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Stable model predictive control for constrained

max-plus-linear systems ⋆

Ion Necoara aBart De Schutter aTon J. J. van den Boom aHans Hellendoorn a

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2,

2628 CD Delft, The Netherlands

Abstract

Discrete-event systems with synchronization but no concurrency can be described by mod-

els that are “linear” in the max-plus algebra, and they are called max-plus-linear (MPL)

systems. Examples of MPL systems often arise in the context of manufacturing systems,

telecommunication networks, railway networks, parallel computing, etc. In this paper we

provide a solution to a finite-horizon model predictive control (MPC) problem for MPL

systems where it is required that the closed-loop input and state sequence satisfy a given

set of linear inequality constraints. Although the controlled system is nonlinear, by employ-

ing results from max-plus theory, we give sufficient conditions such that the optimization

problem that is performed at each step is a linear program and such that the MPC controller

guarantees a priori stability and satisfaction of the constraints. We also show how one can

use the results in this paper to compute a time-optimal controller for linearly constrained

MPL systems.

Key words: Discrete-event systems, max-plus-linear systems, input-state constraints,

model predictive control, stability, positively invariant sets.

1 Introduction

Discrete-event systems (DES) are event-driven dynamical systems (i.e. the state

transitions are initiated by events, rather than a clock) and they often arise in the

context of manufacturing systems, telecommunication networks, railway networks,

parallel computing, etc. In [1] it has been shown that a DES with synchronization

but no concurrency can be modeled by a max-plus-linear (MPL) system. Although
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several authors have already developed methods to compute optimal controllers for

MPL systems [1,2,6,13,14,19–21], the literature on stabilizing controllers for this

class of systems subject to input and state constraints is relatively sparse. Some of

the contributions that partially address this problem include model predictive con-

trol (MPC) [6, 21] and optimal control based on residuation theory [3, 16, 19, 20].

In [16] an optimal controller is derived based on residuation theory that guaran-

tees also stability. However, the residuation-based approach does not cope with

input and state constraints. Moreover, the methods presented in [3,19] cannot solve

tracking problems corresponding to the case when the actual outputs do not neces-

sarily have to occur before the due dates although these situations are often met in

many practical applications. Some of these drawbacks are removed in [16, 20, 21]

by using respectively projection, an adaptive approach, or MPC. The main differ-

ence between our approach and the papers mentioned previously is that in those

papers the optimal controller does not satisfy both requirements, i.e. a priori sta-

bility of the closed-loop system and that the closed-loop input and state sequence

should satisfy a given set of linear inequality constraints.

MPC [15, 18] is one of the most applied advanced control technique in the process

industry. MPC provides many attractive features: it is an easy-to-tune method, it

is applicable to multi-variable systems, it can handle constraints, and it is capable

of tracking pre-scheduled reference signals. The essence of MPC is to determine a

control profile that optimizes a cost criterion over a prediction window and then to

apply this control profile until new process measurements become available when

the whole procedure is repeated. Feedback is incorporated by using those measure-

ments to update the optimization problem for the next step.

This paper considers the problem of designing a stabilizing MPC scheme for the

class of MPL systems where the input and state sequence must satisfy a given set

of linear inequality constraints. We follow here a similar finite-horizon MPC ap-

proach as the one developed in [15, 18] for conventional, time-driven systems and

that uses a terminal set and a terminal cost as basic ingredients. However, the ex-

tension from classical time-driven systems to discrete-event MPL systems is not

trivial since many concepts from system theory have to be adapted adequately. One

of the key results of the paper is to provide sufficient conditions based on a termi-

nal set and a terminal cost approach such that one can compute an MPC controller

that guarantees a priori stability and constraint satisfaction for the closed-loop MPL

system.

The paper is organized as follows. In Section 2 we introduce some notation, and we

give a short introduction to MPL systems. We also formulate the control problem

that we are going to solve in this paper. We also introduce the notion of (Lya-

punov) stability for MPL systems. Moreover, we will see that under some addi-

tional assumptions Lyapunov stability of the closed-loop MPC also implies stabil-

ity in terms of boundedness of the buffer levels as defined in [1, 23]. In Section 3

we define the concept of positively invariant set for MPL systems and we derive the

main properties of such a set. We show that under mild assumptions the maximal

positively invariant set is a polyhedron. In Section 4 we propose an MPC scheme

based on a terminal set-terminal cost approach that guarantees a priori stability of
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the closed-loop system and also that the input-state constraints are not violated.

We show that for certain nonnegative piecewise affine stage costs the optimization

problem that is solved at each step can be recast as a linear program. In Section 5

we formulate the time-optimal control problem for constrained MPL systems in a

slightly different fashion from the classical one and we provide a solution based on

linear programming. Next, in Section 6 we illustrate the method proposed in this

paper with an example. Section 7 concludes the paper.

2 Preliminaries

2.1 Notation

We define ε := −∞, Rε := R ∪ {ε}, and R+ = {x ∈ R : x ≥ 0}. The max-plus-

algebraic (MPA) addition (⊕) and multiplication (⊗) are defined as [1, 12]

x⊕ y := max{x, y}, x⊗ y := x+ y for x, y ∈ Rε.

For matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε one can extend the definition as follows:

(A⊕B)ij := Aij ⊕Bij , (A⊗ C)ij :=
n⊕

k=1

Aik ⊗ Ckj for all i, j.

Define the matrix ε as the MPA zero matrix of appropriate dimension: εij := ε
for all i, j. The matrix E is the MPA identity matrix: Eii := 0 for all i and Eij := ε
for all i, j with i 6= j. Let k be a nonnegative integer. Then for any square matrix

A the kth MPA power of A is defined by A⊗
k
:= A ⊗ A ⊗ · · · ⊗ A (k times) if

k > 0, and A⊗
0
= E. We define A∗, whenever it exists, by A∗ := limk→∞ E ⊕

A ⊕ · · · ⊕ A⊗
k
. For a given matrix H , by H ≥ 0 we mean that H is nonnegative,

i.e. Hij ≥ 0 for all i, j. We use N to denote the set of nonnegative integers. For

k, l ∈ N with k ≤ l, N[k,l] represents the set {k, k+1, · · · , l}. A matrix Γ ∈ R
n×m
ε

is row-finite if for any row i ∈ N[1,n], we have maxj∈N[1,m]
Γij 6= ε; a column-

finite matrix is defined similarly. Throughout the paper ‖ · ‖∞ represents the ∞-

norm (‖x‖∞ := maxi∈N[1,n]
|xi| for x ∈ R

n). Let d∞ denote the metric on R
n

induced by the ∞-norm. Given a closed set X ⊆ R
n and a point x ∈ R

n then

d∞(x,X ) := miny∈X ‖x − y‖∞ denotes the distance from x to X . For ∈ R
n
ε we

define ‖x‖⊕ := max{x1, . . . , xn}. For a vector x ∈ R
n
ε and a scalar λ ∈ Rε, we

define λ⊗ x := x+ λ := [x1 + λ . . . xn + λ]T (for a matrix A, λ⊗A := A+ λ is

defined similarly).

We denote with x⊕′ y := min{x, y} and x⊗′ y := x+ y (the operations ⊗ and ⊗′

differ only in that (−∞) ⊗ (+∞) := −∞, while (−∞) ⊗′ (+∞) := +∞). The

matrix multiplication and addition for (⊕′,⊗′) are defined similarly as for (⊕,⊗).
It is known (see e.g. [1, Chapter 4]) that the following inequalities hold for any
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matrix A and vectors x, y of appropriate dimensions over Rε:

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y , (1)

where we consider the partial order defined by the positive orthant cone (i.e. x ≤ y
if and only if (iff) xi ≤ yi for all i). The following results are well-known in max-

plus algebra [1, Section 3.2.3]:

Result 2.1 (i) The inequality A ⊗ x ≤ b in max-algebra has the largest solution

given by xopt = (−AT )⊗′b (by the largest solution we mean that for all x satisfying

A⊗ x ≤ b we have x ≤ xopt).

