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SUMMARY

Max-plus-linear (MPL) systems are a class of nonlinear systems that can be described by models that are “linear”
in the max-plus algebra. We provide here solutions to three types of finite-horizon min-max control problems for
uncertain MPL systems, depending on the nature of the control input over which we optimize: open-loop input
sequences, disturbances feedback policies, and state feedback policies. We assume that the uncertainty lies in a
bounded polytope, and that the closed-loop input and state sequence should satisfy a given set of linear inequality
constraints for all admissible disturbance realizations. Despite the fact that the controlled system is nonlinear, we
provide sufficient conditions that allow to preserve convexity of the optimal value function and its domain. As a
consequence, the min-max control problems can be either recast as a linear program or solved via N parametric
linear programs, where N is the prediction horizon. In some particular cases of the uncertainty description (e.g.
interval matrices), by employing results from dynamic programming, we show that a min-max control problem
can be recast as a deterministic optimal control problem.

KEY WORDS: Discrete event systems, max-plus-linear systems, robust control, bounded disturbances, linear

constraints, dynamic programming.

1. INTRODUCTION

Discrete event systems (DES) are event-driven dynamical systems (i.e. the state transitions are

initiated by events, rather than a clock) and they often arise in the context of manufacturing systems,

telecommunication networks, parallel computing, supply chain systems, etc. DES with synchronization

but no concurrency can be described by nonlinear models called max-plus-linear (MPL) systems,

i.e. systems that are “linear” in the max-plus algebra whose basic operations are maximization and

addition. Among different methods for designing a controller for an MPL system, the class of optimal

controllers is the most studied (see [1–7] and the references therein). However, the robust optimal

control counterpart for this class of systems is still an active area of research. Some of the contributions
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2 1 INTRODUCTION

include open-loop min-max model predictive control [6] and closed-loop control without constraints

based on residuation theory [2, 7, 8]. In [7] a feedback controller is derived using residuation theory

that also guarantees stability. But the residuation approach used in [7] does not cope with input–state

constraints and moreover the uncertainty is not taken into account. In [8] uncertainty is considered in

terms of interval transfer functions, which is a particular case of our uncertainty description considered

in this paper. In [2] an adaptive control method is derived that takes into account possible mismatch

between the system and its model, but without input-state constraints.

The main advantage of this paper compared to existing results on robust control of MPL systems

[2, 6–8] is the fact that we also optimize over feedback policies, not only over open-loop input

sequences, and that we incorporate state and input constraints directly into the problem formulation.

In general, this results in increased feasibility and a better performance. Because MPL systems are

nonlinear, non-convexity is clearly a problem if one seeks to develop “efficient” methods for solving

min-max control problems for MPL systems. One of the key contributions of this paper is therefore

to provide sufficient conditions, which are often satisfied in practice, such that one can employ results

from convex analysis and parametric linear programming to compute robust optimal controllers for

MPL systems. It is important to note that we require the stage cost to have a particular representation in

which the coefficients corresponding to the state vector are nonnegative and that the matrix associated

with the state constraints is also nonnegative. However, these conditions are often satisfied in practice.

This section proceeds by introducing some notation specific to max-plus algebra and the class of

discrete event MPL systems with disturbances. In Section 2 we define three finite-horizon min-max

control problems, depending on the nature of the control input: open-loop input sequences, disturbance

feedback policies and state feedback policies. We will show that the corresponding open-loop and

disturbance feedback min-max control problem can be recast as a linear program while the state

feedback min-max control problem can be solved exactly, without gridding, via N parametric linear

programs, where N is the prediction horizon. Finally, for particular cases of the uncertainty (such as

interval matrices) we show, using the principle of optimality in dynamic programming, that all three

min-max control problems are equivalent with a deterministic optimal control problem.

1.1. Definitions and Notation

Define ε := −∞, Rε := R ∪ {ε} and two operations [9]: x ⊕ y := max{x, y}, x ⊗ y := x + y, for

x, y ∈ Rε. The triple (Rε,⊕,⊗) forms the so-called max-plus algebra. We also denote with x⊕′ y :=
min{x, y}. For matrices A,B ∈ R

m×n
ε and C ∈ R

n×p
ε one can extend these operations as follows:

(A⊕B)ij := Aij⊕Bij = max{Aij , Bij}, (A⊗C)ij :=
⊕n

k=1Aik⊗Ckj = maxk∈N[1,n]
{Aik+Ckj}

for all i,j.E is the identity matrix in the max-plus algebra:Eii := 0, for all i andEij := ε, for all i 6= j
and the zero matrix is ε: εij := ε, for all i, j, where their dimensions are derived from the context.

For any matrix A ∈ R
n×n
ε , the kth max-plus power of A is denoted with A⊗

k
:= A ⊗ A ⊗ · · · ⊗ A

(k times), and we define A∗, whenever it exists, by A∗ := limk→∞E ⊕ A ⊕ · · · ⊕ A⊗
k

. We denote

with λ∗ the maximal max-plus eigenvalue of the matrix A, i.e. there exists v ∈ R
n
ε , v 6= ε such that

A⊗ v = λ∗ ⊗ v (see e.g. [9] for how to compute λ∗).

We use N[k,l] to represent the set of integers {k, k + 1, · · · , l}. By H ≥ 0 we mean that the matrix

H is nonnegative, i.e.Hij ≥ 0 for all i, j. Moreover, Hi. and H.j denote the ith row and jth column of

H , respectively while nH denotes the number of rows of H . Given a set Z ⊆ R
n×R

m, the projection

of Z on R
n is denoted by ProjnZ := {x ∈ R

n : ∃y ∈ R
m s. t. (x, y) ∈ Z}. A polyhedron is the

intersection of a finite number of closed half-spaces.

A function J : R
n → R ∪ {+∞,−∞} is called proper if J(x) > −∞ everywhere and
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Figure 1. A manufacturing system.

{x ∈ R
n : J(x) < +∞} 6= ∅ [10]. The epigraph of a function J : X → R with X ⊆ R

n is

defined as epi J := {(x, t) ∈ X × R : J(x) ≤ t}. A function J is piecewise affine (PWA) if its

epigraph is a finite union of polyhedra [10]. Let Fmps denote the set of max-plus-scaling functions,

i.e. functions J : Rn → R such that J(x) = maxj∈N[1,l]
{αT

j x + βj} for all x ∈ R
n, αj ∈ R

n and

βj ∈ R. Let F+
mps denote the set of max-plus-nonnegative-scaling functions, i.e. functions defined by

J(x) = maxj∈N[1,l]
{αT

j x+ βj} with αj ≥ 0 for all j ∈ N[1,l].

1.2. MPL systems with bounded disturbances

Before introducing the class of (uncertain) MPL systems we provide an example in order to illustrate

how disturbances affect an MPL system. Consider the manufacturing system of Figure 1. It consists of

three processing units, each unit can only start working on a new product if it has finished processing

the previous product (i.e. the unit is idle). We assume that each processing unit starts working as soon

as all parts are available. Moreover, at the input of the system and between the processing units there

are buffers with a capacity that is large enough to ensure that no buffer overflow will occur. We denote

with u(k) the time at which a batch of raw material is fed to the system for the (k+1)th cycle, xi(k+1)
the time at which unit i starts working for the (k+1)th cycle and y(k) the time at which the kth product

leaves the system. We also denote with pi(k) and tj(k) the transportation and processing times for the

(k + 1)th cycle. Let us write down the equations corresponding to this manufacturing system:



































































x1(k + 1) = max{x1(k) + p1(k − 1), u(k) + t1(k)}

x2(k + 1) = max
{

x1(k)+p1(k−1)+p1(k)+t3(k), x2(k)+p2(k−1),

u(k) + max{t2(k), p1(k) + t1(k) + t3(k)}
}

x3(k + 1) = max
{

x1(k)+ max{p1(k − 1) + p1(k)+t4(k),

p1(k − 1) + p1(k) + p2(k) + t3(k) + t5(k)},

x2(k) + p2(k − 1) + p2(k) + t5(k), x3(k) + p3(k − 1),

u(k)+max{p1(k)+t1(k)+t4(k), p2(k) + t2(k) + t5(k),

p1(k) + p2(k) + t1(k) + t3(k) + t5(k)}
}

y(k) = x3(k) + p3(k − 1) + t6(k − 1).

