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Model Predictive Control for Ramp Metering combined with Extended

Kalman Filter-based Traffic State Estimation

Tom Bellemans, Bart De Schutter, Geert Wets and Bart De Moor

Abstract— Ramp metering is a dynamic traffic control mea-
sure that has proven to be very effective. There are several
methods to determine appropriate ramp metering signals for
a given traffic situation. In this paper, a framework consisting
of model predictive control (MPC) for ramp metering, com-
bined with extended Kalman filter-based (EKF) traffic state
estimation is presented. Based on traffic measurements at a
limited number of locations, the EKF is able to provide the
MPC ramp metering controller with estimations of the traffic
states in the motorway segments of the motorway stretch under
control. By using the same traffic flow model in the EKF as in
the MPC prediction model, some important model parameters
of the MPC prediction model can be estimated and be fed
directly to the MPC controller. This functionality enables the
MPC prediction model to track changes in the traffic system
(e.g. due to weather conditions, incidents, etc.). The presented
EKF-MPC controller for ramp metering is simulated for a case
study on the E17 motorway Ghent–Antwerp in Belgium.

Index Terms— Traffic flow control, ramp metering, model
predictive control (MPC), extended Kalman filter (EKF)

I. INTRODUCTION

O
NE of the strategies that is used in dynamic traffic

control is traffic signal control to regulate access to

motorways or main roads, which is also known as ramp

metering. In this paper, model predictive control (MPC) [1]

is discussed as a means to determine the control signals for

ramp metering set-ups. Since the MPC framework repeatedly

uses a prediction model, the initial states of the prediction

model need to be determined. As most of the research

on traffic state estimation in the past has been based on

(extended) Kalman filtering techniques [2], [3], this paper

proposes an extended Kalman filtering (EKF) approach to

address the estimation of the initial traffic states of the

prediction model.

This paper is organized as follows. First, the general

framework of MPC-based ramp metering combined with

EKF is presented in Section II. In Section III, the dif-

ferent components of MPC-based ramp metering control

are discussed. In Section IV, the EKF is discussed and

it is shown how the EKF can be applied to estimate the

traffic states and some parameters of the MPC prediction

model. In the last section, the new EKF-MPC ramp metering
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controller is simulated for a real-life situation on the E17

motorway Ghent–Antwerp in Belgium in order to investigate

its performance.

II. FRAMEWORK

The heart of the framework presented in this paper is

the MPC-based ramp metering controller shown in Figure

1. In order to compute the optimal future metering rates,

the MPC controller starts with the current traffic state in

the network and predicts the future traffic states using the

prediction model. Hence, the MPC controller needs to know

the initial traffic states in the network to be able to run

the prediction model. Since there are in general far more

traffic states in the prediction model than there are traffic

measurements available, not all traffic states are measured

directly.

This problem of missing state information can be over-

come by applying an EKF-based traffic state estimation. The

available real-life traffic measurements are fed to the EKF,

which computes the most probable values of the traffic states

in the network. The metering rates, which are applied to the

real-life situation are also taken into account by the EKF

during the traffic state estimation (Figure 1). The EKF is

discussed in more detail in Section IV.

The MPC controller uses the predicted initial traffic states

to compute the control signal and apply it to the real-life

traffic system. A detailed discussion of the MPC framework

and of the prediction model is presented in Section III.

If the model parameters of the MPC prediction model are

not updated regularly, a misfit between the behavior of the

real-life network and the traffic prediction model can occur.

If this misfit becomes too large, it results in a degraded

performance of the MPC ramp metering controller. In the

framework presented in this paper, the EKF is not only

used to estimate the traffic states but it is also used to

track changes of the most important model parameters of

the prediction model.

The framework shown in Figure 1 is an iterative frame-

work where the whole process is repeated at regular time

intervals. Indeed, each time new traffic measurements are

available, the traffic state estimation is repeated.

