
Delft University of Technology
Delft Center for Systems and Control

Technical report 06-025

Multi-agent reinforcement learning: A
survey∗

L. Buşoniu, R. Babuška, and B. De Schutter

If you want to cite this report, please use the following reference instead:
L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforcement learning:
A survey,” Proceedings of the 9th International Conference on Control, Automation,
Robotics and Vision (ICARCV 2006), Singapore, pp. 527–532, Dec. 2006.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/06_025.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/06_025.html


Multi-Agent Reinforcement Learning: A Survey
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Abstract—Multi-agent systems are rapidly finding applications
in a variety of domains, including robotics, distributed control,
telecommunications, economics. Many tasks arising in these
domains require that the agents learn behaviors online. A
significant part of the research on multi-agent learning concerns
reinforcement learning techniques. However, due to different
viewpoints on central issues, such as the formal statement
of the learning goal, a large number of different methods
and approaches have been introduced. In this paper we aim
to present an integrated survey of the field. First, the issue
of the multi-agent learning goal is discussed, after which a
representative selection of algorithms is reviewed. Finally, open
issues are identified and future research directions are outlined.

Keywords—multi-agent systems, reinforcement learning, game
theory, distributed control

I. INTRODUCTION

Multi-agent systems are rapidly finding applications in a

wide variety of domains such as robotic teams, distributed

control, collaborative decision support systems, data mining,

etc. Although the individual agents can be programmed to

exhibit some basic behaviors, many tasks require that agents

learn new behaviors online, such that the performance of the

agent or of the whole multi-agent system gradually improves.

A reinforcement learning (RL) agent learns by interact-

ing with its environment, using a scalar reward signal as

performance feedback [1]. The simplicity and generality of

this setting make it attractive also for multi-agent learning.

However, the main challenge in multi-agent RL (MARL)

is that each learning agent must explicitly consider other

learning (and therefore nonstationary) agents, and coordinate

its behavior with theirs, such that a coherent joint behavior

results.

Over the last years, many algorithms addressing this prob-

lem were proposed. These algorithms can be classified along

several dimensions: the type of task they address, the ho-

mogeneity of the agent team, assumptions on the agents’

knowledge and inputs, etc. Figure 1 organizes the algorithms

by their field of origin, regarding MARL as a fusion of

temporal-difference RL , game theory, and more general direct

policy search techniques.

MARL surveys typically review the field from a game-

theoretic perspective and focus on the central part of Fig. 1

[2]–[5]. The work in [6] is more general, but looking mainly

at cooperative multi-agent learning.

The aim of our survey is to take a broader approach and

give an overall view of the field. We address the different
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Figure 1. MARL encompasses temporal-difference reinforcement learning,
game theory and direct policy search techniques.

viewpoints on the learning goal in MARL , which leads to

certain diversity in the set of MARL algorithms and tech-

niques. Finally, we identify open issues in the field, and outline

control-theoretic ways to address some of these issues.

This paper is organized as follows. Section II introduces the

necessary background. Section III addresses the problem of a

suitable multi-agent learning goal, and Section IV reviews a

representative selection of the MARL algorithms, classifying

them by the type of task they solve. Section V concludes the

paper.

II. BACKGROUND

Single-agent RL concepts are given first, followed by their

extension to the multi-agent case.

A. The single-agent case

Definition 1: A Markov decision process is a tuple

〈X,U, f, ρ〉 where: X is the discrete set of environment states,

U is the discrete set of agent actions, f : X ×U ×X → [0, 1]
is the state transition probability distribution, and ρ : X×U ×
X → R is the reward function.

As a result of action uk, the environment changes state from

xk, ending up in xk+1 with probability f(xk, uk, xk+1). The

agent receives (possibly delayed) feedback on its performance

via the scalar reward signal rk+1 ∈ R, according to ρ:



rk+1 = ρ(xk, uk, xk+1). For deterministic models, the tran-

sition distributions is replaced by a function, f : X×U → X .