(ii) The equation x = A ⊗ x ⊕ b has x = A∗ ⊗ b as a solution. If Aij < 0 for all

i, j, then this solution is unique. ♦

In this paper we use both max-plus and conventional algebra. Therefore, we will

always write the operators “⊕” and “⊗” explicitly. The operators “+” and “·” de-

note the conventional summation and multiplication operators (the “·” operator is

usually omitted, except for mixed equations where we want to stress that a mul-

tiplication in conventional algebra is involved). We also use mixed properties like

distributivity of + with respect to ⊕, i.e., x + (y ⊕ z) = (x + y) ⊕ (x + z) for

x, y, z,∈ Rε, and mixed associativity, i.e., x+(y⊗z) = (x+y)⊗z) for x, y, z,∈ Rε,

which imply that

(A+ λ)⊗ (x+ µ) = (A⊗ x) + (λ+ µ) (2)

for all scalars λ, µ and a vector x and matrix A of appropriate dimensions.

2.2 Max-plus-linear systems

An MPL system is defined as follows [1, 4, 12]:

xsys(k) := Asys ⊗ xsys(k − 1)⊕Bsys ⊗ usys(k), ysys(k) := Csys ⊗ xsys(k) , (3)

where xsys(k) ∈ R
n
ε represents the state, usys(k) ∈ R

m
ε is the input, ysys(k) ∈ R

p
ε

is the output and where Asys ∈ R
n×n
ε , Bsys ∈ R

n×m
ε , Csys ∈ R

p×n
ε are the system

matrices 1 . In the context of DES k is an event counter while usys, xsys and ysys are

dates (feeding times, processing times and finishing times, respectively). Note that

for MPL systems at the kth event the feeding time usys(k) has direct influence on

the processing time xsys(k) (see also Section 6). The monotonicity property of the

max operator (1) implies that the MPL systems are a particular class of monotone

systems.

1 We may assume without loss of generality that Bsys is column-finite and Csys is row-

finite, since otherwise the corresponding inputs and outputs can be eliminated from the

description model.
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The scalar λ ∈ Rε is an MPA eigenvalue of the matrix A if there exists a vector

v ∈ R
n
ε with at least one finite entry such that Asys⊗v = λ⊗v [1,12]. In the sequel

we use λmax to denote the maximal MPA eigenvalue of Asys. In practice, the finite

entries of the system matrix Asys will always be nonnegative as they correspond to

processing and transportation times. This implies that in practice λmax ≥ 0.

In this paper we consider a reference signal (i.e. a due date signal) that the output

should track of the form:

rsys(k) := yt + kρ , (4)

with yt ∈ R
p. In practice, such a reference signal is often used as it corresponds to a

regular and smooth due date signal with a constant output rate. In a manufacturing

context, this would correspond to situation with a steady production rate where we

have to produce a new product every ρ time units. Note that we can also consider a

more general signal rsys such that there exists a finite positive integer Kr for which

rsys(k) = yt + kρ for all k ≥ Kr. The subsequent derivations will then remain the

same.

Since time is not scalable, typical constraints for an MPL system (3) are

ysys(k) ≤ rsys(k) + hyu , (usys)i(k)− (usys)j(k) ≤ hu
ij , (5)

(xsys)i(k)− (usys)j(k) ≤ hxu
ij , usys(k + 1)− usys(k) ≥ 0 . (6)

The constraint usys(k+1)−usys(k) ≥ 0 appears in the context of DES where the in-

put represents times, so the input sequence should be nondecreasing. Moreover, the

constraints (usys)i(k)−(xsys)j(k) ≤ hux
ij are implicitly defined by the MPL system.

Note that, in general, the constraint (xsys)i(k) − (xsys)j(k) ≤ hx
ij can be satisfied

(with some conservativeness) if a constraint of the type (xsys)i(k) − (usys)j(k) ≤
hxu
ij is fulfilled. The constraints (5)–(6) can be generalized as follows:

Hsysxsys(k) +Gsysusys(k) ≤ hsys(k) (7)

usys(k + 1)− usys(k) ≥ 0 , (8)

where Hsys ≥ 0. Later on we will propose methods to compute input signals that

satisfy these constraints. Note that the constraint (8) does not fit the form (7).

However, we can include (8) into (7) as follows: we introduce a new state vector

x̄sys(k) = [xT
sys(k) zT (k)]T with the dynamics

x̄sys(k) = Āsys ⊗ x̄sys(k − 1)⊕ B̄sys ⊗ usys(k) (9)

ȳsys(k) = C̄sys ⊗ x̄sys(k) (10)

and the extra constraint:

[0 Im]x̄sys(k) ≤ usys(k) , (11)
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with Āsys =






Asys Bsys

ε E




, B̄sys =






Bsys

E




 and C̄sys = [Csys ε], and where

Im denotes the m × m identity matrix in conventional algebra. Given the initial

conditions xsys(0) and usys(0) for the system (3) with constraints (7)–(8) and the

initial conditions x̄sys(0) = [xsys(0)
T usys(0)

T ]T and usys(0) for the new system

(9)–(10) with the extra constraint (11) then by applying the same input signal usys

(which should satisfy (11)) to both systems we obtain that the first n components of

x̄sys(k) coincide with xsys(k) and the last m components of x̄sys(k) coincide with

usys(k). Note that the constraints (7)–(8) corresponding to the MPL system (3) can

be written for the new system (9)–(10) as [Hsys 0]x̄sys(k) +Gsysusys(k) ≤ hsys(k)
and the extra constraint (11) as [0 Im]x̄sys(k)− Imusys(k) ≤ 0, i.e.

H̄sysx̄sys(k) + Ḡsysusys(k) ≤ h̄sys(k) , (12)

where H̄sys =






Hsys 0

0 Im




, Ḡsys =






Gsys

−Im




 and h̄sys(k) =






hsys(k)

0




. Note that the

property Hsys ≥ 0 is preserved under the previous transformation, i.e. H̄sys ≥ 0.

Recall that the maximal MPA eigenvalue λmax of Asys is in practice always nonneg-

ative. Since Āsys has an upper diagonal block structure and since the MPA eigen-

value of E is 0, the maximal MPA eigenvalue of Āsys is given by max{λmax, 0} =
λmax. Since the maximal MPA eigenvalue of the system matrix Āsys characterizes

the maximal throughput of the system (9)–(10) (see e.g. [1, Section 3.7]) and since

through the term B̄sys ⊗ usys it is possible to create delays in the starting times of

activities, we should choose a slope ρ for the reference signal such that ρ ≥ λmax.

Since λmax is finite in practice, there exists an MPA invertible matrix P ∈ R
n×n
ε

such that the matrix Ā = P⊗
−1

⊗ Āsys ⊗ P satisfies Āij ≤ λmax for all i, j ∈ N[1,n]

(see 2 e.g. [5, 8, 17]), where P⊗
−1

denotes the inverse of the matrix P in the max-

plus algebra, i.e. P⊗
−1

⊗P = P⊗P⊗
−1

= E. We make the following change of co-

ordinates: x̄(k) = P⊗
−1

⊗x̄sys(k). We denote with B̄ = P⊗
−1

⊗B̄sys, C̄ = C̄sys⊗P
and ȳ(k) = ȳsys(k), ū(k) = usys(k) . In the new coordinates the system (9)–(10)

becomes:

x̄(k) = Ā⊗ x̄(k − 1)⊕ B̄ ⊗ ū(k), ȳ(k) = C̄ ⊗ x̄(k) .

If we define x(k) = x̄(k)− ρk, u(k) = ū(k)− ρk, y(k) = ȳ(k)− ρk, A = Ā− ρ
(i.e. we subtract in the conventional algebra from all entries of x̄, ū, ȳ and Ā the val-

2 In [17, Lemma 3] and [8, Lemma 4.8] the matrix P is constructed as follows for an

irreducible matrix Asys: Pii = vi for all i and Pij = ε for all i, with i 6= j, where v is

an MPA eigenvector of Asys. We then have
(
P⊗

−1)

ii
= −vi for all i and

(
P⊗

−1)

ij
= ε

for all i, with i 6= j. The extension to a reducible matrix Asys can be done in a similar

fashion (see e.g. [5, Section C.2]). Note that in fact these results are related to similar

results in the theory of Hadamard products of nonnegative matrices in conventional algebra

(see [7, Theorem 7]).
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ues ρk and ρ, respectively) and B = B̄, C = C̄, we obtain the normalized system

corresponding to the original system (3). Using (2) it follows that this normalized

system can be written as

x(k) = A⊗ x(k − 1)⊕ B ⊗ u(k) (13)

y(k) = C ⊗ x(k) . (14)

Input and output signals determined for this normalized system can be transformed

into signals for the original system by adding the signal ρk (i.e., by applying the

inverse transformation). Note that A < 0 if ρ > λmax, and that the maximal MPA

eigenvalue of A is λmax − ρ < 0. In the sequel we will consider only MPL systems

in the form (13)–(14), with A ∈ R
n×n
ε , B ∈ R

n×m
ε , C ∈ R

p×n
ε and where the matrix

A satisfies A < 0 if ρ > λmax. We frequently use the short-hand notation

f(x, u) := A⊗ x⊕B ⊗ u .

