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A comparison of filter configurations for freeway traffic state estimation

A. Hegyi, D. Girimonte, R. Babuška, B. De Schutter

Abstract— We present a comparison for several filter con-
figurations for freeway traffic state estimation. Since the en-
vironmental conditions on a freeway may change over time
(e.g., changing weather conditions), parameter estimation is
also considered. We compare the performance of the extended
Kalman filter and the unscented Kalman filter for state
estimation, parameter estimation, joint estimation and dual
estimation. Furthermore, the performance is evaluated for
different detector configurations.

The main conclusions from the simulations are that (1) the
performance of the extended Kalman filter and the unscented
Kalman filter is comparable, (2) joint filtering performs signif-
icantly better than dual filtering, and (3) a larger number of
detectors results in better state estimation, but has no significant
influence on the parameter estimation error.

I. INTRODUCTION

Dynamic traffic control offers possibilities to avoid traffic

jams on freeways by making better use of the available

infrastructure. Measures such as ramp metering, dynamic

speed limits and route guidance increase the efficiency,

reliability and safety of traffic flows. The choice of the actual

control actions is typically based on the current traffic state.

However, the traffic state is usually not available or not

directly measured everywhere in the traffic network (e.g.,

density is in general not measured). The data may also be

corrupted or be unreliable because of malfunctioning or noisy

sensors (magnetic loops or cameras).

In other application areas the state of a dynamical system

is typically estimated by the Kalman filter (KF) [1] or one of

its variants, such as the extended Kalman filter (EKF) [2], the

unscented Kalman filter (UKF) [3], [4] or by particle filters

(PF) [5]. In the selection of the appropriate filter type and

the filter configuration for a given problem several design

choices are involved. The goal of this paper is to investigate

some of these choices, namely the selection of an appropriate

filter type and configuration, and the influence of detector

configurations on the performance.

These different filter configurations can be used to estimate

the state of the process, the parameters, or both. When both

the state and the parameters are estimated, two common

approaches exist, the joint filtering approach where both the

state and the parameters are considered as the states of an

augmented system and “state” estimation is performed for

the augmented state, and the dual filtering approach where

the state and the parameters are estimated in parallel by

two separate filters. It has been suggested that dual filtering
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has better convergence properties [2]. In simulations we

compare the performance of both filters, and conclude that

this suggestion is not confirmed for our case.

Another aspect that influences the performance is the avail-

ability and the number of outputs (measurement sources). In

general, the fewer outputs there are, the worse the estimate

of the state. If there are too few outputs then some states

may become unobservable, i.e., the measurements do not

carry enough information about the state. In this paper, we

also investigate the effect of different measurement loop

configurations on the performance.

Several filters in several configurations have already been

investigated in literature. In [6] an extended study is pre-

sented of estimation schemes with the EKF in the joint

filtering setting [2], [7]. This approach is evaluated for

real traffic data in [8], [9]. In [10] a PF is applied to

estimate the traffic state (speed and density) of a 4-segment

freeway stretch based on flow and speed measurements at

the boundaries of the stretch. A different approach was

developed in [11] where a mixture Kalman filter is employed

to simultaneously detect the discrete traffic state (free-flow or

congested) and track the traffic speed. While in most papers

the intended use of the estimated state is control, in [12]

queue tail and head tracking and travel time estimation is

considered as a service to drivers.

According to recent developments, the UKF is an interest-

ing alternative to the EKF for nonlinear systems, since it has

a higher accuracy [3], [4]. Furthermore in all publications

mentioned above, the EKF is used in the joint filtering

setting in which both the traffic state and the parameters are

estimated, while in [2] it is suggested that the dual filtering

setting may exhibit better convergence properties.

The contribution of this paper is the comparison of the

EKF and UKF for freeway traffic state estimation, parameter

estimation, joint and dual estimation, and the evaluation of

the performances as a function of the detector configuration.

In the remainder of the paper the different filters

will be analyzed with the freeway traffic flow model

METANET [13]. The various filters and their possible con-

figurations are discussed in Section II, and the METANET

model is explained in detail in Section III. This model is

used for the simulations in Section IV, and the results are

presented in Section V.

II. STATE ESTIMATION

In state estimation problems, the state-space representation

of the dynamical system is used. This describes the evolution

of the system state xk over time, and the measurements yk



as a function of the state1:

xk = f(xk−1,w,vk−1) (1)

yk = g(xk,w,nk) (2)

where w are the model parameters, vk is the state noise,
nk the measurement noise, and k the sample step counter.