(1)

In general, the transportation and processing times may vary from one cycle to another. Therefore,

it is clear that the uncertainty comes from the variation of these parameters pi and ti. We gather in the

vector w all the uncertainty caused by disturbances and errors in the estimation of the parameters pi
and ti, i.e.

w(k) := [p1(k) . . . pl(k) t1(k) . . . tl̃(k)]
T .
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This example can be generalized. We consider the following uncertain MPL system*:

x(k + 1) = A(w(k − 1), w(k))⊗ x(k)⊕B(w(k − 1), w(k))⊗ u(k)
y(k) = C(w(k − 1))⊗ x(k).

(2)

Since the system matrices of a DES modeled as an MPL system usually consist of sums or maxima of

internal process and transportation times, it follows that A ∈ Fn×n
mps , B ∈ F

n×m
mps and C ∈ Fp×n

mps (it is

important to note that these matrix functions are nonlinear). We frequently use the short-hand notation

fMPL(x, u, wp, wc) := A(wp, wc)⊗ x⊕B(wp, wc)⊗ u,

Clearly, fMPL ∈ F
n
mps and fMPL(·, u, wp, wc) ∈ (F+

mps)
n for any fixed (u,wp, wc).

In the context of DES, k is an event counter while x(k) ∈ R
n
ε , y(k) ∈ R

p
ε and u(k) ∈ R

m
ε represent

times, i.e. starting times, finishing times and feeding times, respectively. Since the states x(k) represent

times, we assume they can always be measured or estimated. For a method to estimate or compute x(k)
for MPL systems and in the context of model predictive control the reader is referred to [22]. At each

step k, the value of the disturbance w(k) is unknown, but it is assumed to be time-varying and to take

on values from a polytope W = {w ∈ R
q : Ωw ≤ s}, where Ω ∈ R

nΩ×q and s ∈ R
nΩ . Therefore,

l + l̃ = q. We consider that w(k − 1) and w(k) are independent. Moreover, at event step k we assume

that the disturbance w(k − 1) can be computed or measured. Note that since the state x(k) is assumed

to be available, w(k − 1) can also be computed. For more details about timing issues see also Remark

2.14.

We consider a reference (due date) signal {r(k) ∈ R
p}k≥0 which the output of the system (2) may

be required to “track”, in the sense that, for instance, the tardiness max{y − r, 0} is penalized. The

system is assumed to be subject to hard control and state linear constraints over a finite horizonN [21]:

Hkx(k) +Gku(k) + Fkr(k) ≤ hk, k ∈ N[0,N−1], (3)

with the terminal constraint

HNx(N) + FNr(N) ≤ hN , (4)

where Hk ∈ R
nk×n, Gk ∈ R

nk×m, Fk ∈ R
nk×p, hk ∈ R

nk .

2. ROBUST CONTROL FOR UNCERTAIN MPL SYSTEMS

In this section we analyze the solutions to three classes of finite horizon min-max control problems

for uncertain MPL systems, each class depending on the nature of the control sequence over which

we optimize: open-loop control sequences, disturbance feedback policies, and state feedback policies.

Robust performance and robust constraint fulfillment are considered with respect to all possible

realizations of the disturbance in a worst-case approach.

∗Note that the model (2) resembles the conventional nonlinear models although in the context of DES many researchers use the
following model for a deterministic MPL system x(k) = A⊗ x(k − 1)⊕B ⊗ u(k).
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2.1. Open-loop input sequences

Open-loop worst-case control for uncertain MPL systems, applied in a receding horizon fashion, was

also considered in [6]. Here we discuss a rather more general control problem: we include mixed state-

inputs constraints and we show that the optimal control input can be computed by solving a single

linear program, without having to resort to computation of vertices ofW :=WN , as was done in [6].

Let u :=[uT0 u
T
1 . . . u

T
N−1]

T be an open-loop input sequence and w := [wT
0 wT

1 . . . w
T
N−1]

T denote

a realization of the disturbance over the prediction horizon N . Also, let φ(i;x,w,u,w) denote the

state solution of (2) at event step i when the initial state is x at event step 0, the initial value of the

disturbance is w (i.e. w(−1) = w), the control is determined by u (i.e. u(i) = ui) and the disturbance

sequence is w. By definition, φ(0;x,w,u,w) := x.

Given the initial condition x, the initial disturbance w, the reference signal

r := [rT0 rT1 · · · r
T
N ]T , the control sequence u, and the disturbance realization w, the cost function

VN (x,w, r,u,w) is defined as:

VN (x,w, r,u,w) :=

N−1
∑

i=0

ℓi(xi, ui, ri) + Vf(xN , rN ),

where xi := φ(i;x,w,u,w) (and thus x0 := x) and the terminal cost is defined as Vf(xN , rN ) :=
ℓN (xN , rN ). We usually denote with Xf the terminal set, i.e.

Xf := {(x, r) : HNx+ FNr ≤ hN}.

The following key assumptions will be used throughout the paper:

A1: The matrices Hi in (3)–(4) are nonnegative for all i ∈ N[0,N ].

A2: The stage costs ℓi satisfy ℓi(·, u, r) ∈ F
+
mps, ∀(u, r) and ℓi ∈ Fmps for all i ∈ N[0,N−1].

Moreover, ℓN (·, r) ∈ F+
mps, ∀r and ℓN ∈ Fmps.

The conditions from assumptions A1-A2 are not too restrictive and are usually met in applications.

Note that typical constraints for MPL systems satisfy assumption A1 (see [21, 22]). A typical example

of a stage cost satisfying assumption A2 is [22]:

ℓi(xi, ui, ri) =

p
∑

j=1

max{[yi − ri]j , 0} − γ
m
∑

j=1

[ui]j , (5)

where [vi]j denotes the jth component of a vector vi, yi := C(wi−1)⊗ xi denotes the output at event

step i of system (2) and γ ≥ 0. In the context of manufacturing systems the first term of (5) penalizes

the delay of the finishing products with respect to the due dates, while the second term tries to feed raw

material as late as possible.

For each initial condition x, initial disturbance w and due dates r we define the set of feasible

open-loop input sequences u:

Πol
N (x,w, r) := {u : Hixi +Giui + Firi ≤hi, (xN , rN ) ∈ Xf , i ∈ N[0,N−1], ∀w ∈ W}.

Also, let Xol
N denote the set of initial states and reference signals for which a feasible input sequence

exists:

Xol
N := {(x,w, r) : Πol

N (x,w, r) 6= ∅}.
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The finite-horizon open-loop min-max control problem† is defined as:

P
ol
N (x,w, r) : V 0,ol

N (x,w, r) := inf
u∈Πol

N
(x,w,r)

max
w∈W

VN (x,w, r,u,w). (6)

Let u0
N (x,w, r) = [(u00(x,w, r))

T · · · (u0N−1(x,w, r))
T ]T be an optimizer of (6) if the infimum is

attained, i.e. u0
N (x,w, r) ∈ argminu∈Πol

N
(x,w,r) maxw∈W VN (x,w, r,u,w). Standard optimal control

implements the control sequence u(k) = u0k(x(0), w(−1), [r
T (0) rT (1) · · · rT (N)]T ), while model

predictive control [11] involves an iterative moving horizon approach in which at each event step k
the optimal control sequence is recomputed and only the first sample of the control sequence, i.e.

u00
(

x(k), w(k − 1), [rT (k) rT (k + 1) · · · rT (k + N)]T
)

, is applied to the system, for k = 0, 1, · · · .
Robust stability of the model predictive control is studied in [21]. Note that a stabilizing controller

based on residuation theory was derived also in [7] for deterministic MPL systems.

If we denote with x := [xT0 xT1 · · ·x
T
N ]T then it follows that:

x=











E
Θ(1, 1;w,w)

...

Θ(N, 1;w,w)











⊗ x⊕











ε ε · · · ε

B(w,w0) ε · · · ε

...
...

. . .
...