The MPL system (13)–(14) is controllable iff each component of the state can be

made arbitrarily large by applying an appropriate controller to the system initially at

rest. It follows (see Theorem 3.2 in [9]) that the system is controllable iff the matrix

Γ := [B A⊗B · · ·A⊗
n−1

⊗B] is row-finite (note that this definition is equivalent

to the one given in [1,9] where the system is controllable if all states are connected

to some input). Similarly, the system (13)–(14) is observable iff each state is con-

nected to some output, i.e. the matrix Ω := [CT (C ⊗ A)T · · · (C ⊗ A⊗
n−1

)T ]T is

column-finite (see Theorem 3.9 in [9]) .

For the MPL system (13)–(14) the following key assumptions will be used through-

out the paper:

A1: We assume that ρ > λmax ≥ 0 (and thus A < 0), and that the system is con-

trollable and observable.

A2: There exist matrices H ≥ 0, G and a vector h of appropriate dimensions such

that the constraints (12) can be written for the normalized system (13)–(14) as

Hx(k) +Gu(k) ≤ h . (15)

The conditions from Assumptions A1–A2 are quite weak and are usually met in

applications. Note that ρ can be chosen arbitrarily close to λmax (see also the pre-

vious discussion). Moreover, since we consider constraints of the form (5)–(6), it

follows that h does not depend on k.

In the new coordinates the output should be regulated to the desired target yt. From

Assumption A1 it follows that Aij < 0 for all i, j ∈ N[1,n] and so (see [1, Theorem

3.20] or [12, Section 2.3])

A∗ = E ⊕ A⊕ · · · ⊕ A⊗
n−1

. (16)

For any finite vector u there exists a state equilibrium x, i.e. x = A ⊗ x ⊕ B ⊗ u,

given by x = A∗ ⊗ B ⊗ u. Note that x is unique (according to Result 2.1 (ii)) and
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finite (since Γ is row-finite). We associate to yt the largest equilibrium pair (xe, ue)
satisfying 3 C ⊗ xe ≤ yt. From the previous discussion it follows that (xe, ue) is

given by

ue := (−(C ⊗ A∗ ⊗ B))T ⊗′ yt, xe := A∗ ⊗B ⊗ ue . (17)

Since we may assume that Bsys is column-finite and Csys is row-finite (see Footnote

1) and since the system is controllable and observable by Assumption A1, every

input of the system will influence some output, which implies that C ⊗ A∗ ⊗ B
is column-finite. As a consequence, ue is finite. Hence, xe is also finite. Note that

in fact (xe, ue) depends on the reference signal, but for the sake of simplicity of

notation we drop this dependence.

2.3 Stability for MPL systems

In this section we adopt the formulation developed in [21, 23, 24] to the study of

stability of MPL systems. We use the symbol u to denote a control sequence 4 and

φ(k; x, u) to denote the state solution of (13) at event step k when the initial state is

x at event step 0 and the control sequence u is applied. By definition φ(0; x, u) := x.

For a state feedback law κ : Rn → R
m applied to (13)–(14) we study the stability

properties of the closed-loop system:

x(k) = A⊗ x(k − 1)⊕ B ⊗ κ(x(k − 1)), y(k) = C ⊗ x(k) . (18)

Similarly to the notation φ(k; x, u), we denote by φ(k; x, κ) the state solution of

(18) at step k when the initial state is x at event step 0 and the feedback law κ is

applied.

Definition 2.2 The set Xe ⊆ R
n is called positively invariant for (18) if for all

x ∈ Xe it follows that φ(k; x, κ) ∈ Xe for all k ≥ 0. ♦

Definition 2.3 A closed positively invariant set Xe is called stable (Lyapunov sta-

ble as it is sometimes called) for the system (18) if for any θ > 0 there exists a

δ > 0 such that for all x satisfying d∞(x,Xe) < δ we have d∞(φ(k; x, κ), Xe) < θ
for all k ≥ 0.

If in addition to being stable, we have d∞(φ(k; x, κ), Xe) → 0 as k → ∞ for all

x ∈ X , then Xe is asymptotically stable for (18). In this case X is called a region

of attraction. ♦

3 By the largest pair we mean that any other feasible equilibrium pair (x, u) satisfies x ≤
xe, u ≤ ue. Moreover, we impose C⊗xe ≤ yt since in applications it is preferable that the

products be delivered in time once the steady (periodic) behavior is reached.
4 A control sequence u is either a signal u = u1, u2, · · · or a stacked vector u =
[uT1 · · ·uTN ]T , for some finite integer N .
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Remark 2.4 In [1, 21, 23] stability for DES is defined in terms of boundedness of

the buffer levels (i.e. there exists a finite M > 0 such that at any time the number

of parts in any buffer is less than M ). Let us note that our definition of stability

implies in particular that for any x ∈ R
n, ‖φ(k; x, κ) − xe‖∞ is bounded for all

k ≥ 0, whenever the set Xe is bounded. For a controllable and observable system

the boundedness of the state trajectory implies also boundedness of the output and

of the input, i.e. ‖y(k)−yt‖∞ and ‖u(k)−ue‖∞ are bounded as well for all k ≥ 0.

For the original system boundedness of the state trajectory implies ‖xsys(k)−ρk‖∞,

‖ysys(k) − ρk‖∞ and ‖usys(k) − ρk‖∞ are bounded for all k ≥ 0 which leads to

boundedness of the buffer levels 5 (see also [23, Definition 3.5]). ♦

We now introduce the so-called K-functions: a function α : R+ → R+ is said to be

a K-function if (i) α(0) = 0, (ii) α(z) > 0 for all z > 0, and (iii) α is strictly in-

creasing. The following theorem gives sufficient conditions for asymptotic stability

of the system (18).

Theorem 2.5 Let X be a positively invariant set for the system (18). Let V : X →
R be a function and let Xe be a closed subset of the interior of X such that

(i) V (x) = 0 for all x ∈ Xe, and V is continuous on a neighborhood of Xe, and

(ii) V (x) ≥ α(d∞(x,Xe)) for all x ∈ X , where α is a K-function, and

(iii) V (f(x, κ(x))) − V (x) ≤ −β(d∞(x,Xe)) for all x ∈ X , where β is a K-

function.

Then, Xe is asymptotically stable for (18) with a region of attraction X .

PROOF. In [21, Corollary C.1.4] a proof is given for the case Xe = {xe}, i.e.

the equilibrium point. However, following exactly the same steps, this proof can be

extended to the case of a general set Xe (see e.g. [23, Theorem 3.2] or [24, Theorem

7.9]). ♦

We formulate now the control problem that we solve in the sequel:

Problem definition: Given the MPL system (13)–(14), a reference signal of the

form (4), and constraints of the form (15), design a state feedback law κ(x) such

that the closed-loop system is asymptotically stable with respect to some closed

positively invariant set Xe and such that the constraints (15) are satisfied. ♦

5 See [22] for a formal proof.
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3 Positively invariant sets for MPL systems

3.1 Properties of the equilibrium pair (xe, ue)

Recall that the equilibrium pair (xe, ue) defined in (17) is finite. Furthermore, we as-

sume that (xe, ue) belongs to the set described by the constraints (15), i.e. {(x, u) :
Hx+Gu ≤ h} (if this is not the case we determine (xe, ue) as the optimal solution

of the following linear programming problem: maxu{
∑m

i=1 ui : x = A∗ ⊗ B ⊗
u, C ⊗ x ≤ yt, Hx+Gu ≤ h}). We now consider the following MPL system:

x(k) = A⊗ x(k − 1)⊕B ⊗ ue, y(k) = C ⊗ x(k) . (19)

First let us show that Xe = {xe} is asymptotically stable for (19) with a region of

attraction R
n
ε . Before proving this statement let us note that from the property of

non-expansiveness (see e.g. [12, Lemma 3.10]) it follows that

‖(A⊗ x⊕ B ⊗ u)− (A⊗ y ⊕ B ⊗ v)‖∞ ≤ ‖x− y‖∞ ⊕ ‖u− v‖∞ (20)

for any matrices A ∈ R
n×n
ε and B ∈ R

n×m
ε such that [A B] is row-finite and for

any x, y ∈ R
n and u, v ∈ R

m.