For given parameters w these equations define a probability

density function (pdf) for the state transition p(xk|xk−1) and

for the measurement p(yk|xk).

Since the system and the measurements are stochastic,

the exact state cannot be inferred from the measurements,

only the pdf of the state p(xk|y1:k) given all measurements

y1:k from sample step 1 to k can be determined. So,

the goal of the state estimation problem is to determine

p(xk|y1:k). Although it is possible to use Bayes’ rule to

express this conditional density in terms of the state transition

pdf p(xk|xk−1), and the measurement pdf p(yk|xk), the

evaluation of it requires the evaluation of several integrals,

which is not possible (analytically) in general [5]. In prin-

ciple it is possible to evaluate these integrals numerically

(which is done, e.g., in approximate grid-based methods

where the state space is discretized [5]), but these methods

are in most cases very inefficient.

Under certain assumptions the conditional pdf p(xk|y1:k)
can be solved (or approximated) by the Kalman filter or its

extensions, such as the extended/unscented Kalman filter.

Below we give a short overview of the Kalman filter, the

extended Kalman filter and the unscented Kalman filter and

their corresponding assumptions. Note that there are other

filtering methods that are not discussed here.

A. Filter types

1) Kalman filter (KF): Given a linear system

xk = Axk−1 + vk−1

yk = Cxk + nk

with known and constant system matrices A and C. The
state noise vk−1 and measurement noise nk are both as-

sumed to be additive, and assumed to have a zero mean

Gaussian distribution. Furthermore independence between

noises at different time instants and between the state and

measurement noise is assumed: cov{vk1
,vk2

} = 0 and

cov{nk1
,nk2

} = 0 for k1 6= k2, and cov{vk1
,nk2

} = 0
for any k1 and k2.

Under these assumptions the conditional pdf p(xk|y1:k) is

also Gaussian, and the Kalman filter expresses analytically

the mean and covariance of p(xk|y1:k) [2]. The Kalman filter

is guaranteed to converge if the state noise excites all states

and the system (C,A) is observable [1].

The KF is not suitable for nonlinear systems such as the

freeway traffic, so we will not present the equations2.

1For simplicity, we do not consider inputs that may act on the system.
The extension to include inputs is straightforward.

2However, the EKF equations reduce to the Kalman filter if the system
is linear. The EKF equations are given in Table I.

TABLE I

THE EXTENDED KALMAN FILTER

I. Initialize the estimate x̂k of the state and the covariance Pxk
of

the state with:
x̂0 = E[x0],

Px0
= E[(x0 − x̂0)(x0 − x̂0)

T].

Evaluate steps II and III below for k = 1, 2, . . .
II. Time update:

x̂−
k

= f(x̂k−1,w),

P−
xk

= Ak−1Pxk−1
AT

k−1 +Rv,

where w is the parameter vector, and Rv is the covariance of the
state noise vk.

III. Measurement update:

Kk = P−
xk

CT
k(CkP

−
xk

CT
k +Rn)−1,

x̂k = x̂−
k

+Kk(yk − g(x̂−
k
,w)),

Pxk
= (I−KkCk)P

−
xk

,

where

Ak =
∂f(x,w)

∂x

∣

∣

∣

∣

x=x̂k

, Ck =
∂g(x,w)

∂x

∣

∣

∣

∣

x=x̂k

,

and Rn is the covariance of the measurement noise nk.

2) Extended Kalman filter (EKF): The assumptions for

the EKF are the same as for the Kalman filter, except that

the state and measurement functions may be nonlinear. To

solve the filtering problem, the system is linearized at the

estimated state for each k [2]. The equations of the EKF are

given in Table I.

The extended Kalman filter does not solve the estimation

problem exactly, since approximations are involved. First, the

system is linearized at the estimated state instead of the real

(but unknown) state. Second, by linearization, all pdf’s are

Gaussian, while the real pdf’s passing through the nonlinear

system is obviously non-Gaussian. The consequence of these

approximations is that convergence cannot be guaranteed.

3) Unscented Kalman filter (UKF): Contrary to the EKF,

the UKF does not use a linearization of the system and the

noises are not assumed to be Gaussian [3], [4]. To represent

the mean and the covariance of the (conditional) state pdf’s,

so-called sigma points are defined with appropriate weights

attached to each point. The sigma points and the weights

are chosen such that their weighted mean and covariance

approximate the true mean and covariance of the pdf.