Φ(N, 1;w,w) Φ(N, 2;w,w) · · · B(wN−2, wN−1)











⊗u,

where Θ(k, 1;w,w) := A(wk−2, wk−1) ⊗ · · · ⊗ A(w,w0) and Φ(k, j;w,w) := A(wk−2, wk−1) ⊗
· · · ⊗ A(wj−1, wj) ⊗ B(wj−2, wj−1) (note that we consider w−1 = w). Therefore, x can be written

more compactly as:

x = Θ(w,w)⊗ x⊕ Φ(w,w)⊗ u, (7)

where Θ(w,w) and Φ(w,w) are appropriately defined. Similarly, the inequalities (3)–(4) can be written

as:

Hx + Gu + Fr ≤ h,

for some matrices H,G,F and a vector h of appropriate dimensions. Note that H has nonnegative

entries according to assumption A1. Now, the set of admissible open-loop input sequences Πol
N (x,w, r)

can be rewritten more compactly as:

Πol
N (x,w, r)={u : H(Θ(w,w)⊗x⊕Φ(w,w)⊗u)+Gu+Fr≤ h, ∀w∈W}. (8)

After some manipulations we obtain that the set of feasible u is given by:

Πol
N (x,w, r) = {u : Fu +Ψw ≤ c(x,w, r), ∀w ∈ W}, (9)

where F ∈ R
nF×Nm,Ψ ∈ R

nF×Nq and c(x,w, r) ∈ R
nF is an affine expression in (x,w, r).

Lemma 2.1. The sets Xol
N and Πol

N (x,w, r) are polyhedra.

Proof: Note that Πol
N (x,w, r) = {u : Fu ≤ c(x,w, r) − ψ0}, where the ith component of the vector

ψ0 is given by ψ0
i := maxw∈W Ψi.w (recall that Ψi. denotes the ith row of Ψ). Since W is a compact

set it follows that ψ0 is a finite vector. Therefore, Πol
N (x,w, r) is a polyhedron.

†Since VN is continuous and W is compact, “sup” of VN over W is attained and thus we can use directly “max” instead of
sup.
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Similarly Xol
N = {(x,w, r) : ∃u such that Fu ≤ c(x,w, r) − ψ0} and since c(x,w, r) is an

affine expression in (x,w, r) it follows that Xol
N is the projection of the polyhedron {(x,w, r,u) :

Fu− c(x,w, r) ≤ ψ0} onto a suitably-defined subspace. Therefore, Xol
N is a polyhedron. ♦

Since ℓi(·, u, r) ∈ F
+
mps, ∀(u, r) it follows that:

VN (x,w, r,u,w) = max
j∈J
{αT

j x + βT
j u + γTj w + δj(x,w, r)}, (10)

where αj are nonnegative vectors (i.e. αj ≥ 0 for all j ∈ J ) and δj(x,w, r) are affine expressions in

(x,w, r).

Remark 2.2 Note that if the entries of matrix functions A,B and C are max-plus-nonnegative-scaling

functions (i.e.Aij , Bil and Ckl are inF+
mps for all i, j, l and k) then the vectors γj are also nonnegative.

We will make use of this property in Section 4. ♦

Equivalently, we can write VN (x,w, r,u,w) as:

VN (x,w, r,u,w) = max
i∈I
{p̃Ti u + qTi w + si(x,w, r)}, (11)

for some vectors p̃i, qi and si(x,w, r) are affine expressions in (x,w, r). We define:

JN (x,w, r,u) := max
w∈W

VN (x,w, r,u,w). (12)

Lemma 2.3. The function (x,w, r,u) 7→ JN (x,w, r,u) is convex and PWA.

Proof: From (11) we remark that VN (x,w, r,u,w) is a convex function in

(x,w, r,u) since z 7→ maxi{zi} is a convex map and convexity is preserved under composition of a

convex function with affine maps. Since the point-wise supremum of an arbitrary, infinite set of convex

functions is convex [10], it follows that JN (x,w, r,u) is a convex function. Using similar arguments

we can prove that JN is also PWA (see also the explanations below). ♦
If we denote with q0i = maxw∈W qTi w (sinceW is compact, the q0i ’s are finite and can be computed

by solving a linear program), then the open-loop min-max optimization problem (6) can be recast as a

linear program:

min
µ,u
{µ : Fu ≤ c(x,w, r)− ψ0, p̃Ti u− µ ≤ −q0i − si(x,w, r), ∀i ∈ I}. (13)

Note that in [6] a solution of (6) is obtained by first computing the vertices of W . Let Lv be

the number of vertices of W . In the worst-case the number of vertices of W may be exponential:

LN
v ≥ 2qN . So, the computational complexity of our approach is better than the approach of [6]

because in the corresponding linear program of [6] we have |I|(LN
v − 1) more inequalities and also

more variables than in our linear program (13).

2.2. Disturbance feedback policies

Effective control in the presence of disturbance requires one to optimize over feedback policies [12,13],

rather than open-loop input sequences. A feedback controller prevents the trajectory from diverging

excessively and also the performance is improved compared to the open-loop case. One way of

including feedback is to consider semi-feedback control sequences, i.e. to search over the set of time-

varying max-plus-scaling (i.e. convex piecewise affine) state feedback control policies with memory of

prior states [1, 2, 7]:

ui =

i
⊕

j=0

Li,j ⊗ xj ⊕ gi, ∀i ∈ N[0,N−1], (14)
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where each Li,j ∈ R
m×n
ε and gi ∈ R

m
ε . We can also consider the affine approximation of (14), i.e

time-varying affine state feedback control policies with memory of prior states:

ui =
i

∑

j=0

L̃i,jxj + g̃i, ∀i ∈ N[0,N−1], (15)

where each L̃i,j ∈ R
m×n and g̃i ∈ R

m,

It is known, even for linear systems [14–16], that given an initial state x and an initial disturbance

w, the set of gains L̃i,j and g̃i such that the control sequence given by (15) satisfies the constraints

(3)–(4) is a non-convex set (and thus a similar result holds for max-plus-scaling state feedback control

policies (14)). Therefore, finding admissible L̃i,j and g̃i (Li,j and gi, respectively) given the current

state x and current disturbance w is a very difficult problem. The state feedback policy (14) can be

written more compactly as u = L⊗ x⊕ g, where L and g have appropriate dimensions. Replacing the

expression of u in (7) ones gets that: x = Φ(w,w)⊗ L⊗ x⊕Θ(w,w)⊗ x⊕ Φ(w,w)⊗ g. Using the

fact (see [9]) that the equation z = D⊗ z⊕ c has a solution in max-plus algebra given by x = D∗⊗ c,
we can easily derive that x =

(

Φ(w,w) ⊗ L
)∗
⊗

(

Θ(w,w) ⊗ x⊕ Φ(w,w) ⊗ g
)

and after some long

but straightforward computations u can be rewritten as:

u =
(

L⊗ Φ(w,w)
)∗
⊗

(

L⊗Θ(w,w)⊗ x⊕ g
)

.

Define u(w,w) := (L ⊗ Φ(w,w))∗ ⊗ (L ⊗ Θ(w,w) ⊗ x ⊕ g) then the function (w,w) 7→ u(w,w)
is in FNm

mps (i.e. a convex piecewise affine function). Recall that we assume at each step k the previous

disturbances w,w0 . . . wk−1 are known (they can be computed or measured). Since L and Φ(w,w)
are lower triangular matrices, it can be proved after some long but straightforward computations that

ui(w,w) is a max-plus-scaling function depending only on the previous disturbances w,w0 . . . wi−1,

for all i ∈ N[0,N−1]. It follows that the class of time-varying max-plus-scaling state feedback policies

with memory of the prior states defined in (14) is included in the class of max-plus-scaling disturbance

feedback policies with memory of the prior disturbances. Therefore, an alternative approach to state

feedback policies (14) is to parameterize the control policy as a max-plus-scaling function of the

previous disturbances. Unfortunately, this parametrization of the control will lead to non-convex

inequalities as well. As an alternative, we propose to approximate the convex piecewise affine function

u(w,w) with an affine one, i.e. to parameterize the controller as an affine function of the past

disturbances [14, 16]:

ui =

i−1
∑

j=0

Mi,jwj + vi, ∀i ∈ N[0,N−1], (16)

where Mi,j ∈ R
m×q and vi ∈ R

m. We now show that contrary to state feedback policies (14) or (15),

the set of gains Mij and vi such that the control sequence (16) satisfies the constraints (3)–(4) is a

convex set.

Let us denote with v := [vT0 vT1 · · · v
T
N−1]

T and

M :=











0 0 · · · 0
M1,0 0 · · · 0

...
...

. . .
...