Theorem 3.1 Suppose that Assumption A1 holds and the equilibrium pair (xe, ue)
is finite. Then, the set Xe = {xe} is asymptotically stable with respect to the closed-

loop system (19) with R
n as region of attraction. Moreover, the convergence to-

wards {xe} is achieved in a finite number of steps.

PROOF. Note that φ(k; x, ue) = A⊗
k
⊗ x⊕

(
⊕k

t=1A
⊗
k−t

⊗B ⊗ ue

)

. Recall that

Aij < 0 for all i, j ∈ N[1,n] (according to Assumption A1). Then it is well-known

(see e.g. [12, Section 2.3]) that for all x ∈ R
n: A⊗

k
⊗ x → ε, as k → ∞. From

(16) and (17) it follows that xe =
⊕n

t=1A
⊗
n−t

⊗ B ⊗ ue. Therefore, there exists a

finite integer k(x) ≥ n such that φ(k; x, ue) = xe for all k ≥ k(x), i.e. convergence

towards the equilibrium xe is achieved in finite number of steps. In fact, we can

even determine an upper bound for k(x). Indeed, since Aij < 0 for all i, j, then if

ℓ ≥ pn for some integers ℓ and p, it follows that (A⊗
ℓ
)ij is either equal to ε or it is

the weight of a path of length ℓ that contains at least p cycles (see [1, Chapter 2]

for appropriate definitions for path and cycle, and for an interpretation of the MPA

power A⊗
k

in terms of graphs). Note that for any cycle the weight of the cycle is

less than λmax − ρ < 0. Since (A⊗
k
⊗ x)i = maxj{(A

⊗
k
)ij + xj}, it follows that

by choosing 6 p = ⌊maxi,j
(xe)i−xj

λmax−ρ
⌋, we have A⊗

pn
⊗ x ≤ xe. Furthermore, since

Aij < 0 for all i, j, we have A⊗
pn+l

⊗ x ≤ xe for all l ∈ N. Therefore, pn is an

6 ⌊x⌋ denotes the largest integer less or equal to x.
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upper bound on k(x).

It now remains to prove that Xe = {xe} is stable. Note that xe = A⊗
k
⊗ xe ⊕

(
⊕k

t=1 A
⊗
k−t

⊗ B ⊗ ue) for all k ≥ 1. Since we assume that xe is finite, it follows

that the matrix [A⊗
k ⊕k

t=1 A
⊗
k−t

⊗ B] is row-finite for all k. Then, from (20) it

follows that

‖φ(k; x, ue)− xe‖∞ ≤ ‖x− xe‖∞ ∀ x ∈ R
n, k ≥ 0 ,

i.e. the set Xe = {xe} is stable for (19) (here we have δ = θ for Definition 2.3). ♦

3.2 Maximal invariant set O∞

We recall that by Assumptions A1–A2 we have A < 0 and H ≥ 0. We define the

input-state admissible set associated with the closed-loop system (19) subject to the

constraints (15)

O0 := {x ∈ R
n : Hx+Gue ≤ h} . (21)

We want to compute the maximal positively invariant set contained in the input-

state admissible set O0 corresponding to the closed-loop system (19). Therefore,

we define recursively the sets

Ok := {x ∈ O0 : f(x, ue) ∈ Ok−1} , (22)

for all k ≥ 1. From the definition of the set Ok and using induction it follows that

Ok ⊆ Ok−1 for all k ≥ 1. Indeed, for k = 1 the inclusion is obvious. Now let us

assume that Ok ⊆ Ok−1 and prove that this implies that Ok+1 ⊆ Ok. Using the

definition of the set Ok+1 and the induction hypothesis it follows that Ok+1 = {x ∈
O0 : f(x, ue) ∈ Ok} ⊆ {x ∈ O0 : f(x, ue) ∈ Ok−1} = Ok. Therefore, the limit

of Ok exists and we have

O∞ := lim
k→∞

Ok =
⋂

k≥0

Ok . (23)

By induction we can prove that xe ∈ Ok for all k ≥ 0 and therefore xe ∈ O∞, i.e.

O∞ is non-empty.

Proposition 3.2 Suppose that Assumption A2 holds. Then, the sets Ok are polyhe-

dra of the form

Ok = {x ∈ R
n : Hkx ≤ hk} , (24)

with Hk ≥ 0.

PROOF. For k = 0 the statement holds according to Assumption A2. Let us as-

sume that Ok−1 = {x ∈ R
n : Hk−1x ≤ hk−1} with Hk−1 ≥ 0 and prove that Ok

has a similar form. Since A⊗x⊕B⊗ue is a max expression in x and Hk−1 ≥ 0, it

11



follows that the inequality Hk−1f(x, ue) = Hk−1 · (A⊗x⊕B⊗ue) ≤ hk−1 can be

rewritten in the form H̄kx ≤ h̄k with H̄k ≥ 0. So if we define Hk = [HT
k−1 H̄T

k ]
T

and hk = [hT
k−1 h̄

T
k ]

T , then Hk ≥ 0 and Ok can be written as (24). ♦

From the previous lemma it is clear that the set O∞ is convex (it is a countable in-

tersection of polyhedral sets). We now derive conditions when O∞ is a polyhedron.

We first give a definition:

Definition 3.3 The set O∞ is finitely determined if there exists a finite positive

integer τ such that O∞ = Oτ .

Proposition 3.4 (i) If there exists a finite positive integer τ such that Oτ = Oτ+1,

then O∞ is finitely determined and it is a polyhedral set.

(ii) The set O∞ is the maximal positively invariant set for (19) contained in O0.

PROOF. (i) Let us assume that there exists a finite positive integer τ such that

Oτ = Oτ+1. It is obvious that Oτ+2 ⊆ Oτ+1. Moreover, for any x ∈ Oτ+1 it

follows that f(x, ue) ∈ Oτ = Oτ+1, i.e. x ∈ Oτ+2. In conclusion, Oτ+1 ⊆ Oτ+2

and thus Oτ+2 = Oτ+1 = Oτ . Iterating this procedure and using (23) we conclude

that O∞ = Oτ . Since Oτ is a polyhedron, it follows that O∞ is also a polyhedral

set.

(ii) Let T ⊆ O0 be a positively invariant set for (19) and let x ∈ T . Then from

the definition of a positively invariant set we have H0f(x, ue) ≤ h0. This implies

that x ∈ O1 (according to the recursion (22)). Therefore, T ⊆ O1. By iterating this

procedure we obtain that T ⊆ Ok for all k ≥ 0. In conclusion, for any positively

invariant set T for (19) it follows that T ⊆ O∞ and thus O∞ is maximal. ♦

From Proposition 3.4 it follows that if O∞ is finitely determined, then O∞ is a

polyhedron of the form O∞ = {x ∈ R
n : H∞x ≤ h∞} with H∞ ≥ 0. Now, we

give sufficient conditions under which the set O∞ is finitely determined. Note that

the recursive relation (22) can be written equivalently as

Ok = {x ∈ Ok−1 : Hφ(k; x, ue) +Gue ≤ h} , (25)

where φ(k; x, ue) can be written explicitly as φ(k; x, ue) = A⊗
k
⊗ x ⊕ A⊗

k−1
⊗

B ⊗ ue ⊕ · · · ⊕B ⊗ ue.

Theorem 3.5 Suppose that there exists a finite positive integer τ0 and a vector

a ∈ R
n such that Oτ0 ⊆ {x ∈ R

n : x ≤ a}, and that Assumption A1 holds. Then

O∞ is finitely determined.