The UKF approximates the mean and the covariance of

the posterior pdf with second order (Taylor) accuracy. As

the EKF operates with first order accuracy, the UKF can

be expected to have better performance and convergence

properties. Nevertheless, convergence cannot be guaranteed

for the UKF.

The equations of the UKF are given in Table II. The

main assumption here is that the state pdf can be sufficiently

described by its mean and covariance.

B. Filter configurations

These filters can be used for state estimation, parameter

estimation, or for the simultaneous estimation of the state and

the parameters. These require different filter configurations,

which are summarized below.



TABLE II

THE UNSCENTED KALMAN FILTER

I. Initialize with:

x̂0 = E[x0],P0 = E[(x0 − x̂0)(x0 − x̂0)
T], x̂a

0 = E[xa
0 ],

Pa
0 = E[(xa

0 − x̂a
0)(x

a
0 − x̂a

0)
T] = diag{P0,Pv,Pn}

where xa
k
= [xT

k
vT
k
nT
k
]T is the augmented state vector.

Evaluate steps II, III, and IV below for k = 1, 2, . . .
II. Calculate sigma points:

Xa
0,k−1 = x̂a

k−1

Xa
i,k−1 = x̂a

k−1 +
(

√

(nx + λ)Pa
k−1

)

i
, for i = 1, . . . , nx

Xa
i,k−1 = x̂a

k−1 −
(

√

(nx + λ)Pa
k−1

)

i−nx,
for i = nx, . . . , 2nx

where Xa
k

= [(Xx
k
)T (X v

k
)T (Xn

k
)T]T and

√

Pa
k−1 is a Cholesky

factor, and the design parameters selected as λ = α2(nx +κ)−nx,
1 ≥ α ≥ 10−4, κ is typically taken to equal 3− nx, and nx is the
dimension of the augmented state, and (M)i denotes the i-th column
of matrix M.

III. Time update :

Xx
i,k|k−1 = f(Xx

i,k−1,X
v
i,k−1),

x̂k|k−1 =

2nx
∑

i=0

W
(m)
i Xx

i,k|k−1,

Pk|k−1=

2nx
∑

i=0

W
(c)
i [Xx

i,k|k−1 − x̂k|k−1][X
x
i,k|k−1 − x̂k|k−1]

T,

Yi,k|k−1 = g(Xx
i,k|k−1,X

n
i,k−1),

ŷk|k−1 =

2nx
∑

i=0

W
(m)
i Yi,k|k−1.

IV. Measurement update:

Pykyk
=

2nx
∑

i=0

W
(c)
i [Yi,k|k−1 − ŷk|k−1][Yi,k|k−1 − ŷk|k−1]

T,

Pxkyk
=

2nx
∑

i=0

W
(c)
i [Xx

i,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk|k−1]
T,

Kk = Pxkyk
P−1

ykyk
,

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1),

Pk|k = Pk|k−1 −KkPykyk
KT

k,

where the weights are: W
(m)
0 = λ/(nx + λ),

W
(c)
0 = λ/(nx + λ) + (1− α2 + β),

W
(m)
i = W

(c)
i = 1/2(nx + λ), for i = 1, . . . , 2nx.

1) State tracking: The model parameters are assumed to

be known. The goal of state tracking is to determine the pdf

p(xk|y1:k) for every k.

2) Parameter tracking: The model states and measure-

ments are assumed to be known. The state-space model is

formed for the evolution of the model parameters xpar,k =
wk, which is often assumed to be a random walk with

noise vpar,k. The measurement is written as a function of

the system state xk and the model parameters xpar,k, and a

“state tracking” filter is run for xpar,k :

xpar,k = xpar,k−1 + vpar,k−1 (3)

yk = g′(xk,xpar,k,nk) (4)

3) Joint estimation: In joint estimation both the system

state and the model parameters are estimated simultaneously.

To this end, an augmented state vector is defined consisting

of both the system state and the model parameters, xaug,k =
[xT

k,x
T
par,k]

T. Based on (1)–(4) a new state-space system is

formed on which the filter is run.

4) Dual estimation: Similarly to joint estimation, in dual

estimation the system state and the model parameters are

estimated simultaneously. However, here the state system

(1)–(2) and the parameter system (3)–(4) are kept separately,

and two filters are run, one for the state estimation, and one

for the parameter estimation. For each sample step k the

result of the state estimation of the previous sample step

xk−1 is used as an input for the parameter estimator, and vice

versa, the result of the parameter estimator of the previous

sample step xpar,k−1 is used in the state estimatoras shown

in Fig. 1.

