadratic) programming problem,

or computed via a max-min-plus-scaling [5] formu-

lation. Properties like robustness [9], [11] or stability

[12] were also investigated. The usual approach for

guaranteeing stability in MPC, with respect to a fixed

equilibrium (set-point) is the so-called terminal cost

and constraint set method, e.g. see the survey [13] for

an overview. This method uses the value function of

the MPC cost as a candidate Lyapunov function for the

closed-loop system and achieves stability via a partic-

ular terminal cost and an additional constraint on the

terminal state, i.e. the predicted state at the end of the

prediction horizon. In this paper we design an on-line

hybrid MPC controller applied to a tracking problem.

This study was motivated by the design of an ACC

for an ordinary road vehicle (a Smart), whose target

is to follow as good as possible a leading vehicle, in a

highway environment. In order to meet realistic condi-

tions several constraints on kinematic and dynamical

entities are introduced, fulfilling safety, comfort and

environmental issues. An adaptation of the terminal

cost and constraint set method is employed with the

purpose of achieving good tracking performance of

a time-varying reference trajectory. The adaptation

consists in using a time-varying terminal constraint

set, which is calculated on-line as the Minkowski

sum of a known set (computed off-line) and a future

element of the reference trajectory, corresponding to

the length of the prediction horizon.

The paper is organized as follows. We first describe

the application and the corresponding constrained

optimal control problem. This is transformed into a

minimization problem with a mixed integer objective

function. Then we present the procedure used to

construct the terminal constraint set for the tracking

problem. We show simulation results, illustrating the

effectiveness of the methodology w.r.t. tracking and

real-time performance.

II. MODEL AND CONTROL PROBLEM DESCRIPTION

Physical model of the Smart. In this section we

describe the model of the experimental set-up that

will be used in this paper. The aim of an Adap-

tive Cruise Controller (ACC) is to ensure a minimal

separation between two vehicles, with one of the
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Fig. 1. (a) ACC set-up, position x1 and reference η1, and (b) nonlinear to PWA approximation.

TABLE I

Definitions and values of the entries of equation (1).

m Mass of vehicle 800 kg
c Viscous coefficient 0.5 kg/m
µ Coulomb friction coefficient (dry asphalt) 0.01
b Traction force 3700 N
g Gravity acceleration 9.8 m/s2

vehicles following the other. We assume that the front

vehicle communicates its speed and position1 to the

rear vehicle, which has to track them as good as

possible (see Figure 1.a). Hence, for the control design

purpose, only the dynamics of the rear vehicle can

be considered. The differential equation for positive

velocity of the rear vehicle is:

ms̈(t) + cṡ2(t) + µmg = bu(t) (1)

where s(t) is the position and bu(t) is the traction

force, proportional to the normalized throttle/brake

position u(t), considered as an input. The dissipa-

tive term cṡ2(t) + µmg consists, respectively, of the

air drag and the ground-tire static friction. Braking

will be simulated by applying a negative throttle.

Numerical values are listed in Table I. A state-space

representation, x = [s, ṡ]T (position and velocity), is:

ẋ(t) = f(x(t))+Bu(t), with f(x) = [x2,−cx2
2/m−

µg]T and B = [0, b/m]T.

A least squares approximation (Figure 1.b) in

[0, x2,max] of the nonlinear friction curve V (x2) =
cx2

2 leads to a PWA system, i.e.

{
ẋ(t) = A1x(t) + F1 + B1u(t), x2(t) < α
ẋ(t) = A2x(t) + F2 + B2u(t), x2(t) ≥ α,

(2)

where the matrices Ai,Fi,Bi, i = 1, 2, are derived

using the data shown in Figure 1.b2 and Table I. A

mode by mode discrete-time state-space representation

(sampling time T = 1s, zero order hold) of (2) is

1These can be measured with lasers and GPS.
2For simplicity we only consider one breakpoint, i.e. a PWA

system consisting of two operating modes. A finer approximation
is also possible.

given by

x(k + 1) = Aix(k) +Biu(k) + Fi, (3)

i = 1, 2 and the switching logics as in (2),

with A1 =

[
1 0.97
0 0.99

]
, A2 =

[
1 0.98
0 0.96

]
,

B1 = [2.31, 4.61]T, B2 = [2.28, 4.54]T, F1 =
−[0.05, 0.10]T and F2 = [0.22, 0.44]T.