PROOF. Since Aij < 0 for all i, j (according to Assumption A1), it follows that

12



for all x ∈ R
n: A⊗

k
⊗ x → ε as k → ∞. Moreover, for any b ∈ R

n we have

b ⊕ A ⊗ b ⊕ · · · ⊕ A⊗
k+n

⊗ b = A∗ ⊗ b for all k ≥ 0. Since xe = A∗ ⊗ B ⊗ ue

is finite, there exists a τ ≥ max{n, τ0} such that A⊗
k
⊗ a ≤ xe for all k ≥ τ . We

now have to show that Oτ = Oτ+1. Since Oτ+1 ⊆ Oτ , to complete the proof we

now show that the other inclusion is also valid, i.e. Oτ ⊆ Oτ+1.

Let x ∈ Oτ ⊆ Oτ0 ⊆ {x ∈ R
n : x ≤ a}. Then by (1) we have A⊗

τ+1
⊗ x ≤

A⊗
τ+1

⊗a ≤ xe. It follows that: H · (A⊗
τ+1

⊗x⊕A⊗
τ
⊗B⊗ue⊕· · ·⊕B⊗ue) =

H · (A⊗
τ+1

⊗ x ⊕ A∗ ⊗ B ⊗ ue) = Hxe ≤ h − Gue, i.e. x ∈ Oτ+1 and thus

Oτ ⊆ Oτ+1. ♦

Remark 3.6 It is often the case that the set O0 can be written as O0 = {x ∈ R
n :

xi ≤ a0i , for i ∈ N[1,n]}, where a0i is either a finite number or +∞ (when there are

no restrictions on xi). Then, we can prove that all the sets Ok can be written in a

similar form Ok = {x ∈ R
n : xi ≤ aki , for i ∈ N[1,n]}, where aki is either a finite

number or +∞ (so every Ok is described by at most n inequalities).

We prove this by induction. For k = 0 this statement is true. Let us assume that

Ok = {x ∈ R
n : xi ≤ aki , for i ∈ N[1,n]} and prove that Ok+1 has a similar form.

We denote with ak = [ak1 · · · a
k
n]

T . From the recursive relation (22) we have

Ok+1 = {x ∈ R
n : x ≤ ak, A⊗ x ≤ ak}

= {x ∈ R
n : x ≤ ak, x ≤ (−AT )⊗′ ak} = {x ∈ R

n : x ≤ ak+1} ,

where ak+1 = min{ak, (−AT ) ⊗′ ak} (recall that the operator ⊗′ is defined in

Section 2.1). We conclude that O∞ is described by at most n inequalities and in

fact O∞ = {x ∈ R
n : x ≤ a∞} where a∞i is either in R or equal to +∞ for any

i ∈ N[1,n]. ♦

Note that the results obtained in this section concerning the maximal positively

invariant set O∞ for the MPL system (19) are similar to the ones obtained in [10]

for conventional, time-driven linear systems.

4 Stable model predictive control for MPL systems

The main advantage of MPC is that it can accommodate constraints on inputs and

states. In this section it is assumed that the maximal positively invariant set O∞

is available and that it is a polyhedron, i.e. O∞ = {x ∈ R
n : H∞x ≤ h∞} with

H∞ ≥ 0 (according to Section 3.2).

4.1 State regulation

We first give a lemma that will be used in the sequel:
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Proposition 4.1 (i) Let X = {x ∈ R
n : Px ≤ q}, where P ≥ 0, be a non-empty

set and let x0 ∈ R
n. Then d∞(x0,X ) = minx∈X max{‖x0 − x‖⊕, 0}.

(ii) In particular if X = {x ∈ R
n : x ≤ a}, then d∞(x0,X ) = max{‖x0− a‖⊕, 0}.

PROOF. (i) Note that since x0 is finite and since the points of X are also finite and

X is non-empty and closed, the distance d∞(x0,X ) is defined and finite.

First we consider the case where x0 ∈ X . Then we have d∞(x0,X ) = 0 and

minx∈X ‖x0 − x‖⊕ ≤ 0 (note that for x = x0 we have ‖x0 − x‖⊕ = 0 which

implies that the minimum — or better, infimum, in this case — will be less than

or equal to 0). This implies that the statement of part (i) of the proposition holds if

x0 ∈ X .

From now on we consider the case when x0 /∈ X .

Clearly, d∞(x0,X ) = minx∈X ‖x0−x‖∞ > 0 if x0 /∈ X . Let us now prove that also

minx∈X ‖x0 − x‖⊕ > 0 if x0 /∈ X . We do this by contradiction. Suppose that there

exists an x̃ ∈ X such that ‖x0 − x̃‖⊕ ≤ 0. Then we have maxi{(x0)i − x̃i} ≤ 0
and thus (x0)i − x̃i ≤ 0 for all i, which implies that x0 ≤ x̃. Since P ≥ 0, this

results in Px0 ≤ Px̃ ≤ q. So x0 ∈ X , which is in contradiction with the fact

that x0 /∈ X . As a consequence, we have ‖x0 − x‖⊕ > 0 for all x ∈ X . Since

infx∈X ‖x0 − x‖⊕ can be recast 7 as a linear programming problem that is feasible

and for which the objective function is (strictly) bounded from below by 0, the

infimum is attained, which implies that the minimum minx∈X ‖x0−x‖⊕ exists and

satisfies minx∈X ‖x0 − x‖⊕ > 0.

Let x ∈ R
n. From the definition of ‖x0−x‖⊕ and ‖x0−x‖∞, it directly follows that

‖x0 − x‖⊕ ≤ ‖x0 − x‖∞ for any x ∈ R
n. This implies that minx∈X ‖x0 − x‖⊕ ≤

minx∈X ‖x0 − x‖∞. So to complete the proof of part (i) we have to prove that we

also have minx∈X ‖x0 − x‖⊕ ≥ minx∈X ‖x0 − x‖∞.

Let x† be a point of X for which ‖x0−x†‖⊕ = minx∈X ‖x0−x‖⊕. For ‖x0−x†‖∞
we now distinguish between two cases:

Case A: There exists an index i ∈ N[1,n] such that ‖x0 − x†‖∞ = (x0)i − x†
i .

Then we have (x0)j − x†
j ≤ (x0)i − x†

i for all j ∈ N[1,n]. Hence, ‖x0 − x†‖⊕ =

(x0)i − x†
i = ‖x0 − x†‖∞. So in this case, ‖x0 − x†‖⊕ = ‖x0 − x†‖∞.

Case B: We have ‖x0 − x†‖∞ > (x0)j − x†
j for all j ∈ N[1,n].

Now we will prove that this case can be transformed and reduced to Case A. If

‖x0 − x†‖∞ > (x0)j − x†
j for all j ∈ N[1,n], then there should exist an index

i ∈ N[1,n] such that ‖x0 − x†‖∞ = x†
i − (x0)i. Since ‖x0 − x†‖∞ > 0, we then have

x†
i > (x0)i. This implies that the set I = {i ∈ N[1,n] : x

†
i > (x0)i} is non-empty.

If we now define xfeas ∈ R
n such that (xfeas)i = (x0)i if i ∈ I, and (xfeas)i = x†

i if

i 6∈ I, then we have xfeas ≤ x†. Since P ≥ 0, this implies that Pxfeas ≤ Px† ≤ q

7 By introducing a dummy variable t such that t > ‖x0−x‖⊕ or equivalently t ≥ (x0)i−xi
for all i, and then minimizing t subject to these constraints and to Px ≤ q, we obtain a

linear programming problem. It is easy to verify that for the optimal solution (topt, xopt) of

this linear programming problem we have topt = ‖x0 − xopt‖⊕.

14



and thus xfeas ∈ X . Moreover, we have

‖x0 − x†‖⊕ ≤ ‖x0 − xfeas‖⊕ (by the definition of x† and as xfeas ∈ X )

= max
l∈N[1,n]

{(x0)l − (xfeas)l}

= max
{

max
i∈I

{(x0)i − (xfeas)i}, max
j∈N[1,n]\I

{(x0)j − (xfeas)j}
}

= max
{

0, max
j∈N[1,n]\I

{(x0)j − (xfeas)j}
}

(as (xfeas)i = (x0)i
for all i ∈ I)

6 ‖x0 − x†‖⊕ (as ‖x0 − x†‖⊕ > 0 and by the definition of I).