III. MODEL PREDICTIVE CONTROL APPROACH TO RAMP

METERING

A. Model predictive control

This section describes how model predictive control

(MPC) can be applied to ramp metering (see also [4]). The
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Fig. 1. Schematic representation of an EKF-MPC ramp metering controller.
The EKF uses traffic measurements, which are provided at a rate ∆Tmeas

and provides the MPC controller with estimates of the initial traffic states
and with estimates of the model parameters. The rate at which the control
signal is updated is ∆Tctrl.

main ingredients of MPC are that it is an on-line control ap-

proach in which a model is used to predict the future behavior

of the system for a given input sequence and in which a cost

criterion is optimized subject to constraints on the inputs and

outputs. In addition, MPC uses a receding horizon strategy

[1]. In a receding horizon framework, a prediction horizon

Np is defined and at each sample step k the metering rates

for the time period [k∆Tctrl, (k+Np)∆Tctrl) are determined

by minimizing an objective function over this period. The

controller time step ∆Tctrl is the rate at which the control

signals are updated. During the optimization, the objective

function, which will be discussed in detail in Section III-D, is

evaluated based on a prediction of the future traffic behavior

of the studied traffic system. The future traffic behavior is

simulated using a traffic prediction model. An example of

such a model is discussed in Section III-C.

In order to reduce the computational complexity of the

optimization, the control horizon Nc (Nc ≤ Np) is defined.

The metering rate r(k) is only allowed to change during the

period [k∆Tctrl, (k+Nc)∆Tctrl), after which it is considered

to remain constant. In a receding horizon framework, only

the first calculated metering rate is applied to the ramp

metering set-up. Once this metering rate is implemented,

the state of the traffic in the studied area is updated using

measurements, and the whole process starts all over again.

B. Ramp metering

A ramp metering set-up consists of a traffic signal that

is placed at the on-ramp of a motorway and that controls

the rate at which vehicles can enter the motorway using the

on-ramp. In this paper a discrete-time controller that has the

metering rate as control parameter is used. The metering rate

is defined as follows [5]:

ro(k) =
qmax,o(k)

Qcap,o
, (1)

where k is the sample step, o is the on-ramp index, qmax,o(k)
is the maximal number of cars allowed to enter the motorway

via on-ramp o during the period corresponding to sample step

k, and Qcap,o is the capacity of on-ramp o.

When the traffic density on the motorway tends to exceed

the critical density, the ramp metering set-up can limit the

inflow of vehicles onto the motorway in order to keep the

traffic density below the critical density, thus avoiding traffic

breakdown and congestion [6]. Note that whenever the traffic

demand is larger than the number of cars that is allowed to

enter the motorway, a waiting queue of vehicles is formed

at the on-ramp. Hence, a trade-off exists between reducing

congestion on the motorway and keeping the queue length

at the on-ramp below a certain level.

C. Motorway traffic flow model

During the optimization of the metering rates over the

prediction horizon, the controller uses a traffic prediction

model. It is important to note that the choice of the traffic

prediction model is not imposed by the MPC framework

but by considerations such as accuracy and computational

complexity of the model. In this section the METANET

traffic flow model that will be used in the simulations for

the case study discussed in Section V is presented.

The METANET model [7] is a discrete second-order

macroscopic traffic flow model that represents a traffic

network as a directed graph with links corresponding to

motorway stretches. Each link has uniform characteristics

and is subdivided in segments.

The state of segment i of link m is characterized by the

traffic density ρm,i(l) (veh/lane/km), the mean speed vm,i(l)
(km/h), and the traffic volume or flow qm,i(l) (veh/h), where

the counter l corresponds to the time instant t = l∆Tsim,

and where ∆Tsim is the time step used for the simulation of

the traffic model.

The simulation time step ∆Tsim of the traffic simulation

model will in general be different from the control time step

∆Tctrl and from the measurement time step ∆Tmeas. In order

to emphasize this difference, the simulation step counter is

denoted by l and the control sample counter by k. Since

the measurement time step ∆Tmeas is chosen equal to the

control time step ∆Tctrl in the simulations in Section V, the

measurement sample counter is also denoted by k.

The model equations that describe the evolution of the

flow, speed and density can be written down for every

segment of the motorway. The first equation expresses the

conservation of vehicles:

ρm,i(l+1) = ρm,i(l)+
∆Tsim

nmlm,i

[qin,m,i(l)−qout,m,i(l)], (2)

where ρm,i(l) is the traffic density in segment i of link m

at simulation step l, qin,m,i(l) is the inflow into the segment

during the time interval [l∆Tsim, (l + 1)∆Tsim), qout,m,i(l)
is the outflow of the segment during the same time interval,

and nm and lm,i are respectively the number of lanes in link

m and the length of segment i of link m.