Constraints. Safety, comfort and economy or envi-

ronmental issues, as well as limitations on the model,

constrain the behavior of the system. We consider

limitations on the position, velocity, acceleration and

jerk, and on the control input u(k). More specifically,

we have

x1(k) ≤ η1(k) + dsafe
x2,min ≤ x2(k) ≤ x2,max

adecT ≤ x2(k + 1)− x2(k) ≤ aaccT
|x2(k + 1)− 2x2(k) + x2(k − 1)| ≤ ξT 2,

(4)

for all k. The above equations express the operative

range of the speed3, the maximum tolerated over-

shoot dsafe of the position of the leading vehicle

(see Figure 1.a), bounds on acceleration and jerk

for comfort or security specifications. An additional

non-operational constraint on the position4, x1,min ≤
x1(k) ≤ x1,max, is necessary to obtain a valid MLD

model of the system, see the next section for details.

We also consider limitations on the control input:

|u(k)| ≤ umax

|u(k + 1)− u(k)| ≤ ∆u.
(5)

Numerical values are listed in Table II.

III. CONTROL PROBLEM: A HYBRID MPC

APPROACH

Given the PWA model of the rear vehicle we

design the control action u(k) to feed the engine/brake

actuators, in order to satisfy (4), (5) and to track the

front vehicle state η. We assume that at each sample

step k a set of Np predictions of the future reference

3A lower bound on x2 validates the ground-tire friction
model [7].

4This is not restrictive, as in the considered MPC set-up one can
always reset the origin of the position measurements.
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TABLE II

Values of the constraints.

x1,min Minimum position 0 m
x1,max Maximum position 2000 m
x2,min Minimum velocity 5.0 m/s
x2,max Maximum velocity 37.5 m/s
dsafe Tracking tolerance 5.0 m
aacc Comfort acceleration 2.5 m/s2

adec Comfort deceleration -1 m/s2

ξ Comfort jerk 2.0 m/s3

umax Maximum throttle/brake 1
∆u Maximum throttle/brake variation 0.2
α Switching velocity 18.75 m/s

state of the front vehicle are received by the rear

vehicle5. Moreover, the rear vehicle measures with a

suitable level of precision its current state x(k) and

keeps track of the previous control input u(k−1) and

state x(k− 1). In other words, at time k the on-board

computer of the Smart calculates the action u(k) on

the basis of on-line and past measurements ϑ(k) =
[u(k − 1), x(k − 1)T, x(k)T, η(k + 1)T, . . . , η(k +
Np)

T]T, commonly denoted as the parameter vector.

A possible approach to the computation of the

control action u(k) under the given constraints and the

on-line measurements is the hybrid MPC framework.

This method has proved to be very efficient (see [2],

[9], [12] to cite a few), in terms of trade-off between

targeting good performances and dealing with strong

model uncertainties and tight constraints, in several

real-time applications.

To formulate the problem in a hybrid MPC frame-

work we need to perform the following steps. First,

we provide an equivalent MLD form [2] of the PWA

model (3) subject to the constraints (4) and (5). The

resulting MLD system will be used as the prediction

model by the MPC algorithm. The MLD modeling

framework is an alternative way to represent PWA

models (see [2]) by means of auxiliary binary vari-

ables. Then we formally describe the MPC set-up and

the corresponding constrained optimization problem.

The MLD model is needed because it allows the

conversion of the MPC optimization problem into a

mixed integer linear programming (MILP) problem

(an ℓ1-norm based MPC cost is employed).

PWA to MLD conversion. The PWA system (3) is

transformed into an MLD system by the introduction

of a binary variable δ(k) [2]. The value of δ(k) equals

0 when the active mode in (3) is system 1 and δ(k) =
1 when the active mode in (3) is system 2. Hence the

new model of the system is:

x(k + 1) = A1x(k) + Lv(k) + F1, (6)

5This set-up requires the knowledge of the future reference vector,
which is available in the case of prescheduled trajectories, or it may
be predicted via reliable distribution models.

where L = [A2−A1|B2−B1|F2−F1|B1] and v(k) =
[z(k)T, y(k), δ(k), u(k)]T (with z(k) = x(k)δ(k),
y(k) = u(k)δ(k), δ(k) ∈ {0, 1}) is the auxiliary

mixed logical vector. To get rid of nonlinearity of

variables z(k), y(k) we introduce the constraints [2]:

xminδ(k) ≤ z(k) ≤ xmaxδ(k)
−xmax(1− δ(k)) ≤ z(k)− x(k) ≤ −xmin(1− δ(k))

|y(k)| ≤ umaxδ(k)
|y(k)− u(k)| ≤ umax(1− δ(k)).