MN−1,0 MN−1,1 · · · 0











(17)

so that the disturbance feedback policy becomes u = Mw + v. Note that for M = 0, (15) reduces to

an open-loop control sequence.
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For each x,w and r we define the set of feasible pairs (M, v):

Πdf
N (x,w, r)={(M, v) : M as in (17), ui=

i−1
∑

j=0

Mi,jwj + vi, Hixi+Giui+Firi≤hi,

(xN , rN ) ∈ Xf , ∀i ∈ N[0,N−1], ∀w ∈ W}.

The finite-horizon disturbance feedback min-max control problem becomes:

P
df
N (x,w, r) : V 0,df

N (x,w, r) := inf
(M,v)∈Πdf

N
(x,w,r)

max
w∈W

VN (x,w, r,Mw+v,w). (18)

We denote with (M0
N (x,w, r), v0

N (x,w, r)) an optimizer of (18), whenever the infimum is attained.

Let Xdf
N denote the set of initial states for which a solution to the optimization problem (18) exists, i.e.

Xdf
N = {(x,w, r) : Πdf

N (x,w, r) 6= ∅}.

We will show in the sequel that the set Πdf
N (x,w, r) is polyhedral and moreover the optimization

problem (18) is a linear program, for all (x,w, r) ∈ Xdf
N . ¿From (7) it follows that x can be written as

x = Θ(w,w)⊗ x⊕Φ(w,w)⊗ (Mw+ v), Using (9), the set of admissible affine disturbance feedback

parameters Πdf
N (x,w, r) can be rewritten more compactly as follows:

Πdf
N (x,w, r)={(M, v) : M as in (17), Fv + (FM +Ψ)w≤ c(x,w, r), ∀w ∈ W}.

Lemma 2.4. The sets Xdf
N and Πdf

N (x,w, r) are polyhedra.

Proof: From previous formula it follows that we can rewrite Πdf
N (x,w, r) equivalently as:

Πdf
N (x,w, r) =

{

(M, v) : M as in (17), Fv +max
w∈W
{(FM +Ψ)w} ≤ c(x,w, r)

}

,

where maxw∈W{(FM +Ψ)w} is the vector defined as follows

max
w∈W
{(FM +Ψ)w} :=

[

max
w∈W
{(FM +Ψ)1.w} · · ·max

w∈W
{(FM +Ψ)nF .w}

]T
,

and where (FM + Ψ)i. denotes the ith row of the matrix FM + Ψ. Since W is a polytope, we can

compute an admissible pair (M, v) using duality for linear programming [17], by solving a single linear

program. It is clear that

W = {w ∈ R
Nq : Ωw ≤ s}, (19)

where‡
Ω = diag(Ω) and s = [sT · · · sT ]T . The dual problem of the linear program

max
w
{(FM +Ψ)i.w : Ωw ≤ s}

is the following linear program

min
di

{sT di : Ω
T di = (FM +Ψ)Ti. , di ≥ 0}.

‡diag(Ω) denotes the block diagonal matrix having the entries on the diagonal equal to Ω and the rest equal to 0.
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In conclusion, we can write:

Πdf
N (x,w, r)={(M, v) : ∃D ≥ 0,M as in (17), Fv+DT s≤c(x,w, r), FM +Ψ = DT

Ω},

where D ∈ R
NnΩ×nF is defined as D.j = dj for all j ∈ N[1,nF ] (recall that D.j denotes the jth column

of D).

It is clear that Πdf
N (x,w, r) is a polyhedron, since it is the projection of the polyhedron

{(M, v,D) : M as in (17), D ≥ 0, Fv + DT s ≤ c(x,w, r), FM +Ψ = DT
Ω}

onto a suitably defined subspace. Similarly Xdf
N = {(x,w, r) : ∃(M, v), M as in (17), D ≥

0, Fv+DT s ≤ c(x,w, r), FM+Ψ = DT
Ω} and since c(x,w, r) is an affine expression in (x,w, r)

it follows that Xdf
N is also the projection of a polyhedron onto a suitably-defined subspace and thus

Xdf
N is a polyhedron. ♦
¿From (11) it follows that, as a function of (M, v), VN can be expressed as:

VN (x,w, r,Mw + v,w) = max
i∈I
{p̃Ti v + (p̃Ti M + qTi )w + si(x,w, r)}.

We define:

JN (x,w, r,M, v) := max
w∈W

VN (x,w, r,Mw + v,w).

Using the same arguments as in the proof of Lemma 2.3 we obtain:

Lemma 2.5. The function (x,w, r,M, v) 7→ JN (x,w, r,M, v) is convex. ♦

Theorem 2.6. The robust optimal control problem (18) can be recast as a linear program.

Proof: Note that JN (x,w, r,M, v)=maxi∈I

{

p̃Ti v+maxw∈W{(p̃
T
i M+qTi )w}+sj(x,w, r)

}

. Using

again duality for linear programming (see also [16, 17]) it follows that

max
w∈W
{(p̃Ti M + qTi )w} = min

zi
{sT zi : Ω

T zi = (p̃Ti M + qTi )
T , zi ≥ 0}.

So, the robust optimal control problem (18) can be recast as a linear program:

min
µ,M,v,D,Z

{

µ : M as in (17), Fv+DT s≤c(x,w, r), FM +Ψ=DT
Ω, PT M +QT = ZT

Ω,Z ≥ 0,

PT v + ZT s + S(x,w, r) ≤ µ̄, D ≥ 0, µ̄ = [µ . . . µ]T , D ∈ R
NnΩ×nF , Z ∈ R

NnΩ×|I|
}

. (20)

where P.j = pj , Q.j = qj , Sj(x,w, r) = sj(x,w, r) and Z.j = zj , for all j ∈ I. ♦
In the particular case when M = 0 we obtain the open-loop controller derived in Section 2.1 and

thus

Xol
N ⊆ X

df
N , V 0,df

N (x,w, r) ≤ V 0,ol
N (x,w, r) ∀(x,w, r) ∈ Xol

N .

2.3. State feedback policies

In this section we consider full state feedback policies. Therefore, we will define the decision variable

in the optimal control problem, for a given initial condition x, initial disturbance w and the reference

signal r as a control policy π := (µ0, µ1, . . . , µN−1), where each µi : R
n × R

q × R
Np → R

m is a

state feedback control law. Also, let xi = φ(i;x,w, π,w) denote the state solution of (2) at step i when

the initial state is x at step 0, the initial disturbance is w, the control is determined by the policy π, i.e.

u(i) = µi(φ(i− 1;x,w, π,w), wi−1, r), and the disturbance sequence is w (where w−1 := w).
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For each initial condition x, initial disturbance w and due dates r we define the set of feasible

policies π:

Πsf
N (x,w, r) := {π : Hixi +Giµi(xi−1, wi−1, r) + Firi ≤ hi, i ∈ N[0,N−1],

(xN , rN ) ∈ Xf , ∀w ∈ W}. (21)

Also, let Xsf
N denote the set of initial states and reference signals for which a feasible policy exists, i.e.

Xsf
N := {(x,w, r) : Πsf

N (x,w, r) 6= ∅}. (22)

The finite-horizon state feedback min-max control problem considered here is:

P
sf
N (x,w, r) : V 0,sf

N (x,w, r) := inf
π∈Πsf

N
(x,w,r)

max
w∈W

VN (x,w, r, π,w). (23)

Let π0
N (x,w, r) ∈ argminπ∈Πsf

N
(x,w,r) maxw∈W VN (x,w, r, π,w) be an optimizer, whenever the

infimum is attained. We will proceed to show how for the assumptions A1 and A2, in conjunction

with the convexity and monotonicity of the system dynamics (2), an explicit expression of the solution

to the state feedback problem (23) can be computed via dynamic programming (DP), using results

from polyhedral algebra and parametric linear programming.