In [2] it is suggested that the dual filter has better conver-

gence properties than the joint filter.

x̂(k − 1)

x̂
−(k)

x̂(k)

y(k)

ŵ
−(k)

ŵ(k − 1) ŵ(k)

Time Update x̂

Time Update ŵ

Meas. Update x̂

Meas. Update ŵ

Fig. 1. The dual estimation scheme. The two filters use each other’s
estimation from the previous sample step.

III. TRAFFIC MODEL

A widely used traffic flow model is the METANET

model [13]. This model is suitable for filtering, since it

captures the main dynamics of traffic flows, such as free-

flow, congested flow, and the transitions between the two.

Below we present the basic equations of the METANET

model, the boundary conditions, and the measurement equa-

tions, which will be used in the simulation experiments.

A. Basic METANET model

Consider a freeway link m that is subdivided into Nm

segments, each with a length Lm and λm lanes, and a discrete

time step with length T (h). Traffic dynamics is described in

terms of the aggregated variables speed vm,i(k) (km/h), flow

qm,i(k) (veh/h), and density ρm,i(k) (veh/km/lane), where i

is the segment index.

The METANET model equations are given by the funda-

mental relationship between speed, density and flow

qm,i(k) = ρm,i(k)vm,i(k)λm , (5)

the law of conservation of vehicles

ρm,i(k + 1) = ρm,i(k)+

T

Lmλm

(qm,i−1(k)− qm,i(k)) + ξ
ρ
m,i(k) (6)

and a heuristic relationship of the speed dynamics



vm,i(k + 1) = vm,i(k) +
T

τ
(V (ρm,i(k))− vm,i(k))

+
T

Lm

vm,i(k) (vm,i−1(k)− vm,i(k))

−
ηT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ̃
+ ξvm,i(k) (7)

V (ρm,i(k)) = vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

(8)

where ξ
ρ
m,i(k), and ξvm,i(k) are random variables repre-

senting the random (unmodeled) dynamics in the speed

and density evolution3. Furthermore, vfree,m is the free-flow

speed in segment m, ρcrit,m is the critical density (the density

at or above which traffic becomes unstable), and τ , η, am, κ̃,

are model fitting parameters without direct physical meaning.

The model parameters are usually estimated off-line from

measurement data. Their sensitivity is investigated numeri-

cally in [13] and the most sensitive parameters resulted to be

vfree,m, ρcrit,m and am. These model parameters may change

due to several external conditions such as weather conditions,

percentage of trucks, light conditions, etc. This motivates the

employment of dual or joint estimation algorithms for on-line

simultaneous state and parameter estimation.

B. Boundary conditions

The variables qm,0, vm,0, ρm,N+1 are boundary variables

which incorporate the influence of upstream and downstream

segments from the considered link. Usually qm,0 and vm,0

can be measured directly, whereas in practice the density

ρm,N+1 is not measured directly and must be estimated.

Even though qm,0 and vm,0 can be measured directly, the

measurements will be corrupted by errors. Therefore we

will consider all boundary variables as extra states of the

system and we will estimate them from the measurement

data, similarly to the other state variables. This approach

is also recommended in [6]. The dynamic evolution of the

boundary variables is described by a random walk:







qm,0(k + 1)

vm,0(k + 1)

ρm,N+1(k + 1)






=







qm,0(k)

vm,0(k)

ρm,N+1(k)






+







ξ
q
m,0(k)

ξvm,0(k)

ξ
ρ
m,N+1

(k)






(9)

where ξ
q
m,0(k), ξ

v
m,0(k), ξ

ρ
m,N+1

(k) are stochastic variables.

C. Measurements

The most frequently used traffic measurement devices

typically measure speed and flow. For the segments that are

equipped with sensors the measurement equations are:

y
q
m,i(k) = qm,i(k) + n

q
m,i(k) (10)

yvm,i(k) = vm,i(k) + nv
m,i(k) (11)

where n
q
m,i(k), and nv

m,i(k) are the measurement noises for

the flow and the speed respectively.

3Although (6) is an exact relationship and therefore modeling error is not
present, we include the random variable ξρm,i(k), to allow a state filter to

correct the number of vehicles in the network when it is wrongly initialized.