So ‖x0 − x†‖⊕ = ‖x0 − xfeas‖⊕, which means that also for xfeas we have ‖x0 −
xfeas‖⊕ = minx∈X ‖x0 − x‖⊕. Now we show that if we redefine x† to be equal to

xfeas then Case A holds. Indeed, we have

‖x0 − xfeas‖∞ = max
l∈N[1,n]

{

max{(x0)l − (xfeas)l, (xfeas)l − (x0)l}
}

= max
{

max
i∈I

{

max{(x0)i − (xfeas)i, (xfeas)i − (x0)i}
}

,

max
i∈N[1,n]\I

{

max{(x0)i − (xfeas)i, (xfeas)i − (x0)i}
}}

= max
{

0, max
i∈N[1,n]\I

{(x0)i − (xfeas)i}
}

by the definition of I and since for i 6∈ I we have (xfeas)i = x†
i ≤ (x0)i. Since

‖x0 − xfeas‖∞ > 0, it follows that ‖x0 − xfeas‖∞ = maxi∈N[1,n]\I{(x0)i − (xfeas)i},

i.e., xfeas satisfies Case A above, and thus ‖x0 − xfeas‖⊕ = ‖x0 − xfeas‖∞.

In conclusion, we can always find a point x† ∈ X for which ‖x0 − x†‖⊕ =
minx∈X ‖x0 − x‖⊕ = ‖x0 − x†‖∞. This implies that minx∈X ‖x0 − x‖⊕ = ‖x0 −
x†‖⊕ = ‖x0 − x†‖∞ ≥ minx∈X ‖x0 − x‖∞. Together with the reverse inequality

obtained previously, this results in minx∈X ‖x0−x‖⊕ = minx∈X ‖x0−x‖∞, which

concludes the proof of part (i).

(ii) If x0 ∈ X , then d∞(x0,X ) = 0 and also ‖x0 − a‖⊕ ≤ 0, which means that the

result holds in this case.

If x0 /∈ X and x ≤ a, then d∞(x0,X ) > 0 and x0 − x > x0 − a. So maxi{(x0)i −
xi} > maxi{(x0)i − ai} and thus also d∞(x0,X ) = minx∈X maxi{(x0)i − xi} >

maxi{(x0)i − ai}. So d∞(x0,X ) > ‖x0 − a‖⊕. On the other hand, from part (i)

of this proposition it follows that 0 < d∞(x0,X ) = minx∈X maxi{(x0)i − xi} 6

‖x0 − a‖⊕. Hence, d∞(x0,X ) = ‖x0 − a‖⊕. ♦

The MPC strategy derived in this section uses O∞ as the terminal set, where we

recall that O∞ is a polyhedron of the form O∞ = {x ∈ R
n : H∞x ≤ h∞} with

H∞ ≥ 0. For a given positively invariant set Xe for (19) such that xe ∈ Xe ⊆ O∞,

we define a continuous stage cost ℓ(x, u) with the following properties:
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P1: ℓ(x, u) = 0 iff x ∈ Xe and u = ue.

P2: ℓ(x, u) ≥ α(d∞(x,Xe) + ‖u− ue‖∞) for all x and u, where α is a K-function.

Some examples of such stage costs are

ℓ(x, u) = ‖x− xe‖∞ + γ‖u− ue‖∞ (26)

ℓ(x, u) = max
i∈N[1,n]

{xi − (xe)i, 0}+ γ‖u− ue‖∞ (27)

ℓ(x, u) = d∞(x,O∞) + γ‖u− ue‖∞ , (28)

where γ > 0, i.e. it is a positive scalar. The stage cost (26) corresponds to Xe =
{xe}, (27) corresponds to Xe = {x : x ≤ xe} (according to Proposition 4.1), and

(28) corresponds to Xe = O∞. Note that the first term in these stage costs penalizes

the tardiness with respect to the boundary of the set Xe while the second term

penalizes the deviation of the input from the equilibrium input ue. From Proposition

4.1 it follows that in these cases the K-function α of Property P2 is the identity

function, i.e. α(x) = x.

We consider a prediction horizon N ≥ 1. For the event pair (k, x) (i.e. x(k) = x)

the following optimal control problem is considered:

PN(x) : V 0
N(x) := min

u∈ΠN (x)
VN(x, u) , (29)

where the set of feasible input sequences is defined by 8

ΠN(x) := {u : Hxi +Gui ≤ h ∀i ∈ N[1,N ], xN ∈ O∞} ,

and the cost function is defined by VN : Rn × R
Nm → R

VN(x, u) =
N∑

i=1

ℓ(xi−1, ui) + Vf(xN) ,

where the stage cost ℓ satisfies Properties P1–P2, and where u := [uT
1 · · · uT

N ]
T

and xi := φ(i; x, u). It follows that x0 = x. The terminal cost is determined as

Vf : O∞ → R

Vf(xN) :=
k(xN )
∑

j=1

ℓ(xj, ue) ,

where k(xN) is finite and defined as in the proof of Theorem 3.1 and xj := φ(j; xN ,
ue). Typically O∞ ⊆ {x : x ≤ a} (see Remark 3.6) and then an upper bound on

k(x) is k(a), where k(a) can be determined as in the proof of Theorem 3.1. Note

that for the stage cost (28) we always have a zero terminal cost since Vf(x) = 0 for

all x ∈ O∞.

8 So ΠN (x) is the set of input sequences for which starting from the initial state x the

constraints (15) are satisfied and for which the target set O∞ is reached after N steps.
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Let XN denote the set of finite initial states for which a feasible input sequence

exists, i.e.

XN := {x ∈ R
n : ΠN(x) 6= ∅} .

The optimal control problem PN(x) yields an optimal control sequence u0(x) =
[(u0

1(x))
T · · · (u0

N(x))
T ]T for all x ∈ XN . The first control u0

1(x) is applied to the

system (13)–(14) at step k according to the receding horizon principle. This defines

an implicit MPC law κMPC(x) := u0
1(x). The next theorem shows that the closed-

loop system obtained from applying the MPC law κMPC to (13)–(14) enjoys some

stabilizing properties.

Theorem 4.2 Suppose that Xe lies in the interior of the set XN and that Assump-

tion A1 holds. Then,

(i) the set Xe is asymptotically stable for the closed-loop system

x(k) = A⊗ x(k − 1)⊕ B ⊗ κMPC(x(k − 1)) (30)

with a region of attraction XN , and

(ii) if there exists an a ∈ R
n such that Xe ⊆ {x ∈ R

n : x ≤ a}, then for each

x ∈ XN the closed-loop state trajectory of the system (30) is bounded.

PROOF. (i) Consider the function V 0
N : XN → R defined by (29). We will show

that V 0
N satisfies the conditions from Theorem 2.5.

Let us show that XN is positively invariant for the system (30). Let x ∈ XN ,

then there exists an optimal control sequence u0(x) ∈ ΠN(x). Moreover, let x0 =
[xT (x0

1)
T · · · (x0

N)
T ]T be the corresponding optimal state trajectory. The MPC

input κMPC(x) steers the system from the state x to the successor state x0
1 =

f(x, κMPC(x)). Since x0
N ∈ O∞, we have f(x0

N , ue) ∈ O∞. Furthermore, the fea-

sible control sequence [(u0
2(x))

T · · · (u0
N(x))

T ]T steers the system from the state x0
1

to x0
N ∈ O∞. It follows that at the next step a feasible input sequence is given by

uf = [(u0
2(x))

T · · · (u0
N(x))

T uT
e ]

T , i.e. uf ∈ ΠN(f(x, κ
MPC(x))). We conclude that

f(x, κMPC(x)) ∈ XN and thus XN is a positively invariant set for (30). As a conse-

quence, for any initial state x ∈ XN we can guarantee feasibility of the MPL-MPC

optimization problem (29) at each step.