DP is a well-known method for solving sequential, or multi-stage, decision problems [12,13]. More

specifically, one computes sequentially the partial return functions {V 0
i }

N
i=1, the associated set-valued

optimal control laws {κi}
N
i=1 (such that µ0

N−i(x,wp, r) ∈ κi(x,wp, r)) and their domains {Xi}
N
i=1. If

we define

Ji(x,wp, r, u) := max
wc∈W

{ℓN−i(fMPL(x,u, wp, wc), u, rN−i)+

V 0
i−1(fMPL(x, u, wp, wc), wc, r)}, (24a)

for all (x,wp, r, u) ∈ Zi,, where

Zi :={(x,wp,r, u) : HN−ifMPL(x, u, wp, wc) +GN−iu+ FN−irN−i ≤ hN−i,

wp ∈W, (fMPL(x, u, wp, wc), wc, r) ∈ Xi−1, ∀wc ∈W}, (24b)

then we can compute {V 0
i , κi, Xi}

N
i=1 recursively, as follows [13]:

Xi := {(x,wp, r) : (x, r) ∈ X
(x,r)
i , wp ∈W}, XN := Projn+q+pNZN , (24c)

where for all i ∈ N[1,N−1] (since for Xi must hold that the previous disturbance is in the set W )

X
(x,r)
i := {(x, r) : (x,wp, r) ∈ Projn+q+pNZi, ∀wp ∈W}, (24d)

V 0
i (x,wp, r) := min

u
{Ji(x,wp, r, u) : (x,wp, r, u) ∈ Zi}, ∀(x,wp, r) ∈ Xi, (24e)

κi(x,wp, r) := argmin
u
{Ji(x,wp, r, u) : (x,wp, r, u) ∈ Zi}, (24f)

with the boundary conditions

X0 := {(x,wp, r) : (x, rN ) ∈ Xf , wp ∈W}, (24g)

V 0
0 (x,wp, r) := Vf(x, rN ), ∀(x,wp, r) ∈ X0. (24h)
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¿From the principle of optimality of DP [12, 13] it follows that

Xsf
N = XN , V

0,sf
N (x,w, r) = V 0

N (x,w, r), ∀(x,w, r) ∈ XN .

To simplify notation in the rest of the paper, we define two prototype problems and we study their

properties. The prototype maximization problem Pmax is defined as:

Pmax : J(x,wp, r, u) := max
wc∈W

{ℓ(fMPL(x, u,wp, wc), u, r)+

V (fMPL(x, u, wp, wc), wc, r)}, (25)

for all (x,wp, r, u) ∈ Z, where the domain of J is

Z := {(x,wp, r, u) : HfMPL(x, u, wp, wc) +Gu+ Fr ≤ h, wp ∈W,

(fMPL(x, u, wp, wc), wc, r) ∈ Ω, ∀wc ∈W}, (26a)

X := {(x,wp, r) : (x, r) ∈ X
(x,r), wp ∈W} or X := Projn+q+pNZ, (26b)

with X(x,r) := {(x, r) : (x,wp, r) ∈ Projn+q+pNZ, ∀wp ∈ W}, ℓ : R
n+m+p → R, V : Ω → R, r

has the form r = [. . . rT . . .]T (i.e., ∃k : rk = r). The prototype minimization problem Pmin is defined

as:

Pmin : V 0(x,wp, r) := min
u
{J(x,wp, r, u) : (x,wp, r, u) ∈ Z}, (27a)

κ(x,wp, r) := argmin
u
{J(x,wp, r, u) : (x,wp, r, u) ∈ Z}, (27b)

for all (x,wp, r) ∈ X .

In terms of these prototype problems, it is easy to identify the DP recursion (24) by setting

r ← rN−i, ℓ ← ℓN−i, V ← V 0
i−1, V 0 ← V 0

i , X ← Xi, Z ← Zi and Ω ← Xi−1. Moreover,

H,G,F are identified with HN−i, GN−i, FN−i, respectively.

Clearly, we can now proceed to show, via induction, that a certain set of properties is possessed by

each element in the sequence {V 0
i , κi, Xi}

N
i=1 by showing that if {V,Ω} has a given set of properties,

then {V 0, X} also has these properties, with the properties of κ being the same as those of each of the

elements in the sequence {κi}
N
i=1. In the sequel, constructive proofs of the main results are presented,

so that the reader can develop a prototype algorithm for computing the sequence {V 0
i , κi, Xi}

N
i=1.

2.3.1. Properties of X

The following lemma is a simple consequence of the basic properties of the max operator:

Lemma 2.7. The set Z = {(x,wp, r, u) : H̄fMPL(x, u, wp, wc) + Ḡu+ F̄wp + Ēr ≤ h̄, ∀wc ∈W}

with H̄ ≥ 0, can be written equivalently as Z = {(x,wp, r, u) : H̃x + G̃u + F̃wp + Ẽr ≤ h̃} with

H̃ ≥ 0. ♦

The next lemma shows that some useful properties of a class of polyhedra are inherited by its

projection.

Lemma 2.8. [21] Let Z = {(x, r, t, u) ∈ R
n × R

p × R
q × R

m : H̄x + F̄ r + K̄t + Ḡu ≤ h̄} be

given, where H̄ ≥ 0 and K̄ ≤ 0. The set X := {(x, r, t) : ∃u s.t. (x, r, t, u) ∈ Z} is a polyhedral set

of the form X = {(x, r, t) : H̃x+ F̃ r + K̃t ≤ h̃}, where H̃ ≥ 0 and K̃ ≤ 0. ♦
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We are now in a position to show that X has the same structural properties as Ω.

Lemma 2.9. Suppose Ω is a polyhedral set given by Ω = {(x,w, r) : Γx + Φr ≤ γ, w ∈ W} with

Γ ≥ 0, and assume that H in (26a) satisfies H ≥ 0. Then, the set X defined in (26b) is a polyhedron

given by either X = {(x,wp, r) : Ĥx+ Êr ≤ ĥ, wp ∈W} or X = {(x,wp, r) : Ĥx+ F̂wp+ Êr ≤

ĥ}, where Ĥ ≥ 0.

Proof: The set Z is described as follows:

Z={(x,wp, r, u) : H̄fMPL(x, u, wp, wc)+Ḡu+F̄wp+Ēr ≤ h̄, ∀wc ∈W},

where H̄ = [HT ΓT 0]T ≥ 0, Ḡ = [GT 0 0]T , F̄ = [0 0 ΩT ]T , Ē = [(Fr)T (Φr)T

0]T and h̄ = [hT γT sT ]T . From Lemma 2.7 it follows that Z can be written equivalently as

Z = {(x,wp, r, u) : H̃x + G̃u + F̃wp + Ẽr ≤ h̃} where H̃ ≥ 0. By applying a particular case

of Lemma 2.8 it follows that Projn+q+pNZ = {(x,wp, r) : Ĥx+ F̂wp + Êr ≤ ĥ}, H̄ ≥ 0. The rest

follows immediately. ♦
Note that the set X0 in (24g) is of the form given in Lemma 2.9 (since we assume that assumption

A1 holds).

2.3.2. Properties of Pmax

We now derive an invariance property of the prototype maximization problem Pmax.

Lemma 2.10. If ℓ, V ∈ Fmps and ℓ(·, u, r), V (·, wp, r) ∈ F
+
mps for any fixed (wp, r, u), then J

possesses the same properties, i.e. J ∈ Fmps and J(·, wp, r, u) ∈ F
+
mps, for any fixed (wp, r, u).

Proof: Using basic properties of the max operator one can write ℓ(fMPL(x, u,
wp, wc), u, r)+V (fMPL(x, u, wp, wc), wc, r) = maxj∈J {α

T
j x+β

T
j wp+µ

T
j wc+γ

T
j u+ δ

T
j r+ θ̃j},

where αj ≥ 0 for all j ∈ J , so that

J(x,wp, r, u) = max
wc∈W

{

max
j∈J
{αT

j x+ βT
j wp + µT

j wc + γTj u+ δTj r + θ̃j}
}

=

max
j∈J
{αT

j x+ βT
j wp + γTj u+ δTj r + θj},

where θj := θ̃j + maxwc∈W {µ
T
j wc}, for all j ∈ J . Note that {θj}j∈J can be computed by solving

a sequence of linear programs. Moreover, the coefficients of the variable x in J are the nonnegative

vectors, i.e. αj ≥ 0. ♦
Recall that ℓ and V 0

0 given in (5) and (24h) satisfy the conditions of Lemma 2.10.

2.3.3. Properties of Pmin

This section derives the main properties of V 0 and κ. The following lemma gives a characterization

of the solution and of the optimal value of the prototype minimization problem Pmin.

Lemma 2.11. Suppose Ω is a polyhedral set given by Ω = {(x,w, r) : Γx + Φr ≤ γ, w ∈ W}
with Γ ≥ 0, and assume that H in (26a) satisfies H ≥ 0. Suppose also that Z 6= ∅, J ∈ Fmps and
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V 0 is proper§. Then, the value function V 0 ∈ Fmps and has domain X , where X is a polyhedral set.