The average speed in segment i of link m at simulation

step l + 1 is given by:

vm,i(l + 1) = vm,i(l) +
∆Tsim

τm

[

V [ρm,i(l)]− vm,i(l)
]

+
∆Tsim

lm,i

vm,i(l)
[

vm,i−1(l)− vm,i(l)
]

−
νm∆Tsim[ρm,i+1(l)− ρm,i(l)]

τmlm,i[ρm,i(l) + κm]
+ ξvm,i(l) , (3)

where τm, νm, and κm are link model parameters that need

to be fitted to traffic data. The average equilibrium speed in a

segment V [ρm,i(l)] is given by an empirical expression [8]:

V [ρm,i(l)] = vfree,m exp

(

−
1

am

(

ρm,i(l)

ρcrit,m

)am
)

, (4)

where vfree,m is the free flow speed of the link, ρcrit,m is

the critical density of the link and am is a model parameter.

In case a stochastic model is used as in Section IV, ξvm,i(l)
is the noise on the state vm,i(l). If a deterministic model is

needed, ξvm,i(l) = 0 for all m, i and l.

The traffic flow qm,i(l) in segment i of link m can be

expressed in terms of the traffic density and the average speed

in the segment:

qm,i(l) = ρm,i(l)vm,i(l)nm + ξ
q
m,i(l) , (5)

where ξ
q
m,i(l) is the noise on the state qm,i(l) in case of a

stochastic model and ξ
q
m,i(l) = 0 for all m, i and l in case

of a deterministic model.

The splitting rate βo(l) at an off-ramp o is defined as the

fraction of the total traffic flow that uses the off-ramp.

When the traffic demand Do(l) at on-ramp o exceeds the

service rate qon,o(l) of the on-ramp, a queue is formed. The

evolution of the queue length wo(l) at on-ramp o is given

by:

wm(l + 1) = wm(l) + ∆Tsim(Do(l)− qon,o(l)). (6)

The service rate of the on-ramp is the minimum of the

number of cars that want to enter and the number of cars

that can enter the motorway. This leads to the following

expression:

qon,o(l) = min

[

Do(l) +
wo(l)

∆Tsim
,

Qcap,o min

(

ro(k(l)),
ρjam,mo

− ρmo,1(l)

ρjam,mo
− ρcrit,mo

)]

, (7)

where Qcap,o is the capacity of the on-ramp (veh/h), mo

is the index of the link the on-ramp feeds into, ρjam,mo
is

the jam density of link mo and k(l) is control sample k

corresponding to simulation sample l. The service rate of

the on-ramp can be limited by the metering rate ro(k(l)).

D. Objective function

The MPC objective function assigns a cost to every

possible traffic state on the studied motorway. The objective

function used in this paper consists of the total time spent by

all vehicles in the studied area and of a term that penalizes

fluctuations of the control signal. In the receding horizon

framework this leads to the following expression:

J(k0)=

l(k0+Np)−1
∑

l=l(k0)

[

∑

(m,i)∈Im

ρm,i(l)lm,inm + αqueue

∑

o∈Io

wo(l)

]

·

∆Tsim + αvar

k0+Np−1
∑

k=k0

(

r(k)− r(k − 1)
)2

,

(8)

where Im denotes the set of all index pairs (i,m) for

motorway segments, and Io is the set of all on-ramps indices.

The parameter αqueue allows to put more or less emphasis

on the time spent by the vehicles in the on-ramp queue while

the parameter αvar determines the relative importance of the

control smoothing term.

IV. EXTENDED KALMAN FILTER FOR TRAFFIC STATE

AND MODEL PARAMETER ESTIMATION

The framework discussed in Section II requires the es-

timation of initial traffic states to be used by the MPC

traffic prediction model based on limited measurements. This

section describes the application of the EKF to estimate the

traffic states and the model parameters for the METANET

model [9].

A. The augmented state space model

By substituting the METANET model equations (4) and

(5) in (3) and (2) respectively, two independent traffic state

variables ρm,i(k) and vm,i(k) are obtained that describe

the traffic state in a motorway segment. Hence, the state

of a motorway stretch of N segments is described by a

nonlinear state space model consisting of 2N equations. For

convenience, the traffic states in the motorway segments are

grouped in a state vector x1(k), where x1,i(k) denotes the

i-th state.

At the edges of the studied motorway stretch, some

boundary variables need to be determined. These boundary

variables consist of the upstream traffic demand q0(k), the

traffic demands at the on-ramps Do(k) (if any), the splitting

rates at the off-ramps βo(k) (if any), the average speed in the

upstream segment v0(k) and the traffic density ρN+1(k) in

the motorway segment downstream of the motorway stretch.