D. State space representation

To bring equations (5)–(9) into the state-space rep-

resentation required by the various filters, the state

xk is defined as4 xk = [ρ1(k), . . . , ρN (k), v1(k), . . . ,
vN (k), v0(k), q0(k), ρN+1]

T, and the measurement vector yk

collects the flow and speed measurements from (10) and (11)

for the segments equipped with sensors.

IV. SIMULATION SET-UP

In the simulations, the performances of the UKF and the

EKF are compared for several filter configurations.

The link used in the simulations consists of four segments

as shown in Fig. 2. The measurements are taken at the

downstream end of a segment and consist of speed and

flow. Several detector configurations are compared where the

speed and flow detectors are placed at different locations.

0 1 2 3 4 5

Detector 0 Detector 4

Fig. 2. The 4-segment link used for the simulations. Detectors may be
placed at the boundaries of the segments.

For the evaluation of the different filter configurations

artificial data was generated. The choice to use artificial

data (opposed to real traffic data) was mainly motivated

by the fact that for artificial data the real states and pa-

rameters are known, which allows for the evaluation of

the filter performance. The data is generated by running

the METANET model with a scenario in which the most

important traffic phenomena are represented, such as traffic

jams and upstream propagating waves, and free-flow with

downstream propagating waves, and the transitions between

congestion and free-flow. The scenario has a length of 3

hours and is shown for segment 3 in the Figures 3 and 4 by

the dashed lines on the right.

To test the parameter tracking ability of the filters, the data

was generated with the following time-varying parameters:

• the free-flow speed vfree,k increases linearly from

119 km/h to 129 km/h,

• the critical density ρcrit,k varies sinusoidally around

27.4 veh/km/lane with an amplitude of 1 veh/km/lane,

• and ak, decreases linearly from 2 to 1.7.

These values used for the generation of the data are shown

in Fig. 3. The remaining parameters are given in Table III.

The measurement noise standard deviations were chosen to

be in the range of 5–10% of the typical values of the output

variables, for the traffic state variables in the range of 1–5%,

and the standard deviations of the parameters were tuned

by trial and error. Note that the parameter covariances were

used in the filters only, since for the data generations the

parameters were predefined.

4The link index m is omitted in the rest of this section assuming that all
the variables introduced hereafter refer to the same link.



TABLE III

THE PARAMETERS USED.

cov{ξρm,i(k)} = 1 (veh/km/lane)2

cov{ξvm,i(k)} = 1 (km/h)2

cov{ξvfree} = 10−2 (km/h)2

cov{ξρcrit} = 10−3 (veh/km/lane)2

cov{ξa} = 10−4 (–)

cov{nv
m,i(k)} = 10 (km/h)2

cov{nq
m,i} = 100 (veh/h)2

τ = 15.84 (s), η = 40 (km2/h), κ̃ = 5 (veh/km/lane)

To test the dependence of the state estimation performance

on the parameters, the state estimator performance is com-

pared for the case when the exact time-varying parameters

are known and for the case when only a (constant) estimate

of the parameters is available (which was taken to be the

mean over the simulation period).

The performance measure defined for the state, parameter,

dual, and joint estimators is chosen to be the root mean

square relative error:

Jx =

√

√

√

√

1

nxK

nx
∑

j=1

K
∑

k=1

(x̂j,k − xj,k)2

x2
j,k

where the vector x̂k is the quantity that is estimated (state,

parameters, or both), xk is the real value, nx is the dimension

of xk, and K is the last sample index of the simulation.

In the simulation of the UKF, it may occur that the

algorithm generates sigma points that are physically not

meaningful, such as negative densities or negative free-flow

speeds. To prevent this, upper and lower limits were imposed

on both the states and parameters. The following limits were

used, which were selected based on physical considerations:

7 (km/h) ≤ vi(k) ≤ 180 (km/h),

0 (veh/km/lane) ≤ ρi(k) ≤ 180 (veh/km/lane),

70 (km/h) ≤ vfree(k) ≤ 140 (km/h),

20 (veh/km/lane) ≤ ρcrit(k) ≤ 50 (veh/km/lane),

1 ≤ a(k) ≤ 3.

The UKF design parameters were chosen as κ = 0, α = 0.1.