The (set-valued) control law κ(x,wp, r) is a polyhedron for a given (x,wp, r) ∈ X . Moreover, it is

always possible to select a continuous and PWA control law µ such that µ(x,wp, r) ∈ κ(x,wp, r) for

all (x,wp, r) ∈ X .

Proof: From the proof of Lemma 2.9 it follows that Z is a non-empty polyhedron: Z = {(x,wp, r, u) :

H̃x + G̃u + F̃wp + Ẽr ≤ h̃}, with H̃ ≥ 0. Since J ∈ Fmps, we can write J(x,wp, r, u) =
maxj∈J {α

T
j x+β

T
j wp+γ

T
j u+δ

T
j r+θj}. The prototype minimization problem Pmin(x, r) becomes:

V 0(x,wp, r) = min
µ,u
{µ : αT

j x+ βT
j wp + γTj u+ δTj r + θj ≤ µ, ∀j ∈ J , (x,wp, r, u) ∈ Z}, (28)

i.e. we have obtained a feasible linear program for any (x,wp, r) ∈ Projn+q+pNZ. It follows that Pmin

is a parametric linear program of the type considered in [18, 19]: infu{c
Tu : Fu ≤ Gx + g}, where

x ∈ X is the parameter vector. The properties stated above then follow from the properties of the

parametric linear program. ♦
Now we can state the following key result, which, together with Lemma 2.9–2.11, allow one to

deduce, via induction, some important properties of the sequence {V 0
i , κi, Xi}

N
i=1:

Theorem 2.12. Suppose that the same assumptions as in Lemma 2.11 hold. If, in addition,

J(·, wp, r, u) ∈ F
+
mps for any fixed (wp, r, u), then the value function V 0(·, wp, r) ∈ F

+
mps for

any fixed (wp, r).

Proof: ¿From Lemma 2.11 and the fact that V 0 is proper, it follows that V 0 ∈ Fmps and its domain is

Projn+q+pNZ. Using the proof of Lemma 2.11, the epigraph of V 0 has the following form:

epiV 0 :={(x,wp, r, t) : V
0(x,wp, r) ≤ t, (x,wp, r) ∈ Projn+q+pNZ} =

{(x,wp, r, t) : ∃u s.t. (x,wp, r, u) ∈ Z, J(x,wp, r, u) ≤ t} =

{(x,wp, r, t) : ∃u s.t. H̄x+ Ḡu+ F̄wp + Ēr + K̄t ≤ h̄},

where H̄ = [H̃T αT
1 · · · α

T
l ]

T ≥ 0 and K̄ = [0 − 1 . . . − 1]T ≤ 0. From Lemma 2.8 we obtain that

the epigraph of V 0 is a polyhedral set given by epi V 0 = {(x,wp, r, t) : Ĥx+ F̂wp+ Êr+ K̂t ≤ ĥ},

where Ĥ ≥ 0, K̂ ≤ 0. Let l = n
Ĥ

be the number of inequalities describing epi V 0. We arrange the

indexes i ∈ N[1,l] such that K̂i < 0 for i ∈ N[1,v] but K̂i = 0 for i ∈ N[v+1,l] (possibly v = 0, i.e.

K̂i = 0 for all i). Taking ai = −Ĥi./K̂i, bi = −F̂i./K̂i, ci = −Êi./K̂i and di = −ĥi/K̂i for all

i ∈ N[1,v], we get that the epigraph of V 0 is expressed as:

epiV 0 = {(x,wp, r, t) :aix+ biwp + cir− di ≤ t, ∀i ∈ N[1,v]

Ĥi.x+ F̂i.wp + Êi.r ≤ ĥi, ∀i ∈ N[v+1,l]}. (29)

But V 0 is proper and thus v > 0. Since V 0 ∈ Fmps, (29) gives us a representation of V 0 as

V 0(x,wp, r) = maxi∈N[1,v]
{aix+ biwp + cir− di}, where ai = −Ĥi./K̂i ≥ 0, for all i ∈ N[1,v], i.e.

V 0(·, wp, r) ∈ F
+
mps for any fixed (wp, r). ♦

§Note that since we always have that u0 should be larger than the current time instant, i.e. the time instant at which we start
performing the computations, u0 is bounded from below and V 0 will always be proper.
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¿From Theorem 2.12 it follows that V 0 is a continuous and convex function. Based on the invariance

properties of the two prototype problems Pmax and Pmin, we can now derive the properties of V 0
i , κi

and Xi for all i ∈ N[1,N ]. The following follows by applying Lemmas 2.9–2.11 and Theorem 2.12 to

the DP equations (24):

Theorem 2.13. Suppose that A1 and A2 hold, Zi is non-empty and V 0
i is proper for all i ∈ N[1,N ].

The following holds for each i ∈ N[1,N ]:

(i) Xi is a non-empty polyhedron,

(ii) V 0
i is a convex, continuous PWA function with domain Xi,

(iii) V 0
i (·, wp, r) ∈ F

+
mps for any fixed (wp, r).

(iv) There exists a continuous PWA function µ0
N−i such that µ0

N−i(x,wp, r) ∈ κi(x,wp, r) for all

(x,wp, r) ∈ Xi.

(v) The sequences {V 0
i , κi, Xi}

N
i=1 and {µ0

i }
N
i=1 can be computed by solving exactly N parametric

linear programs.

Since the proofs of all the above results are constructive, it follows that the sequences

{V 0
i , κi, Xi}

N
i=1 and {µ0

i }
N
i=1 can be computed iteratively, without gridding by solving N parametric

linear programs as in the linear case (see [20]). It is clear that:

Xol
N ⊆ X

df
N ⊆ X

sf
N ,

V 0,sf
N (x,w, r) ≤ V 0,df

N (x,w, r) ≤ V 0,ol
N (x,w, r), ∀(x,w, r) ∈ Xol

N .
(30)

The results developed in this paper are valid for a class of systems for which the MPL systems are a

subclass, namely for continuous PWA systems x(k+1) = f(x(k), y(k), w(k)), y(k) = h(x(k), w(k))
(i.e. f and h are continuous PWA functions) satisfying f(·, u, w) ∈ (F+

mps)
n and h(·, w) ∈ (F+

mps)
p

for any fixed (u,w).

Remark 2.14 MPL systems are DES and they thus differ from conventional time driven systems

in the sense that the event counter k is not directly related to a specific time. Note that in practical

applications the entries of the system matrices are nonnegative or take the value ε. It follows that

if x(k) is completely available, then u(k − 1) and w(k − 1) are also available. The reader might

ask how we determine the cycle k. Let t0 be the time when one of the optimization problems

discussed in the previous sections is solved. Let us assume a sampling time T and for simplicity

we take t0 = 0. Then, at each time jT , where j ≥ 0, we can define the cycle k as follows:

k = argmax{l : xi(l) ≤ jT ∀i ∈ N[1,n]}. This means that at time jT the state x(k) is completely

available and also w(k − 1), u(k − 1) are completely known. However, at time jT also some future

components of the inputs and of the disturbances might be known. Therefore, these constraints on the

inputs and on the disturbances must be taken into account and (due to causality) can be recast as linear

equality or inequality constraints, which thus fit in the framework presented in this paper.

In the open-loop case at time t = ui(k), where ui(k) = [u0k(x,w, r)]i, the ith input is activated for

the kth cycle. In the disturbance or state feedback case ui(k) = [µ0
k(x(k), w, w(0), · · · , w(k−1), r)]i,

where µ0
k is either the disturbance feedback policy computed in Section 2.2 or the state feedback policy

computed in Section 2.3. Therefore, we can compute at time jT the optimal input u(k) as explained

above and we take into account the new information available as equality constraints on the input and

on the disturbance. At time (j + 1)T the whole procedure is repeated.

For future research we want to investigate in more depth the timing issues that appears in a moving

horizon framework, this being one of our current research topics.
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3. “TIME–OPTIMAL” CONTROL

As an application of the three robust control problems discussed in the previous section, we consider

the MPL counterpart of the conventional time-optimal control problem: Given a maximum horizon

length Nmax we consider the problem of ensuring that the completion times after N events (with

N ∈ N[1,Nmax]) are less than or equal to a specified target time T (i.e. y(N) ≤ T), using the latest

controller that satisfies the input and state constraints (3). Note that such a problem, but without

considering constraints and disturbances, was considered also in [9] in terms of lattice theory. The

time-optimal control problem in our setting is different from the classical one (we want to maximize¶

N instead of minimizing it; so in fact a better term would be “throughput-optimal” control). Since we

want the maximal N , the robust time-optimal control problem can be posed in the framework of the

finite-horizon min-max control problems considered in the previous section.