Since the measurements of the boundary variables may be

unavailable, the boundary variables are added to the state

space model as a random walk process [9]:

x2,i(k + 1) = x2,i(k) + ξ2,i(k) , (9)

where x2,i(k) denotes the i-th boundary variable and ξ2,i(k)
denotes the random walk state noise corresponding to the

state ξ2,i(k). In an (extended) Kalman filter approach, all

noise is considered to be zero mean Gaussian white [2].

Traffic model parameters that are expected to be subject

to change over time can be incorporated in the augmented

state space model as a random walk process:

x3,i(k + 1) = x3,i(k) + ξ3,i(k) . (10)



The standard deviation of the noise ξ3,i(k) corresponding to

the state x3,i(k) determines the variability of the parameter

in time.

The available traffic measurements are subject to measure-

ment noise. This measurement noise can be accounted for

by a measurement model. For measurements of the flow this

leads to:

m
q
m,i(k) = qm,i(k) + γ

q
m,i(k)

= ρm,i(k)vm,i(k)nm + ξ
q
m,i(k) + γ

q
m,i(k) , (11)

where m
q
m,i(k) denotes the average flow measurement

in segment i of link m during the period [(k −
1)∆Tmeas, k∆Tmeas) and γ

q
m,i(k) denotes the corresponding

flow measurement noise. In a similar way, the measurements

of the average traffic speed can be modeled:

mv
m,i(k) = vm,i(k) + γv

m,i(k) , (12)

where mv
m,i(k) denotes the measurement of the average

speed and γv
m,i(k) denotes the corresponding speed mea-

surement noise.

Equations (2), (3), (4), (5), (9), (10), (11) and (12) can be

summarized in the following nonlinear state space model:

Σ(x,y, ξ, η) : x(k + 1) = f [x(k), ξ(k)]

y(k) = g[x(k), η(k)] , (13)

where x(k) is the vector with the states of the model,

consisting of the traffic states x1(k), the boundary variables

x2(k), and some important model parameters x3(k) and

where ξ(k) is the state noise vector. y(k) is the output vector

representing the measurement model for the measured traffic

flows and the measured average speeds, while η(k) is a

noise vector consisting of state noise and measurement noise

according to (11) and (12).

B. The extended Kalman filter

Given the augmented state space model Σ(x,y, ξ, η), and

assuming the noise in the vectors ξ(k) and η(k) is zero mean

Gaussian white and assuming the initial state of the system

satisfies some basic conditions [9], an estimation x̂(k+1|k)
of the next state can be found by using the EKF. The EKF

tries to minimize the covariance of the estimation error:

E{[x(k+1)− x̂(k+ 1|k)]T [x(k+1)− x̂(k+ 1|k)]} (14)

by estimating the new state x̂(k + 1|k) based on the previ-

ously predicted state x̂(k|k−1) and the measurements y(k)
according to:

x̂(k+1|k) = f [x̂(k|k−1),0]+K(k)[y(k)−g(x̂(k|k−1),0)] .

(15)

The Kalman gain matrix K(k) determines the extent to

which a difference between the measured outputs y(k) and

the predicted outputs g(x̂(k|k − 1),0) leads to a correction

of the estimation of the state in the next time step k+1. The

Kalman gain matrix for the EKF is obtained by linearizing

the nonlinear augmented state space model (13) around the

previous state x̂(k|k − 1) and solving the Riccati equation

for this linearized system [9], [2].

500m
Traffic flow

Fig. 2. Schematic representation of the stretch of the E17 motorway Ghent–
Antwerp in Belgium that is considered in the case study. The vertical dashed
lines denote the locations where measurements of the average speed and of
the traffic flow are available.

In the next section, the EKF is applied to a real-life traffic

situation where it is used to estimate the traffic states of

the motorway segments and some MPC prediction model

parameters based on a limited set of measurements.

V. CASE STUDY

In this section some simulation results of the MPC-based

ramp metering controller with EKF-based state estimation

are presented for a real-life traffic situation in Belgium. First,

the simulated motorway is presented, followed by a descrip-

tion of how the EKF was set-up for this simulation. Next,

some simulation results regarding the estimated traffic states

are presented. This section is concluded with a comparison

of three control scenarios for a case study motorway: a no-

control scenario, a scenario with MPC-based ramp metering

assuming that all the initial traffic states required by the

MPC prediction model are readily available and measured

exactly, and a scenario with an MPC-based ramp metering

controller with an EKF estimating the initial traffic states in

the motorway segments as well as some important model

parameters of the prediction model.