The reward is then completely determined by the current

state and action, ρ : X × U → R. The agent chooses

actions according to its policy that may be either stochastic,

h : X × U → [0, 1], or deterministic, h : X → U . A policy is

called stationary if it does not change over time.

The agent’s goal is to maximize, at each time step k, the

discounted return:

Rk =
∑∞

j=0
γjrk+j+1, (1)

where γ ∈ (0, 1) is the discount factor. The action-value

function (Q-function), Qh : X × U → R, is the expected

return of a state-action pair under a given policy: Qh(x, u) =
E {Rk |xk = x, uk = u, h}. The agent can maximize its re-

turn by first computing the optimal Q-function, defined as

Q∗(x, u) = maxh Q
h(x, u), and then choosing actions by the

greedy policy h∗(x) = argmaxu Q
∗(x, u), which is optimal.

The Q-learning algorithm iteratively estimates Q∗ by inter-

action with the environment, using observed rewards rk+1 and

pairs of subsequent states xk, xk+1 [7]:

Qk+1(xk, uk) = Qk(xk, uk)+

α
[

rk+1 + γmax
u′

Q(xk+1, u
′)−Qk(xk, uk)

]

, (2)

where α ∈ (0, 1] is the learning rate. The sequence Qk

provably converges to Q∗ under certain conditions, including

that the agent keeps trying all actions in all states with nonzero

probability [7]. This means that the agent must sometimes

explore, i.e., perform other actions than dictated by the current

greedy policy.

B. The multi-agent case

Definition 2: A stochastic game (SG) (Markov game) is

a tuple 〈A,X, {Ui}i∈A , f, {ρi}i∈A〉 where: A = {1, . . . , n}
is the set of n agents, X is the discrete set of environment

states, {Ui}i∈A are the discrete sets of actions available to the

agents, yielding the joint action set U = ×i∈AUi, f : X ×
U ×X → [0, 1] is the state transition probability distribution,

and ρi : X ×U ×X → R, i ∈ A are the reward functions of

the agents.

Note that the state transitions, agent rewards ri,k+1, and thus

also the agent returns Ri,k, depend on the joint action uk =
[u1,k, . . . , un,k]

T,uk ∈ U , ui,k ∈ Ui. The policies hi : X ×
Ui → [0, 1] together form the joint policy h. The Q-function

of each agent depends on the joint action and is conditioned

on the joint policy, Qh

i : X ×U → R.

If X = ∅, the SG reduces to a static game. A static game,

when played repeatedly by the same agents, is called a repeated

game. If ρ1 = · · · = ρn, the SG is fully cooperative. If n = 2
and ρ1 = −ρ2, the SG is fully competitive.

In a static game, the policy loses the state argument and

transforms into a strategy hi : Ui → [0, 1]. Similarly, a

policy conditioned on a given state x yields a strategy. The

best response of agent i to a set of opponent strategies is a

strategy that achieves the maximum expected reward given the

Table I
STABILITY AND ADAPTATION IN MULTI-AGENT LEARNING.

Stability property Adaptation property Relevant work

convergence rationality [8], [9]
convergence no-regret [10]
opponent-independent opponent-aware [5], [11]
prediction rationality [4]

—

{

targeted optimality,
compatibility, safety

[2], [12]

opponents’ strategies. A Nash equilibrium is a set of strategies

such that each is a best-response to the others.

The purpose of coordination is to make sure that all agents

coherently choose their part of a desirable joint policy. In

a game with multiple equilibria, coordination boils down to

equilibrium selection, where the agents need to consistently

pick their part of the same equilibrium.

III. MULTI-AGENT LEARNING GOAL

In fully cooperative SG s, the common return can be jointly

maximized. In other cases, however, specifying a good MARL

goal is difficult, because the agents’ returns are correlated and

cannot be maximized independently.

In this section, we review the learning goals put forward in

the literature. These goals incorporate stability of the learning

process on the one hand, and adaptation to the dynamic behav-

ior of the other agents on the other hand. Stability essentially

means the convergence to stationary policies, whereas adapta-

tion ensures that performance is maintained or improved. The

goals typically formulate conditions for static games, but some

can be extended to dynamic games by requiring that conditions

are satisfied stage-wise for all the states of the dynamic game.