Using the properties of a multi-parametric convex program (see e.g. [21]), the Prop-

erties P1–P2 of the stage cost, convexity of the function f , and linearity of the

constraints we can see that the first two conditions from Theorem 2.5 are satis-

fied by V 0
N . In particular, continuity of V 0

N for the stage cost (26) follows from

(20), while for the stage costs (27) and (28) continuity of V 0
N follows from multi-

parametric linear programming arguments [21, Section 2.3.1]. It remains to prove

the third condition. Due to the special form of the chosen feasible input sequence

uf , the input sequence [(u0
2(x))

T · · · (u0
N(x))

T ]T steers the system from the state x0
1

to x0
N ∈ O∞ and then to f(x0

N , ue) ∈ O∞. Moreover, the terminal cost Vf is a finite

sum of the stage costs ℓ over a horizon k(x0
N) corresponding to the input ue and
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thus

Vf(x
0
N) =

k(x0
N
)

∑

j=0

ℓ(x0
N+j, ue)

V 0
N(x) =

N∑

i=1

ℓ(x0
i−1, u

0
i (x)) + Vf(x

0
N)

VN(f(x, κ
MPC(x)), uf) =

N∑

i=2

ℓ(x0
i−1, u

0
i (x)) + Vf(x

0
N) ,

where x0
N+j = φ(j; x0

N , ue) and x0
0 := x. Then it follows that

V 0
N(f(x, κ

MPC(x)))− V 0
N(x) ≤ VN(f(x, κ

MPC(x)), uf)− V 0
N(x)

= −ℓ(x, u0
1(x)) ≤ −α(d∞(x,Xe)) (31)

and according to Property P2 of the stage cost, we obtain that the conditions from

Theorem 2.5 are satisfied. Therefore, Xe is asymptotically stable for (30) with a

region of attraction XN .

(ii) For any finite initial state x ∈ XN , from (31) it follows that the sequence

{V 0
N(φ(k; x, κ

MPC))}k≥0 is non-increasing and bounded from below and thus con-

vergent. Moreover, ℓ(φ(k; x, κMPC), κMPC(φ(k; x, κMPC))) ≤ V 0
N(φ(k; x, κ

MPC))−
V 0
N(φ(k+1; x, κMPC)). Therefore, limk→∞ ℓ(φ(k; x, κMPC), κMPC(φ(k; x, κMPC)))

= 0. Using continuity arguments and Properties P1–P2 of the stage cost it follows

that

lim
k→∞

κMPC(φ(k; x, κMPC)) = ue (32)

lim
k→∞

d∞(φ(k; x, κMPC), Xe) = 0 . (33)

Since the initial state x is taken to be finite and since the system is controllable and

observable (according to Assumption A1), there does not exist a finite k0 such that

either φ(k0; x, κ
MPC) or κMPC(φ(k0; x, κ

MPC)) or y(k0) = C ⊗ φ(k0; x, κ
MPC) are

equal to ε. If the set Xe is bounded (e.g. Xe = {xe} in (26)), then ‖φ(k; x, κMPC)−
xe‖∞ is also bounded for all k ≥ 0 (this follows from the triangle inequality for

norms) and thus the buffer levels remain bounded.

If Xe is not bounded, then from (32) we conclude that for any finite initial state

x ∈ XN there exists a finite lower bound u(x) such that κMPC(φ(k; x, κMPC)) ≥
u(x) for all k ≥ 0. From the monotonicity property of the max operator (1) it

follows that there exists a finite lower bound 9 on the corresponding state trajectory

φ(k; x, κMPC) ≥ m(x) for all k ≥ 0. Since Xe ⊆ {x ∈ R
n : x ≤ a}, it follows

that the set Xe ∩ {z : z ≥ m(x)} is bounded and then using the same arguments as

before we conclude that ‖φ(k; x, κMPC)− xe‖∞ is also bounded for all k ≥ 0. ♦

9 I.e. m(x) := A∗ ⊗ x⊕A∗ ⊗B ⊗ u(x) which is a finite vector.
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Remark 4.3 (i) Since in the constraints (15) we have H ≥ 0 (according to As-

sumption A2), and since for the terminal set O∞ we have H∞ ≥ 0, using basic

properties of the max operator it follows that ΠN(x) is a polyhedron, i.e. it is de-

scribed by linear inequalities: ΠN(x) = {u : Gu ≤ Hx + g}. Furthermore, the set

of initial states XN is also a polyhedron since XN is the projection of the polyhe-

dral set {(x, u) : Gu − Hx ≤ g} onto R
n. For the stage costs (27) or (28), using

Proposition 4.1, the previous discussion and including extra variables, it follows

that the optimization problem (29) can be recast as a linear program (cf. Footnote

7). For the stage cost (26) the optimization problem (29) can be recast as a mixed-

integer linear program, since in this case we also get that constraints that state that

a maximum of linear expressions should be larger than or equal to some dummy

variables. Such a constraint is not linear. However, by introducing additional binary

variables such a constraint can be recast as a system of linear inequalities [11]. The

overall problem then results in a mixed-integer linear programming problem.

(ii) If Xe ⊂ int(O∞), then from (33) it follows that the trajectory enters the termi-

nal set O∞ in a finite number of steps. Inside O∞ we can use the feasible controller

ue (since O∞ is a positively invariant set for the system (19)) and so we can steer

the trajectory towards the equilibrium xe in finite number of steps as well (see The-

orem 3.1). In conclusion, using such a dual-mode approach (see also [18]), we can

guarantee that for any finite initial state x ∈ XN , the trajectory reaches the steady

state in finite number of steps.

(iii) Note that by increasing the prediction horizon N , the region of attraction in-

creases as well, i.e. for N1 < N2 it follows that XN1 ⊆ XN2 . Indeed, let x ∈ XN1

then there exists a feasible u = [uT
1 · · · uT

N1
]T ∈ ΠN1(x) and we can construct

uf = [uT
1 · · · uT

N1
uT
e · · · uT

e
︸ ︷︷ ︸

N2−N1 times

]T ∈ ΠN2(x), i.e. x ∈ XN2 . ♦

4.2 Output regulation

For a given set Ye such that ye := C ⊗ xe ∈ Ye, we define a continuous stage cost

ℓ(x, u) with the following properties:

P1’: ℓ(x, u) = 0 iff C ⊗ x ∈ Ye and u = ue.

P2’: ℓ(x, u) ≥ α(d∞(y, Ye) + ‖u − ue‖∞) for all y = C ⊗ x and u, where α is a

K-function.

Examples of such stage costs are (see [6] for more examples)

ℓ(x, u) = ‖y − ye‖∞ + γ‖u− ue‖∞ (34)

ℓ(x, u) = max
j∈N[1,p]

{yj − (yt)j, 0}+ γ‖u− ue‖∞ (35)

ℓ(x, u) =
p

∑

j=1

max{yj − (yt)j, 0}+ γ‖u− ue‖∞ , (36)

where γ > 0 and y = C ⊗ x. The stage cost (34) corresponds to Ye = {ye},
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and (35) or (36) correspond to Ye = {y : y ≤ yt}. In the stage cost (34) the first

term penalizes the deviation of the output from the output equilibrium ye while the

second term penalizes the deviation of the input from the input equilibrium ue. The

stage costs (35) and (36) have the following interpretation: the first term penalizes

the tardiness with respect to the due dates while the second term penalizes the

deviation of the input from the input equilibrium. From Proposition 4.1 it follows

that the K-function α of Property P2’ is in these cases the identity function, i.e.

α(x) = x.

Using the same notations as in Section 4.1 we obtain the following corollary:

Corollary 4.4 Suppose there exists a vector b ∈ R
p such that Ye ⊆ {y ∈ R

p : y ≤
b} and that Assumption A1 holds. Then, using in the optimal control problem (29) a

stage cost that satisfies Properties P1’–P2’ we obtain an MPC law κMPC
y for which

the corresponding closed-loop buffer levels are bounded.

PROOF. Using the same arguments as in the proof of Theorem 4.2 it follows that

lim
k→∞

κMPC
y (φ(k; x, κMPC

y )) = ue

lim
k→∞

d∞(C ⊗ φ(k; x, κMPC
y ), Ye) = 0

and that φ(k; x, κMPC
y ) is bounded for all k since the system is observable according

to Assumption A1 and therefore the buffer levels remain bounded for any finite

initial state x ∈ XN . ♦

Using similar arguments as in Remark 4.3 (i) we conclude that for the stage costs

(35) or (36) the corresponding MPC optimization problem (29) can be recast as a

linear program whenever Assumption A2 holds. For the stage cost (34) the opti-

mization problem (29) can be recast as a mixed-integer linear program.