A. Set-up

In this paper, a stretch of approximately 9 km of the

E17 motorway Ghent–Antwerp in Belgium is considered

as a case-study (Figure 2). During the morning rush hour,

recurrent congestion occurs on the motorway stretch.

The available traffic measurements are updated every

minute (∆Tmeas = 1 min) and consist of measurements

of the traffic flow and the average speed at the locations

indicated in Figure 2.

In order to enable the assessment of the performance of

the motorway for the three scenarios that are investigated,

the real-world motorway is replaced by a METANET model

with a parameter set θrw that is considered to be an exact rep-

resentation of the real-world situation for this investigation.

The prediction model in the MPC controller is a METANET

model with a separate model parameter set θpm.

The real-world METANET simulation model (θrw) is run

for a morning rush hour (6 am to 11 am). The traffic demands

at the mainline and at the on-ramps are assumed to be

piecewise affine functions and the splitting rates are assumed

to be constant. For more details on the case-study set-up the

interested reader is referred to [10].

B. Augmented traffic state model and extended Kalman filter

for the case study

The motorway in Figure 2 is subdivided in 18 segments of

approximately 500 m length each and ∆Tsim is chosen equal



to 10 s. In order to model this motorway stretch, equations

(2), (3), (4), (5) are written down for every segment. For

segments with an on-ramp, equations (6) and (7) are added.

As discussed in Section IV-A, the state of each segment is

described by two independent state variables vm,i(k) and

ρm,i(k). This yields 36 states in x1(k).
The state vector x2(k) with the boundary variables of

the motorway stretch consists of the inflow at the mainline

q0(k), the average speed upstream of the first segment of

the mainline v0(k) and the traffic density downstream the

last segment of the mainline ρN+1(k). Additional boundary

variables in x2(k) are the traffic demands D1(k), . . . , D5(k)
at each of the on-ramps and the splitting rates β1(k), . . . ,

β4(k) for each of the off-ramps. This yields 12 states in

x2(k).
The state vector x3(k) contains the model parameters that

are estimated using the EKF. All segments in between on-

and off-ramps were grouped in links, resulting in 10 links

(Figure 2). For each link, ρcrit,m is estimated using the EKF,

which yields 10 states in x3(k). The other link parameters

were assumed to be known.

Hence, the augmented traffic state model has a state vector

x(k) with 58 states.

The output vector y(k) in (13) contains 11 flow measure-

ments and 11 accompanying average speed measurements at

the locations indicated in Figure 2. These flow and speed

measurements include measurements of the inflow and the

average speed at the entrance of the mainline. In addition,

y(k) contains the inflow measurements at the on-ramps.

Note that the queue dynamics, described by (6) are not

incorporated in the augmented state space model. This yields

an output vector y(k) with 27 outputs.

The behavior of the EKF can be tuned by choosing the

assumed standard deviation (SD) for the noise of each state

or output appropriately. The standard deviations on the state

noises were chosen as follows: SD(ξqm,i) = 100 veh/h,

SD(ξvm,i) = 11 km/h, SD(ξq0) = 10 veh/h, SD(ξv0) = 1
km/h, SD(ξρN+1) = 1.5 veh/km/lane, SD(ξDj ) = 3 veh/h

(with j = 1, . . . , 5), SD(ξβj ) = 0.001 (with j = 1, . . . , 4)

and SD(ξρcr,m) = 0.5 veh/km/lane.

The standard deviations on the measurement noise on the

outputs were chosen as follows: SD(ηqj ) = 100 veh/h and

SD(ηvj ) = 11 km/h (with j = 1, . . . , 11), SD(ηq0) = 5
veh/h, SD(ηv0) = 5 km/h and SD(ηDj ) = 5 veh/h (with j

= 1, . . . , 5).

C. Extended Kalman filter simulation results

In order to evaluate the sensitivity of the EKF to the choice

of the initial states of the augmented model, several simu-

lations were conducted with different sets of initial states.

Initial values that were tested were: 75%, 90% and 110%

of the values of the corresponding states and parameters in

the real-world model (θrw). In each case, the EKF converged

to the correct values. For the remainder of the simulations,

the initial values of the states of the augmented traffic state

model were chosen equal to 90% of their real corresponding

values.
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Fig. 3. The evolution of the density (top) and the average speed (middle) in
a link between the third on-ramp and the fourth off-ramp. The bottom figure
presents the splitting rates at the off-ramps. The solid lines represent the real-
world values, while the dashed lines represent the EKF-based estimations.