Convergence to equilibria is a basic stability requirement,

postulated already in the early MARL literature [13], [14].

Nash equilibria are most frequently used. However, concerns

have been voiced regarding their usefulness [2], due to the un-

clear link between stage-wise convergence to Nash equilibria

and performance in the dynamic game.

In [8], rationality is added as an adaptation criterion. It

requires the agent to converge to a best response when other

agents remain stationary. An alternative to rationality is the

concept no-regret, which prevents the learner from ‘being

exploited’ by the other agents [10].

Targeted optimality / compatibility / safety [12] replace con-

vergence with adaptation requirements, in the form of average

reward bounds for three classes of opponents: those deemed

interesting (targeted), those using the learner’s algorithm, and

remaining opponents.

Table I summarizes the desirable properties of MARL

algorithms, as discussed above and in the literature. Algorithms

focused on stability only are typically independent of other

agents; those that consider adaptation clearly need to be aware

of their behavior. If only adaptation is considered and stability

is disregarded, algorithms are tracking the behavior of other

agents.
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Figure 2. Taxonomy of MARL algorithms by the type of task they address.

IV. MULTI-AGENT REINFORCEMENT LEARNING

ALGORITHMS

The MARL algorithms are organized here by the type of

task they address: fully cooperative, fully competitive, and

mixed tasks. Some algorithms can only solve static games;

for mixed tasks, these algorithms are treated separately, as

depicted in Fig. 2.

A. Fully cooperative tasks

In a fully cooperative SG , ρ1 = . . . = ρn and the

learning goal is to maximize the common discounted return.

If a centralized controller is available, the task reduces to a

Markov decision process whose action space is the joint action

space of the SG . The goal can be achieved by learning the

optimal joint-action values with Q-learning:

Qk+1(xk,uk) = Qk(xk,uk)+

α
[

rk+1 + γmax
u′

Q(xk+1,u
′)−Qk(xk,uk)

]

, (3)

and using the greedy policy. If the agents are independent

decision makers, a coordination problem arises even if all

the agents use the same algorithm to learn in parallel the

common optimal Q-function. In principle, they could then use

the greedy policy to maximize the common return. However,

the greedy action selection mechanism breaks ties randomly,

which means that in the absence of additional mechanisms,

different agents may break a tie in different ways, and the

resulting joint action may be suboptimal.

Coordination-free methods. The Team Q-learning algo-

rithm [11] solves the problem by assuming that the optimal

joint actions are unique (which will rarely be the case). Then,

(3) can directly be used.

The Distributed Q-learning algorithm [15] solves the co-

operative task without assuming coordination, however it is

only valid in the deterministic setting. Each agent i maintains

an explicit policy hi(x), and a local Q-function Qi(x, ui),
depending only on its own action. Both are updated only in

the direction that increases Qi:

Qi,k+1(xk, ui,k) =max
{

Qi,k(xk, ui,k),

rk+1 + γmax
ui

Qi,k(xk+1, ui)
} (4)

hi,k+1(xk) =











ui,k if maxui
Qi,k+1(xk, ui)

6= maxui
Qi,k(xk, ui)

hi,k(xk) otherwise

(5)

Under the conditions that Qi,0 = 0 and the common reward

function is positive, the policies of the agents provably con-

verge to the optimal joint policy h
∗.

Direct coordination methods. A more general approach to

solving the coordination problem is to make sure that ties are

broken by all agents in the same way. This clearly requires that

random action choices are somehow coordinated or negotiated:

– Social conventions [16] and roles [17] restrict the action

choices of the agents.

– Coordination graphs simplify coordination when the

global Q-function can be additively decomposed in local

Q-functions which only depend on the actions of a subset

of agents [18], [19].

– Communication is used to negotiate action choices, either

alone or in combination with the above techniques, as in

e.g., [20], [21].