(7)

The switching condition leads to the constraints:

−δ(k)(vmin − α) ≤ x2(k)− vmin

δ(k)(α− vmax) ≤ −x2(k) + α.
(8)

Optimal control problem. The control signal u(k)
is calculated by solving a constrained finite time

optimal control problem in a receding horizon fashion.

Consider now the following constrained optimization

problem.

Problem 1: Let Np ≥ 1 be given and Q,QNp
, R be

assigned matrices of appropriate dimensions and full-

column rank. Let ϑ(k) be the vector of parameters

given at time k. We define the problem

min
ũ(Np)(k)

{
J(ϑ(k), ũ(Np)(k)) ,

F (ε(k +Np)) +

Np−1∑

j=0

L(ε(k + j), u(k + j))
}
,

(9)

subject to (4)-(8), where ε(k+j) = x(k+j)−η(k+j)
is the tracking error and ũ(Np)(k) = [u(k), . . . , u(k+
Np−1)] is the sequence of Np control inputs. We de-

fine F (ε(k+Np)) , ||QNP
ε(k +Np)||1 and L(ε(k+

j), u(k + j)) , ||Qε(k + j)||1 + ||Ru(k + j)||1. �

Suppose that Problem 1 is feasible and let ũ
(Np)
opt (k)

denote its optimal solution. Then, the control action

u∗(k) ,
(
ũ
(Np)
opt (k)

)
1

(i.e. the first element of the vec-

tor u
(Np)
opt (k)) is applied to the nonlinear model (1), in a

receding horizon manner. Next, the set of parameters

ϑ(k + 1) is updated at time step k + 1 and, a new

optimal control problem is solved to obtain the new

control action u∗(k + 1).

A shorter control horizon Nc < Np may also

be used, i.e., u(k + j) = u(k + Nc − 1), j =
Nc, . . . , Np−1. This choice has the general advantage

of reducing the number of variables and providing a

smoother solution. Here we only consider the case

Np = Nc. The choice of the ℓ1-norm is a valid

trade-off between the complexity of the optimization

problem and the quality of the solution. It allows

the use of MILP solvers [1], [6], [10], more reliable

than mixed integer quadratic programming solvers,

and gives better performance than the one obtained

via the ℓ∞-norm [4].
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At each time step k, Problem 1 can be converted

into a MILP problem of the form

J∗(ϑ(k)) = min
ṽ(Np)

c′ ṽ(Np)

s.t. Eṽ(Np) ≤ G+ E0ϑ(k),
(10)

which can be tackled using efficient solvers like

Cplex.

IV. A TERMINAL CONSTRAINT SET APPROACH TO

TRACKING

In general, the MPC control law computed as de-

scribed in the previous section is not necessarily guar-

anteed to achieve asymptotic stability of the closed-

loop error dynamics ε, not even in the case when

η(k) = xe for all k (xe denotes an equilibrium of

the prediction model). For fixed-point regulation, a

possible solution to guarantee stability is to use a

particular terminal cost and to introduce a terminal

constraint set in Problem 1 (see [13] for details). By

using a terminal cost and constraint set in a time-

varying reference tracking context, we propose in what

follows a heuristic solution.

First, we follow off-line the usual steps performed

for computing the terminal cost and constraint set in

the case of a fixed setpoint. Let haux : Rn → R
m with

haux(0) = 0 be an auxiliary state feedback control

law, which is commonly employed in terminal cost

and constraint set MPC [13]. In the PWA setting

of system (3) we take this state feedback piecewise

linear (PWL), i.e. haux(x) := K1x when x2 < α and

haux(x) := K2x when x2 ≥ α, K1,2 ∈ R
m×n. Then,

we require that the terminal cost and the auxiliary

feedback controller haux satisfy

F ((Aj +BjKj)x+ Fj)− F (x) + L(x,Kjx) ≤ 0,
(11)

for all x and all j = 1, 2. The terminal constraint

set XNp
is taken as a positively invariant set [3] for

system (3) in closed-loop with haux.