One proceeds by defining

N0(x,w,T) := max
N,π
{N ∈ N[1,Nmax] : π ∈ ΠT

N (x,w, [0 . . . 0 TT ]T )}, (31)

where ΠT
N (·) is either Πol

N (·) or Πdf
N (·) or Πsf

N (·) depending whether π is an open-loop input sequence

or a disturbance feedback policy or a state feedback policy, respectively, but with the substitutions

HN ← [HT
N I]T ≥ 0, FN ← [FT

N 0]T and hN ← [hTN ((−CT )⊗′ T)T ]T (note that Firi = 0, for all

i ∈ N[0,N−1] and rN = T). It follows that

N0(x,w,T) = max
N
{N ∈ N[1,Nmax] : (x,w, r) ∈ X

T
N}, (32)

where r = [0 0 · · · 0 TT ]T and XT
N = {(x,w, r) : ΠT

N (x,w, r) 6= ∅}. Since we want to feed the raw

material as late as possible [9], a suitable choice of stage cost is ℓi(xi, ui, ri) := −
∑m

j=1[ui]j . The

robust time-optimal controller is implemented as follows:

1. For each N ∈ N[1,Nmax], solve problem (6) or (18) or (23) where r is defined as r =

[0 0 · · · 0 TT ]T ∈ R
pN .

2. Determine N0(x,w,T) according to (32).

3. Let r0 := [0 0 · · · 0 TT ]T ∈ R
pN , with N = N0(x,w,T).

4. Let the control policy be given by π0
N , with N = N0(x,w,T).

5. Apply the control policy u(k) = µ0
k(x(k − 1), wp, r

0) for k = 1, 2, . . . ,
N0(x,w,T), where at step k,w(k − 1) = wp.

The robust time-optimal control problem involves solving either a set of linear programs or

parametric linear programs.

4. “DETERMINISTIC” MIN-MAX CONTROL

The main drawback of the min-max optimization problems described in Section 2 is the computational

complexity. Although the open-loop control problem (6) can be recast as a linear program (13) with

¶For a manufacturing system this requirement corresponds to producing as many products as possible by the target time.
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Nm + 1 variables, the number of inequalities that describe the feasible set in this linear program

is |I| + nF , which, in general, may be very large. In the disturbance feedback approach (18),

we still have to solve a linear program (20), as in the open-loop case, but the improvement in

performance and feasibility compared to the open-loop case is obtained at the expense of introducing

N(N − 1)mq/2 + NnFnΩ + |I|NnΩ extra variables and nF + |I| extra inequalities. For the state

feedback approach (23), the solution is computed off-line, but the number of regions generated by

the parametric linear programming algorithm is also, in general, large. In this section we show that

the computational complexity of the three min-max control problems considered in Section 2 can be

reduced significantly if the disturbance has a certain description.

We assume a particular description of the uncertainty for an MPL system. From example (1) we have

seen that the system matrices of an MPL system (2) depend on the consecutive disturbances w(k − 1)
and w(k). However, there are situations when the system matrices depend only on the disturbance

w(k). One possibility is described next. We could redefine the uncertainty as

w(k) := [p1(k − 1) . . . pl(k − 1) p1(k) . . . pl(k) t1(k) . . . tl̃(k)]
T , (33)

but in this case we introduce some conservatism since we do not take into account that some

components of w(k − 1) and w(k) coincide.

A second possibility is the following. Note that in the context of MPL systems, the uncertainty

comes from the parameters pi and ti. Moreover, only the parameters pi depend on k − 1. So. let us

consider the case where the parameters pi are known and only the parameters ti are uncertain. In this

situation the uncertainty vector becomes

w(k) := [t1(k) · · · tq(k)]
T . (34)

In these two situations it follows that the MPL system (2) can be rewritten as

x(k + 1) = A(w(k))⊗ x(k)⊕B(w(k))⊗ u(k)
y(k) = C(w(k))⊗ x(k).

(35)

Moreover, we assume that there exists a w ∈W such that

A(w) ≤ A, B(w) ≤ B, C(w) ≤ C, ∀w ∈W. (36)

where A := A(w), B := B(w), C := C(w).
In the previous two situations described above, the inequalities in (36) typically hold since the

parameters pi and tj denote processing times and transportation times and thus we can assume that

each of them varies in some intervals: pi ∈ [p
i
pi] and tj ∈ [tj tj ]. Then, the uncertainty set W is

given by a box in R
q , W := [w w] where W =

(

[p
1
p1] × · · · × [p

l
pl]

)2
× [t1 t1] × . . . × [tl̃ tl̃]

corresponds to the case (33) and W = [t1 t1] × . . . × [tq tq] corresponds to the case (34). Moreover,

the entries of the system matrices corresponding to an MPL system are given by sums or maxima of

processing times (pi) and transportation times (tj) and thus the entries of matrices A,B and C are

max-plus-nonnegative-scaling functions:

Aij , Bil, Ckl ∈ F
+
mps, ∀ i, j, l, k (37)

i.e. each entry is a function defined as w 7→ maxj{α
T
j w + βj}, where αj are vectors with entries 0

and 1 (and thus αj ≥ 0) and βj ≥ 0. Since for any vector α ≥ 0 it follows that αTw ≤ αTw ≤ αTw
for all w ∈ W (= [w w]), we can conclude that the inequalities (36) hold. Note that interval transfer

functions for DES were also considered in [8].
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We will show in the sequel a quite interesting result, namely that under the previous hypothesis (i.e.

we assume that (35), (36) and (37) are valid) the finite-horizon min-max control problems discussed

in Section 2 reduce to an optimal control problem for a particular deterministic MPL system. It is

straightforward to show that the following inequality holds in the max-plus algebra:

C1 ≤ D1, C2 ≤ D2 ⇒ C1 ⊗ C2 ≤ D1 ⊗D2, (38)

for any matrices C1, C2, D1 and D2 of appropriate dimensions.

First let us consider the open-loop min-max case from Section 2.1. For an uncertain MPL system in

the form (35), we do not have dependence on w anymore (e.g. Θ(w,w) becomes in this new settings

Θ(w), etc). Let us define w := [wT . . . wT ]T ∈ W , Θ := Θ(w) and Φ := Φ(w). From (38) it follows

that

Θ(w)⊗ x⊕ Φ(w)⊗ u ≤ Θ(w)⊗ x⊕ Φ(w)⊗ u = Θ⊗ x⊕ Φ⊗ u, ∀w ∈ W.

Since H ≥ 0, it follows from (8) that

Πol
N (x, r) = {u : H(Θ⊗ x⊕ Φ⊗ u) + Gu + Fr ≤ h},

which coincides with the set of feasible input sequences over the horizon N corresponding to the

deterministic MPL system

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k), y(k) = C ⊗ x(k). (39)

Moreover, in (10) we have αj , γj ≥ 0 (see Remark 2.2 and (37)). It follows from (12) that

JN (x, r,u) = VN (x, r,u,w).

We now consider an optimal control problem for the deterministic system (39) over a horizon window

of length N :

P
upper
N (x, r) : V 0,upper

N (x, r) := inf
u∈Πol

N
(x,r)

VN (x,u, r,w). (40)

¿From the previous discussion it follows that:

Lemma 4.1. Suppose that (35), (36) and (37) hold. Then, the open-loop min-max control problem

P
ol
N (x, r) is equivalent with the deterministic optimal control problem P

upper
N (x, r), for all (x, r) ∈ Xol

N .

Let us now show that the state feedback min-max control problem P
sf
N (x, r) from Section 2.3 is

equivalent with the same deterministic optimal control problem P
upper
N (x, r). Indeed, since ℓi(·, u, r) ∈

F+
mps and using also Theorem 2.13 (iii) it follows that:

V 0
i (fMPL(x, u, w), r)≤V

0
i (A(w)⊗x⊕B(w)⊗u, r)=V 0

i (A⊗x⊕B⊗u, r), ∀w∈W,

ℓi(fMPL(x, u, w), u, r) ≤ ℓi(A(w)⊗ x⊕B(w)⊗ u, u, r) = ℓi(A⊗ x⊕B ⊗ u, u, r), ∀w ∈W.