Indirect coordination methods bias action selection to-

ward actions that promise to yield better values, and thus steer

the agents toward coordination. Joint Action Learners (JAL)

[22] employ empirically learned models of the other agents’

behavior. The Frequency Maximum Q-value (FMQ) heuristic

[23] is based on the frequency with which actions yielded good

values in the past. In Optimal Adaptive Learning (OAL), the

bias is towards recently chosen Nash equilibria [24]. Using an

additional mechanism to guarantee that optimal Nash equilibria

are eventually selected, OAL provably converges to optimal

joint policies (at the cost of increased complexity). JAL and

FMQ only work in static games.

Remarks and open issues. Coordination-free methods are

teammate-independent, whereas indirect coordination meth-

ods are teammate-aware. Direct coordination methods are

teammate-independent if they rely on common-knowledge

assumptions, and teammate-aware if they use negotiation.

To improve the applicability of algorithms in practice, effort

must be invested in their scalability and their robustness to un-

certain or incomplete observations. Coordination-free methods

are especially vulnerable to uncertain observations.

Communication has the potential to provide straightfor-

ward, efficient solutions to the coordination problem in MARL

. This potential has not yet been fully exploited.

B. Fully competitive tasks

In a fully competitive SG (for two agents, ρ1 = −ρ2),

the minimax principle can be applied: maximize one’s benefit

under the assumption that the opponent will always act so as to

minimize it. The resulting algorithm is minimax-Q [11], given



here for agent 1:

h1,k(xk, ·) = argm1(Qk, xk) (6)

Qk+1(xk, u1,k, u2,k) = Qk(xk, u1,k, u2,k)+

α
[

rk+1 + γm1(Qk, xk+1)−Qk(xk, u1,k, u2,k)
] (7)

where m1 is the minimax return of agent 1:

m1(Q, x) = max
h1(x,·)

min
u2

∑

u1

h1(x, u1)Q(x, u1, u2) (8)

The Q-table is not subscripted by the agent index, because

the equations use the implicit assumption that Q1 = Q =
−Q2. Minimax-Q is truly opponent-independent, because even

if the minimax optimization has multiple solutions, any of

them will achieve at least the minimax return regardless of

what the opponent is doing.

If the learner has a model of the opponent’s policy (i.e., is

opponent-aware), it might actually do better than the minimax

return (8). An opponent model can be learned using e.g., the

M* algorithm [25].

C. Mixed tasks

In the general case, no constraints are imposed on the

reward functions of the agents. This is of course appropriate

for self-interested agents, but even cooperating agents may

encounter situations where their immediate interests are in con-

flict, e.g., when they need to compete for some resource. The

game-theoretic elements, especially the concept of equilibrium,

are most influential in this category. When multiple equilibria

exist in a particular state of an SG , the equilibrium selection

problem arises: the agents need to consistently pick their part

of the same equilibrium.

MARL algorithms for static, repeated games are first pre-

sented, followed by those addressing dynamic SG s.

1) Repeated games: In repeated games, one of the essential

properties of RL , delayed reward, is lost. However, the

learning problem is still nonstationary due to the dynamic

behavior of the agents that play the repeated game. This is

why methods in this category always consider adaptation to

the other agents.

Algorithms in this category typically require that the agents

know the task model (i.e., the reward function), and assume

observable actions (some of them, even observable strategies).

Agent-tracking methods adapt to learned models of the

opponents’ behavior. Fictitious play uses a best response to

these empirical models, whereas Hyper-Q incorporates the

models in the state vector, and learns on their basis [26].

The MetaStrategy combines modified versions of fictitious

play, minimax and a game-theoretic strategy called Bully

to achieve the targeted optimality / compatibility / safety triple

goal [12]. These methods do not necessarily converge to

stationary strategies.

Agent-aware methods target convergence as well. The

AWESOME algorithm uses fictitious play, but monitors the

other agents and switches to a precomputed Nash equilibrium

when it concludes that they are adapting (hence the name:

Adapt When Everyone is Stationary, Otherwise Move to

Equilibrium) [9].