5 Time-optimal controller for MPL systems

Given a maximum horizon length Nmax we now consider the problem of ensuring

that the completion times after N events, where N = 1, 2, · · · , Nmax, are less than

or equal to a specified target time T (i.e. y(N) ≤ T), using the “latest” controller

that satisfies the input and state constraints (15). Here “latest” means that the input

times should be as large as possible (so in a manufacturing context we would feed

the raw material as late as possible). Note that such a problem, but without consid-

ering constraints, was considered also in [1, Chapter 6] in terms of lattice theory.

The time-optimal control problem in our setting is different from the classical one:

we want to maximize N instead of minimizing it; so in fact a better term would be
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“throughput-optimal” control.

The time-optimal control problem can be posed in terms of an optimization prob-

lem: given x := x(0), find

N0(x) = max
N∈N[1,Nmax], u∈ΠT

N
(x)

N ,

where ΠT
N(x) := {u : Hxi + Gui ≤ h, ∀i ∈ N[1,N ], yN ≤ T} with yN = C ⊗ xN .

Moreover, since we aim for the latest input times, we want u1, . . . , uN to be as big

as possible (see also [1, Chapter 6]). We denote with XT
N = {x : ΠT

N(x) 6= ∅}, i.e.

the set of initial states such that after N steps the trajectory is below the target time

T. It follows that

N0(x) = max
N

{N ∈ N[1,Nmax] : x ∈ XT
N} . (37)

Since we want the latest controller, a suitable choice of the stage cost is ℓ(x, u) =
−

∑m
j=1 uj .

The time-optimal controller is then implemented as follows:

(1) For each N ∈ N[1,Nmax], solve the linear program

min
u∈ΠT

N
(x)

−
N∑

i=1

m∑

j=1

(ui)j .

(2) Determine N0(x) according to (37).

(3) Apply the control sequence u0(x) corresponding to the prediction horizon

N0(x).

The time-optimal control problem involves solving Nmax linear programs in Step 1

above. The set XN has the following interpretation: the boundary of the polyhedron

XT
N represents the latest starting times such that after N events the output is below

the target time T.

6 Example

Consider the manufacturing system of Figure 1. It consists of three processing units.

Raw material is fed to the first two units, processed and sent to the third unit where

assembly takes place. Each unit can only start working on a new product if it has fin-

ished processing the previous product. We assume that each processing unit starts

working as soon as all parts are available. We denote with usys(k) the time at which

a batch of raw material is fed to the system for the kth cycle, (xsys)i(k) the time at

which unit i starts working for the kth cycle, and ysys(k) the time at which the kth

product leaves the system. We also denote with pi and tj the transportation times
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Figure 1. A manufacturing system.

and processing times, respectively. We take the following value for these parame-

ters: t1 = 1, t2 = 1, t3 = 0, t4 = 3, t5 = 0, t6 = 0, p1 = 1, p2 = 2, p3 = 2.

Now we explain in more detail the dynamical equation that describes the evolution

of the first processing unit: unit 1 will start with job k when

• the previous job is finished, indicated by (xsys)1(k − 1) + p1 (i.e. the start of the

previous job (k − 1) plus the production time p1), and

• the raw material has arrived at the unit at time usys(k) + t1 (i.e. the time the raw

material is put into the system plus the transportation time t1).

Since processing unit 1 starts working on as soon as the raw material is available

and the current product has left the machine, this implies that we have (xsys)1(k) =
max{(xsys)1(k − 1) + 1, usys(k) + 1}. In max-plus algebra this expression can be

written as (xsys)1(k) = 1⊗(xsys)1(k−1)⊕1⊗usys(k). The same reasoning applies

to the second and third processing unit. Therefore, the MPA state space equations

of the system, written in matrix form, are

xsys(k) =










1 ε ε

2 2 ε

5 4 2










⊗ xsys(k − 1)⊕










1

2

5










⊗ usys(k)

ysys(k) = [ε ε 2]⊗ xsys(k) .

For this example the (maximal) MPA eigenvalue of the system matrix Asys is

λmax = 2. We consider the reference signal for the output rsys(k) = 5 + ρk with

ρ = 1.5λmax = 3. We take the following constraints:

usys(k)− usys(k + 1) ≤ 0 (38)

(xsys)2(k)− usys(k) ≤ 2.5 . (39)

The initial conditions are xsys(0) = [9 13 14]T , usys(0) = 6.

We now apply MPC. We choose the prediction horizon N = 12. We consider the

stage cost (36) and we apply the MPC approach of Section 4.2. In this case the

MPC optimization problem (29) can be recast as a linear program.
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Figure 2. The closed-loop MPC simulations.

For the normalized system (obtained as in Section 2) the positively invariant set O∞

is determined after 4 iterations: O∞ = O4 = {x ∈ R
4 : I4x ≤ [0.5 −0.5 0 0]T}.

By solving the linear program (29) in a receding horizon fashion we obtain for the

original system the following MPC input sequence:

{κMPC
y (x(k − 1)) + ρk}15k=0 = 6, 12.5, 14.5, 16.5, 18.5, 20.5, 22.5, 24.5,

26.5, 28.5, 30.5, 32.5, 34.5, 37, 40, 43 .

The results of the closed-loop simulations are displayed in Figure 2. We observe

from the top plot that although we start later than the initial due date the closed-

loop output is able to track the due date signal after a finite transient behavior, i.e.

we have closed-loop stability. The middle plot displays the MPC input. We see that

the MPC input reaches the steady-state behavior in finite number of steps and that

it is nondecreasing. The input-state constraints (39) are depicted in the bottom plot.

Note that the MPC keeps the system behavior as close as possible to the constraints.

Let us now compare our MPC method with the other control design methods men-

tioned in Section 1. The max-plus control approaches proposed in [1,3,14,19] typ-

ically involve an open-loop optimal control problem over a simulation horizon and

for a given due date signal rsys such that the output of the system ysys should satisfy

ysys(k) ≤ rsys(k) for all k. The solution of this optimal control problem is computed

using residuation, resulting in a just-in-time control input. The main disadvantage

of this approach is that it cannot cope with tracking problems where the outputs
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do not occur before the due dates, and that the resulting control input sequence is

sometimes decreasing, i.e. the constraint (38) might be violated. For instance, if

we apply the method of [14] we get the following just-in-time control sequence

{usys(k)}
15
k=0 = 6, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43. This

sequence is not feasible since we have usys(1) = 1 < usys(0) = 6, i.e. the constraint

(38) is violated. This infeasibility is caused by the fact that the optimal input aims

to fulfill the constraint ysys(k) ≤ rsys(k) for all k, which cannot be met using a non-

decreasing input sequence. So other residuation-based control design methods that

also include this constraint such as [1, 3, 19] would also yield a control sequence

that is not nondecreasing and thus infeasible.

These issues are overcome in [16, 20] by using a projection on the set of nonde-

creasing input sequences, or by considering a residuation-based adaptive control

approach. The methods of [16, 20] result in nondecreasing input sequences and

allow violations of the due dates. However, in contrast to the MPC approach pre-

sented in this paper the approaches of [16, 20] cannot cope with more complex

state and input constraints, such as (39). For instance, using the adaptive control

approach of [20] we obtain the following optimal input sequence {usys(k)}
15
k=0 =

6, 6, 6, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43. However, by applying

this control the constraint (39) is violated (e.g. (xsys)2(1)− usys(1) = 9 6≤ 2.5).

The MPC approach of [6] can cope with state-input constraints. However, this ap-

proach cannot guarantee a priori stability of the closed-loop system. Note that sta-

bility is really an issue when designing controllers for MPL systems (see [25] for

an illustrative example where instability of the MPC-MPL closed-loop system oc-

curs).

7 Conclusions

In this paper we have discussed the problem of stabilization of an MPL system sub-

ject to state-input constraints using MPC. We have derived an MPC strategy based

on a terminal set-terminal cost approach that guarantees that the closed-loop input

and state sequences satisfy a given set of linear inequality constraints. We have also

shown that with this strategy asymptotic stability can be guaranteed a priori. For

particular nonnegative piecewise affine stage costs we have shown that the MPL-

MPC optimization problem can be recast as a linear program for which efficient al-

gorithms exist. Moreover, under some additional assumptions we have proved that

two types of stability (asymptotic stability and boundedness) hold for the closed-

loop MPC. For the time-optimal MPL control subject to linear constraints on the

inputs and states we have also derived the solution, based on linear programming.
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