Therefore, Ji(x, r, u) as defined in (24a) is given by:

Ji(x, r, u) = ℓN−i(A⊗ x⊕B ⊗ u, u, rN−i) + V 0
i−1(A⊗ x⊕B ⊗ u, r).

and the corresponding feasible set Zi reduces to

Zi = {(x, r, u) : HN−i(A⊗ x⊕B ⊗ u) +GN−iu+ FN−irN−i ≤ hN−i, A⊗ x⊕B ⊗ u ∈ Xi−1}.

The next result follows:
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Theorem 4.2. Suppose that (35), (36) and (37) hold then Xol
N = Xdf

N = Xsf
N and the robust control

problems considered in Section 2, i.e. Pol
N (x, r), P

df
N (x, r) and P

sf
N (x, r) are reduced to the optimal

control problem P
upper
N (x, r) corresponding to the deterministic system (39) for any (x, r) ∈ Xsf

N .

Proof: From the previous discussion (note that the optimal input sequence of the deterministic optimal

control problem (40) can also be computed via dynamic programming approach) and using Bellman’s

principle of optimality for dynamic programming [13] it follows that the optimal problems P
sf
N (x, r)

and P
upper
N (x, r) are equivalent. Therefore, from Lemma 4.1 and the inclusions (30) it follows that

Xol
N = Xdf

N = Xsf
N and robust control problems P

ol
N (x, r), P

sf
N (x, r) reduce to P

upper
N (x, r). Let

u0(x, r) be the optimal solution of these problems for a (x, r) ∈ Xsf
N . Then, using now the inequalities

from (30) it follows that the disturbance feedback control problem P
df
N (x, r) reduces to the same

deterministic optimal control problem P
upper
N (x, r) (an optimal solution for the disturbance feedback

approach is M(x, r) = 0 and v(x, r) = u0(x, r)). ♦
There is a significant advantage in solving the linear program (40) that has fewer constraints and

number of variables than the linear program (13).

5. EXAMPLES

5.1. Example 1

Let us consider the manufacturing system from Figure 1. The dynamical equations are given by

(1). We assume that the system is subject to hard constraint: x2(k) − u(k) ≤ 5 for all k. We

consider that the parameters p1, p2, t2, t4 and t6 are fixed at each cycle and taking the values

p1 = 1, p2 = 1, t2 = 1, t4 = 3 and t6 = 0. However, the rest of the parameters are assumed to be

varying with each cycle: p3(k) ∈ [1.5 2.5], t1(k) ∈ [0 2], t3(k) ∈ [0 1] and t5(k) ∈ [0 1]. We define

the uncertainty as w(k) = [p3(k − 1) t1(k) t3(k) t5(k)]
T , i.e. we employ the conservatism from (33).

Then, the uncertainty set is described by the following box W = [1.5 2.5] × [0 2] × [0 1] × [0 1].
Moreover, the dynamical equations of the process (1) can be written in matrix form as in (35). There

exists a feasible value of the uncertainty w = [2.5 2 1 1]T ∈ W for which the inequalities (36) hold.

We can easily verify that the conditions from Theorem 4.2 are fulfilled and thus the robust control

problems considered in Section 2, i.e. Pol
N (x, r), P

df
N (x, r) and P

sf
N (x, r) are reduced to the optimal

control problem P
upper
N (x, r) associated to the deterministic system

x(k + 1) =





1 ε ε
3 1 ε
5 3 2.5



⊗ x(k)⊕





2
4
6



⊗ u(k), y(k) = [ε ε 2.5]⊗ x(k).

We choose the following reference signal r(k) = 5 + 1.5λ∗k (here λ∗ = 2.5), the prediction

horizon N = 4 and the initial state is x = [13 14.5 17]T . Using the stage cost defined in (5) with

γ = 0.18, the deterministic optimal control problem (40) yields the following optimal input sequence:

{u0(k)}9k=0 = 6, 11, 12, 13, 14, 15.4, 19, 22.7, 26.5, 30.2. The results are displayed in Figure 2

using a feasible sequence of random disturbances.

We observe from the first plot that although we start later than the initial due date, the closed-loop

output is able to track the due dates signal after a finite transient behavior. The second plot displays the

optimal input. The input-state constraints x2(k) − u(k) ≤ 5 are depicted in the third plot. Note that

sometimes the constraints are indeed active.
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Figure 2. The closed-loop simulations.

Let us now compare our method with the other control design methods mentioned in Section 1. The

adaptive control approach proposed in [2] has the most features in common with our approach in the

sense that the approach of [2] allow violations of the due dates and tries to minimize these violations

by updating the model at each step of the computation of the optimal control sequence. However, the

approach in [2] cannot cope with more complex state and input constraints. For instance, using the

same disturbance realization as in our method and the adaptive control approach of [2] we obtain the

following optimal input sequence {u(k)}9k=0 = 6, 6, 6, 9.2, 12.3, 16, 19.9, 24.1, 28.4, 31.3.

Note that in that case x2(1) − u(1) = 9.5 6≤ 5. In [6] an open-loop min-max model predictive

controller is derived using only input constraints. However, the extension to input-state constraints

is straightforward according to Section 2.1. Moreover, from Section 2.1 we see that the optimal input

sequence can be found without having to resort to computations of vertices of W , as was done in [6].

Note that in this particular example, the open-loop approach from Section 2.1 is equivalent with the

state feedback approach derived in Section 2.3. However, in the next example we will see that the

feedback approach outperforms, in general, the open-loop approach.

5.2. Example 2

We now consider the following example, for which we compare the three robust optimal control

problems presented in Section 2:

x(k + 1)=

[

−w1(k) + w2(k) + 2 ε
−w1(k)− w2(k) + 5 w1(k)− 2

]

⊗ x(k)⊕

[

−w1(k) + 3
−w2(k) + 2

]

⊗ u(k)

y(k) = [0 ε]⊗ x(k).
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Figure 3. The tardiness max{y(·) − r(·), 0} for the feedback controllers (full) and the open-loop controller
(dotted).

N 1 2 3 4 5 6 7 8 9 10

nR 2 7 7 10 13 15 19 23 25 25

Table I. The number of regions nR in the parametric linear programs of Section 2.3 as a function of N .

We assume a bounded disturbance set: W =
{

w ∈ R
2 : w1 ∈ [2 3], w2 ∈ [1 2], w1 + w2 ≤ 4

}

. We

choose N = 10, the due date signal sequence is r = [3.4 5 7 9.5 11.8 14 16.7 19.4 21.6 23.8 26]T

and the initial state is x(0) = [6 8]T . The system is subject to input-state constraints: x2(k)− u(k) ≤
2, x1(N)+x2(N) ≤ 2rN ,−6+rk ≤ u(k) ≤ 6+rk. We use the stage cost defined in (5) with γ = 0.1
and a feasible random sequence of disturbances.

In this particular example we observe that the disturbance feedback controller from Section 2.2

coincides with the state feedback controller from Section 2.3. Moreover, the number of regions of the

computed parametric linear programs corresponding to the state feedback approach, as a function of

the prediction horizon N , is given in Table I. Note that these regions increases with the prediction

horizon.

Figure 3 shows the tardiness (i.e., the signal max{y(·)− r(·), 0}) for the open-loop controller from

Section 2.1 and for the feedback controllers derived in Sections 2.2–2.3. Note that the performance of

the feedback approaches are better than the open-loop approach. The figure shows that the feedback

controllers give a lower tardiness (i.e., better “tracking”) than the open-loop controller.

6. Conclusions

We have provided solutions to three finite horizon min-max control problems for constrained MPL

systems depending on the nature of the control input over which we optimize: open-loop input

sequences, disturbance feedback policies, or state feedback policies. We have shown that the open-

loop and the disturbance feedback min-max problem can be recast as linear programs while the state

feedback min-max problem can be solved exactly, without gridding, viaN parametric linear programs,

whereN is the prediction horizon. The key assumptions that allow us to preserve convexity in the min-
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max problems that we have considered, were that the stage cost be a max-plus-nonnegative-scaling

expression in the state and the matrices associated with the state constraints have nonnegative entries.

Finally, for a particular case of the uncertainty we have proven that all three min-max problems are

equivalent with a deterministic one.
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