Some methods in the area of direct policy search use

gradient update rules that guarantee convergence in specific

classes of games: Infinitesimal Gradient Ascent (IGA) [27],

Win-or-Learn-Fast IGA (WoLF-IGA) [8], Generalized IGA

(GIGA) [28], and GIGA-WoLF [10].

Remarks and open issues. A perfect task model is rarely

available in practice. Thus, versions of the methods above

that work with imperfect and / or learned models would be

interesting (e.g., GIGA-WoLF provides a heuristic extension

that does that).

Static, repeated games represent a limited set of applica-

tions, among which are included negotiation, auctions, and

bartering. The algorithms above provide valuable theoretical

results; these results should be however extended to the dy-

namical case in order to become interesting for more gen-

eral classes of applications (e.g., WoLF-PHC, discussed in

Sec. IV-C2).

2) Dynamic stochastic games: Mixed, dynamic tasks cor-

respond to the unrestricted SG , which exhibits all the MARL

challenges: delayed reward, nonstationary agents, and conflict-

ing goals.

Single-agent RL can be directly applied to the multi-

agent case [29]. However, the nonstationarity of the MARL

problem invalidates most of the single-agent RL theoretical

results. Single-agent RL might not work when agents severely

interfere with one another. As they do not take into account the

behavior of the other agents, single-agent methods are agent-

independent.

Despite its limitations, this approach found applications,

mainly because of its simplicity [30], [31]. In applications,

information about other agents is typically encoded in the

learner’s input, thus indirectly enabling it to make decisions

on the basis of their behavior.

Agent-independent methods share a common structure

based on Q-learning, where policies and state values are com-

puted with game-theoretic solvers for the stage games arising

in the states of the SG [5], [14]. Denoting by {Q·,k(x, ·)}
the stage game arising in state x and given by all the agents’

Q-functions at time k:

hi,k(x, ·) = solvei {Q·,k(xk, ·)} (9)

Qi,k+1(xk,uk) = Qi,k(xk,uk) + α
[

ri,k+1+

γ · evali {Q·,k(xk+1, ·)} −Qi,k(xk,uk)
] (10)

solvei returns the i’th agent’s part of some type of equilibrium

(a strategy), and evali gives the agent’s expected return at

this equilibrium. When the solution of solve is not unique,

the equilibrium selection problem arises. The goal is the

convergence to an equilibrium in every state.

The updates use the Q-tables of all the agents. So, each

agent needs to model the Q-tables of the other agents. It can

do that by applying (10). This requires two assumptions: that

all agents use the same algorithm, and that all actions and

rewards are observable.



A particular instance of solve and eval for e.g., Nash Q-

learning [13] is:
{

evali {Q·,k(x, ·)} = Vi(x,NE {Q·,k(x, ·)})

solvei {Q·,k(x, ·)} = NEi {Q·,k(x, ·)}
(11)

where NE computes a Nash equilibrium, and NEi is

agent i’s strategy component of this equilibrium, and

Vi(x,NE {Q·,k(x, ·)}) is the expected return of agent i from x

under this equilibrium. Instantiations of correlated Q-learning

(CE-Q) [14] or asymmetric Q-learning [32] can be performed

in a similar fashion, by using correlated or Stackelberg (leader-

follower) equilibria, respectively. For asymmetric-Q, the fol-

lower does not need to model the leader’s Q-table; however,

the leader must know how the follower chooses its actions.

Agent-tracking methods adapt to learned models of the

other agents’ nonstationary policies without considering con-

vergence. Actions have to be observable. The Non-Stationary

Converging Policies (NSCP) algorithm computes a best-

response to the models and uses it in estimating value functions

[33].

Agent-aware methods typically do consider convergence.