V. RESULTS

The results for the case when the speed and density are

measured in all four segments are shown in Table IV. The

performance of the EKF is comparable to that of the UKF

(lower values indicate better performance). The errors of

the joint configurations are significantly lower than those of

the dual configuration. For other detector configurations, the

results were similar (not shown here). These results are not

in accordance with the suggestion in [2] that the dual filter

should have better convergence properties. The reason for the

worse performance of the dual filter could be the difference

of a few orders of magnitude between the state covariances

and the parameter covariances. Since the covariances of the

states are much larger, the joint filter will in general adapt

the state estimate more than the parameter estimate when a

TABLE IV

THE PERFORMANCE OF THE EKF AND UKF FOR DIFFERENT FILTER

TYPES WHEN ALL SEGMENTS ARE MEASURED.

filter type estimation type Jρ Jv Jpar

EKF state 0.057 0.059 -

UKF state 0.054 0.056 -

EKF parameter - - 0.027

UKF parameter - - 0.027

EKF dual 0.206 0.160 0.233

UKF dual 0.156 0.140 0.232

EKF joint 0.054 0.055 0.35

UKF joint 0.049 0.051 0.42

TABLE V

THE PERFORMANCE OF THE EKF FOR THE STATE ESTIMATION PROBLEM

KNOWN AND UNKNOWN TIME-VARYING PARAMETERS (ALL SEGMENTS

ARE MEASURED).

time-varying parameters Jρ Jv

known 0.052 0.053

unknown (average) 0.057 0.059

new measurement arrives. However, the dual filter will not

balance the adaptation according to the covariances of the

state and parameter estimates since the states are assumed

to be given for the parameter estimator, and the parameters

are given for the state estimator. See Figs. 3 and 4 for the

estimated states and parameters by the joint and dual filters.

In Table VI, the effect of different detector locations on the

performance is shown. As can be expected the estimated state

shows larger error when fewer detectors are used. However,

the parameter estimation error did not vary significantly with

the number of detectors, except when only speed or density

was measured at only one location. In the other cases, the

performances of the EKF and the UKF are comparable.

The result for the state estimation with the EKF for the

case when the time-varying parameters are exactly known,

and the case when only the (constant) average is known,

is shown in Table V. The small difference indicates that the

state estimation filter is not very sensitive to parameter errors.

This is in contrast with [6] where the result of the off-line

TABLE VI

THE PERFORMANCE OF THE EKF AND UKF FOR DIFFERENT DETECTOR

CONFIGURATIONS FOR JOINT ESTIMATION

filter type flow loop
locations

speed loop
location

Jρ Jv Jpar

EKF 1,2,3,4 1,2,3,4 0.054 0.055 0.035

UKF 1,2,3,4 1,2,3,4 0.049 0.051 0.042

EKF 1,2,3 1,2,3 0.071 0.080 0.034

UKF 1,2,3 1,2,3 0.066 0.076 0.041

EKF 2,3 2,3 0.112 0.101 0.039

UKF 2,3 2,3 0.114 0.110 0.041

EKF 3 3 0.156 0.152 0.044

UKF 3 3 0.179 0.181 0.041

EKF 3 - 0.855 0.632 0.133

UKF 3 - 3.714 0.842 0.062

EKF - 3 0.223 0.243 0.044

UKF - 3 0.811 0.630 0.061



calibration was found to be sensitive to the model parameters.

A possible reason for this is that the EKF re-estimates

the state based on the new measurements (including model

error/state noise, which can compensate for the parameter

errors), while off-line calibration does not take model errors

into account; it only minimizes the measurement error.

In general, it can be expected that the performance of

the UKF is better than that of the EKF, since it propagates

the state noise more accurately. In the results shown here,

this is only weakly confirmed: the performances are nearly

equal and in some cases the performance of the UKF is

slightly better. A result that is not shown in the tables here,

is that the UKF is dependent on the design parameters of

the algorithm, and a change to α = 1 resulted in a slightly

worse performance than that of the EKF.

VI. CONCLUSION

Several filter configurations were investigated for freeway

traffic state estimation, parameter estimation, and joint and

dual estimation. The filters were tested with artificial data

generated with the METANET traffic flow model. The main

conclusions of the simulations are:

• Although the unscented Kalman filter has advantages

that it propagates the state noise distribution with higher

precision, its performance was nearly equal (slightly

better) to that of the extended Kalman filter.

• The performance of the joint filter is better than that of

the dual filter, because the joint filter takes into account

the differences of the order of magnitude between the

covariances of the states and the parameters.

• Fewer detectors result in larger state estimation errors,

but have no effect on the parameter estimation error.

To broaden the validity of the results, in the future a

wider range of scenarios and models will be considered,

including on-ramp and off-ramp traffic, unknown turning

rates in networks and the occurrence of incidents.
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