A burn-in period was implemented in the simulations in

order to allow the EKF to converge after starting up with

the initial state values [11]. The burn-in period consisted

of five times the simulated morning rush hour (25h) and

the presented simulation results are the results of the sixth

period.

Figure 3 shows the evolution of the traffic density and the

average speed in a segment located between the third on-

ramp and the fourth off-ramp. Although the traffic states of

this segment are not measured directly, there is only minimal

difference between the traffic states in the real-world (model

with parameter set θrw) and the traffic states estimated by

the EKF. The splitting rates, which are boundary values that

are not measured in this case study, are provided by the EKF

as well (Figure 3, bottom).

D. Simulation of the EKF-MPC controller for ramp metering

To conclude the case study simulation, a comparison is

made between three scenarios: a simulation without control,

a simulation with MPC-based ramp metering under the

assumption that the traffic states in the real world are all

known by the prediction model of the MPC controller and

a simulation of MPC-based ramp metering with EKF-based

state estimation.

In this paper the following tuning parameters were chosen

for the MPC-based ramp metering controller: ∆Tctrl = 1
min, a prediction horizon of 10 minutes (Np = 10), a control

horizon of 5 minutes (Nc = 5), αvar = 40 and αqueue = 1.

The tuning of these parameters is discussed in more detail in

[4]. Ramp metering was implemented at the fourth on-ramp

(Figure 2).

In order to assess the performance of the traffic operation

in each of the above scenarios, the total time spent (TTS) by

all of the vehicles on the motorway and in the queues at the

on-ramps was computed. In the case without control, the TTS



was found to be equal to 2038 veh.h. If the MPC prediction

model is fed with the exact initial traffic states of all the

segments, MPC-based ramp metering control at the fourth

on-ramp yields a TTS of 1911 veh.h. If the MPC-based

ramp metering controller is set-up in combination with an

EKF-based traffic state and MPC prediction model parameter

estimation, the TTS in the network is 1913 veh.h.

The application of the framework presented in Section

II to the case study leads to an EKF-MPC ramp metering

controller, which does not need detailed measurements of

each segment state. Indeed, in case sufficient traffic measure-

ments are available in the studied area [9], the EKF is able

to compute a state and parameter estimation for the MPC

prediction model such that the EKF-MPC ramp metering

controller performs as well as an MPC ramp metering

controller with complete knowledge of all initial states. This

allows for the real-life implementation of the EKF-MPC

ramp metering controller since in practice, only a limited

number of measurements is available.

In Figure 4, the metering rate and the queue length at the

fourth on-ramp are shown for both MPC-based controllers.

As can be observed in the upper graph, the metering rate

computed by the MPC controller with complete knowledge

of the traffic states behaves smoother than the metering

rate computed by the EKF-MPC controller. However, this

less smooth behavior hardly harms the performance of the

controller in terms of TTS. If desired, the metering rate can

be smoothed by increasing the value of αvar, which penalizes

variations in the control signal. It was found [4] that the

value of αvar can be strongly increased before the controller

performance starts to degrade.

The second graph in Figure 4 illustrates that the evolution

of the queue length is similar for both controllers and that

both controllers are able to honor the queue length constraint

of 100 vehicles.

The average speed and the traffic density vary slightly

more over time in the case of EKF-MPC ramp metering

controller (Figure 4). However, the oscillations in the traffic

state can be suppressed by increasing αvar.

VI. CONCLUSIONS

In this paper a framework in which MPC-based ramp

metering is combined with EKF-based state estimation was

presented. The EKF was used to estimate the initial traffic

states of the motorway segments in the MPC prediction

model, although not all of these states are measured in

practice. It was shown in a simulation example of a real-life

case study that the EKF is able to estimate the traffic states of

the segments with such accuracy that the performance of the

resulting EKF-MPC ramp metering controller is similar to

the performance of the MPC controller with perfect knowl-

edge of the initial traffic states. Besides the estimation of the

traffic states, the EKF approach was also used to estimate

the most important parameters of the MPC prediction model

(ρcrit,m) in order to reduce the misfit between the situation

in real-life and the MPC prediction model.
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Fig. 4. Evolution of the metering rate, the queue length, the average speed
and the traffic density in the segment at the fourth on-ramp. The solid lines
represent the simulation results for the MPC controller with exact values
of the initial states and MPC prediction model parameters, the dashed line
represents the simulation results for the MPC controller combined with
EKF-based state and parameter estimation. The dotted line represents the
no-control scenario (metering rate = 1 and queue length = 0 veh).
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