Win-or-Learn-Fast Policy Hill-Climbing (WoLF-PHC) com-

bines the basic Q-learning update rule (2) with a gradient-based

policy update originating in WoLF-IGA [8]:

hi,k+1(xk, ui) = hi,k(xk, ui)+






δi,k if ui = argmax
ũi

Qi,k+1(xk, ũi)

−
δi,k

|Ui|−1 otherwise
(12)

The gradient step δi,k is δl when the agent is losing and

δw when it is winning, with δl > δw. The win criterion is

based either on a comparison of an average policy with the

current one, in the original version of WoLF-PHC, or on the

second-order difference of policy elements, in PD-WoLF [34].

The rationale is that the agent should escape fast from losing

situations, while adapting cautiously when it is winning, in

order to encourage convergence.

The Extended Optimal Response (EXORL) heuristic applies

a similar idea in two-agent tasks: the policy update is biased

in a way that minimizes the other agent’s incentive to deviate

from its current policy [35].

Environment-Independent Reinforcement Acceleration

(EIRA) pushes policies onto, and pops policies from, a

policy stack in such a way that long-term reinforcement

improvements are guaranteed [36]. EIRA does not make any

assumptions on the environment and on the other agents. In

this sense, it is very general. However, it may not be able to

take advantage of the task’s structure.

Remarks and open issues. Game theory induces a bias

toward static (stage-wise) solutions in the dynamic case – see

e.g., equations (9) – (10) and the state-wise win / lose criteria

in WoLF. However, the suitability of such state-wise solutions

in the context of the dynamic task is currently unclear [2], [6].

Agents in mixed SG s are generally regarded as self-

interested. Consequently, cooperative coordination techniques,

such as communication, social conventions, or roles, are not

investigated. However, in many mixed tasks the agents are

cooperative, with competition arising in certain situations

such as when they compete for a resource. In these tasks,

cooperative coordination methods are a viable alternative.

Many algorithms for mixed SG s suffer from scalability

issues and are sensitive to imperfect observations; the latter

holds especially for agent-independent methods.

V. CONCLUSION AND FUTURE PERSPECTIVES

We have reviewed the challenges of multi-agent reinforce-

ment learning, the methods to address them, and we have

provided specific conclusions and open issues for each class

of methods. More general open problems are given next.

First, the stage-wise application of game-theoretic tech-

niques may not be the most suitable approach, given that the

environment and the behavior of learning agents are generally

dynamic processes. So far, game-theory-based analysis has

only been applied to the learning dynamics [3], [37]. We expect

that tools developed in the area of robust control will play an

important role in the analysis and synthesis of the learning

process as a whole (i.e., the environment and the learning

dynamics). In addition, this framework can incorporate prior

knowledge on bounds for imperfect observations, such as

noise-corrupted variables.

Second, the issue of a suitable learning goal requires

additional work. MARL goals are typically formulated in

terms of static games. Their extension to dynamic tasks is not

always straightforward or even possible. If an extension via

stage games is possible, the relationship between the extended

goals and performance in the dynamic task is not clear, and

is not made explicit in the literature. This holds for stability

requirements, like convergence to equilibria, as well as for

adaptation requirements, like rationality.

Stability of the learning process is desirable, because the

behavior of stable agents is more amenable to analysis and

meaningful performance guarantees. Adaptation to the other

agents is desirable because their dynamics are generally un-

predictable. Therefore, a good multi-agent learning goal must

include both components. This means that MARL algorithms

should not be purely agent-independent nor purely agent-

tracking. The control-theoretic concept of robustness can help

integrate stability and adaptation into a unified goal. If a learn-

ing algorithm is robustly stable with respect to nonstationarity

in the other agents, it will converge while allowing for bounded

changes in the behavior of these agents.

Moreover, from a practical viewpoint, a realistic learning

goal should include bounds on the transient performance, in

addition to the usual asymptotic requirements. Examples of

such bounds include maximum time constraints for reaching a

desired performance level, or a lower bound on instantaneous

performance levels. First steps in this direction have been taken

in [10], [12].

In our view, significant progress in the field of multi-agent

learning can be achieved by a more intensive cross-fertilization



between the fields of machine learning, game theory, and

control theory.
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