Recently, a method for finding a solution to the

above inequality for ℓ∞-norm based costs F and

L was presented in [12]. Note that although the

method of [12] is presented for the ℓ∞-norm case,

in fact, it can be applied to MPC cost functions

defined using any p-norm, including the ℓ1-norm. By

applying the method of [12] we have obtained the

terminal cost matrix QNp
=

[
4.58 0.45
5.14 4.15

]
and the

feedback gains K1 =
[
−0.2417 −0.3294

]
, K2 =[

−0.2245 −0.3176
]
, which satisfy the condition

(11) for the stage cost matrices Q = diag[0.8, 0.8]
and R = 0.01, any x and j = 1, 2. The sublevel sets

of the calculated terminal cost F (x) = ‖QNP
x‖1 are

λ-contractive sets [12] and hence, positively invariant

sets for system (3) in closed-loop with haux.
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Fig. 2. Positively invariant set, used as end point constraint,
centered on the last point of the predicted reference trajec-
tory.

Next, let X̃Np
be the maximal sublevel set of F

contained in the set of states where the local PWL

control law haux is admissible, i.e. it satisfies the

imposed state and input constraints (see Figure 2).

Note that the set X̃Np
is a common positively invariant

set for both dynamics 1 and 2 of system (3) in closed-

loop with haux, due to the fact that F is a common ℓ1-

norm based (local) Lyapunov function for this closed-

loop system.

The idea is to compute the terminal constraint

set on-line as XNp
(k) = {η(k + NP )} ⊕ X̃Np

,
where ⊕ denotes the Minkowski sum of sets and

η(k + NP ) is known before hand, and to add the

terminal constraint x(k+NP ) ∈ XNp
(k) to Problem 1.

This results in a time-varying terminal constraint set,

which changes along with the reference trajectory, see

Figure 4. Although the reformulation of Problem 1

with the terminal cost and the terminal constraint set

computed as described above does not necessarily

guarantee asymptotic stability of the closed-loop error

dynamics ε, the good tracking performance obtained

in the simulations encourage us to further investigate

the convergence properties of the hybrid MPC set-up

developed for tracking.

V. SIMULATION RESULTS

We present the simulation results, obtained with the

numerical values of the model given in Section II,

and the terminal cost and constraint set calculated in

Section IV. The equivalent MLD form of system (3)

is used as the prediction model, and the control input

is applied to the continuous-time nonlinear system (1).

For the considered trajectory and initial conditions, a

prediction horizon of Np = 19 was required to attain

feasibility of the corresponding MPC optimization

problem. The simulations have been carried out in

Matlab 7, on the OS Linux 2.4.22, INTEL

pentium 4, 3GHz processor. The MILP optimiza-

4
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tions were performed with ILOG Cplex in TOMLAB

v5.1.

The initial values of the parameters collected in

the vector ϑ are u(0) = 0, x(0) = [0, 5]T and

x(−1) = [−5, 5.3]T. The constraints are collected in

Table II. The duration of the simulation is t = 33 s.

The tracking of the trajectory, the control input and the

variation of the control input are depicted in Figure 3.

Additionally we report in Figure 4 a detail of the

simulation that shows how the open-loop evolution

of the predicted model enters the terminal set after

Np = 19 time samples. This figure also shows

how the terminal constraint set is updated on-line

by simply centering it into the last element of the

predicted reference trajectory. In Figure 5 we show

that acceleration and jerk meet the given constraints.

The mismatch between the hybrid prediction model

and the nonlinear plant causes minor violations of the

nominal constraint. This can be avoided by setting

the constraint thresholds within a robust calculated

margin. In Figure 6 we plot the on-line computational

time history, which shows that the required calcula-

tions are always carried out well within the duration

of the imposed sampling period (T = 1 s), which is a

necessary condition in all real-time applications.

VI. CONCLUSIONS

We have studied the problem of designing an adap-

tive cruise controller for a Smart. The number of

constraints that arose from the realistic case study

have led us to consider an MPC framework. The PWA

prediction model of the system enabled us to cast the

control problem in a MILP formulation. An adaptation

of the terminal cost and constraint set method has

been employed to obtain a hybrid MPC scheme with

good tracking performance. The successful simulation

results, regarding both tracking and computational

complexity, encourage us to pursue the theoretical

aspects related to the convergence properties of the

hybrid MPC set-up for tracking as well as the real-

time implementation on a Smart car.
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