
Delft University of Technology
Delft Center for Systems and Control

Technical report 06-026

Decentralized reinforcement learning
control of a robotic manipulator∗

L. Buşoniu, B. De Schutter, and R. Babuška

If you want to cite this report, please use the following reference instead:
L. Buşoniu, B. De Schutter, and R. Babuška, “Decentralized reinforcement learning
control of a robotic manipulator,” Proceedings of the 9th International Conference
on Control, Automation, Robotics and Vision (ICARCV 2006), Singapore, pp. 1347–
1352, Dec. 2006.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/06_026.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/06_026.html

Decentralized Reinforcement Learning Control

of a Robotic Manipulator

Lucian Buşoniu Bart De Schutter Robert Babuška

Delft Center for Systems and Control

Delft University of Technology

2628 CD Delft, The Netherlands

Email: {i.l.busoniu,b.deschutter,r.babuska}@tudelft.nl

Abstract—Multi-agent systems are rapidly finding applications
in a variety of domains, including robotics, distributed control,
telecommunications, etc. Learning approaches to multi-agent
control, many of them based on reinforcement learning (RL),
are investigated in complex domains such as teams of mobile
robots. However, the application of decentralized RL to low-level
control tasks is not as intensively studied. In this paper, we
investigate centralized and decentralized RL, emphasizing the
challenges and potential advantages of the latter. These are then
illustrated on an example: learning to control a two-link rigid
manipulator. Some open issues and future research directions in
decentralized RL are outlined.

Keywords—multi-agent learning, decentralized control, rein-
forcement learning

I. INTRODUCTION

A multi-agent system (MAS) is a collection of interacting

agents that share a common environment (operate on a com-

mon process), which they perceive through sensors, and upon

which they act through actuators [1]. In contrast to the classical

control paradigm, that uses a single controller acting on the

process, in MAS control is distributed among the autonomous

agents.

MAS can arise naturally as a viable representation of the

considered system. This is the case with e.g., teams of mobile

robots, where the agents are the robots and the process is

their environment [2], [3]. MAS can also provide alternative

solutions for systems that are typically regarded as centralized,

e.g., resource management: each resource may be managed by

a dedicated agent [4] or several agents may negotiate access

to passive resources [5]. Another application field of MAS

is decentralized, distributed control, e.g., for traffic or power

networks.

Decentralized, multi-agent solutions offer several potential

advantages over centralized ones [2]:

– Speed-up, resulting from parallel computation.

– Robustness to single-point failures, if redundancy is built

into the system.

– Scalability, resulting from modularity.

MAS also pose certain challenges, many of which do not

appear in centralized control. The agents have to coordinate

their individual behaviors, such that a coherent joint behavior

results that is beneficial for the system. Conflicting goals, inter-

agent communication, and incomplete agent views over the

process, are issues that may also play a role.

The multi-agent control task is often too complex to be

solved effectively by agents with pre-programmed behaviors.

Agents can do better by learning new behaviors, such that

their performance gradually improves [6], [7]. Learning can

be performed either online, while the agents actually try to

solve the task, or offline, typically by using a task model to

generate simulated experience.

Reinforcement learning (RL) [8] is a simple and general

framework that can be applied to the multi-agent learning

problem. In this framework, the performance of each agent is

rewarded by a scalar signal, that the agent aims to maximize.

A significant body of research on multi-agent RL has evolved

over the last decade (see e.g., [7], [9], [10]).

In this paper, we investigate the single-agent, centralized RL

task, and its multi-agent, decentralized counterpart. We focus

on cooperative low-level control tasks. To our knowledge,

decentralized RL control has not been applied to such tasks.

We describe the challenge of coordinating multiple RL agents,

and briefly mention the approaches proposed in the literature.

We present some potential advantages of multi-agent RL .

Most of these advantages extend beyond RL to the general

multi-agent learning setting.

We illustrate the differences between centralized and multi-

agent RL on an example involving learning to control a two-

link rigid manipulator. Finally, we present some open research

issues and directions for future work.

The rest of the paper is organized as follows. Section II

introduces the basic concepts of RL . Cooperative decentral-

ized RL is then discussed in Section III. Section IV introduces

the two-link rigid manipulator and presents the results of RL

control on this process. Section V concludes the paper.

II. REINFORCEMENT LEARNING

In this section we introduce the main concepts of centralized

and multi-agent RL for deterministic processes. This presen-

tation is based on [8], [11].

A. Centralized RL

The theoretical model of the centralized (single-agent) RL

task is the Markov decision process.

Definition 1: A Markov decision process is a tuple

〈X,U, f, ρ〉 where: X is the discrete set of process states, U
is the discrete set of agent actions, f : X × U → X is the

state transition function, and ρ : X × U → R is the reward

function.

The process changes state from xk to xk+1 as a result of

action uk, according to the state transition function f . The

agent receives (possibly delayed) feedback on its performance

via the scalar reward signal rk ∈ R, according to the reward

function ρ. The agent chooses actions according to its policy

h : X → U .

The learning goal is the maximization, at each time step k,

of the discounted return:

Rk =
∑∞

j=0
γjrk+j+1, (1)

where γ ∈ (0, 1) is the discount factor. The action-value

function (Q-function), Qh : X × U → R, is the expected

return of a state-action pair under a given policy: Qh(x, u) =
E {Rk |xk = x, uk = u, h}. The agent can maximize its re-

turn by first computing the optimal Q-function, defined as

Q∗(x, u) = maxh Q
h(x, u), and then choosing actions by the

greedy policy h∗(x) = argmaxu Q
∗(x, u), which is optimal

(ties are broken randomly).

The central result upon which RL algorithms rely is that

Q∗ satisfies the Bellman optimality recursion:

Q∗(x, u) = ρ(x, u) + γmax
u′∈U

Q∗(f(x, u), u′) ∀x, u. (2)

Value iteration is an offline, model-based algorithm that

turns this recursion into an update rule:

Qℓ+1(x, u) = ρ(x, u) + γmax
u′∈U

Qℓ(f(x, u), u
′) ∀x, u. (3)

where ℓ is the iteration index. Q0 can be initialized arbitrarily.

The sequence Qℓ provably converges to Q∗.

Q-learning is an online algorithm that iteratively estimates

Q∗ by interaction with the process, using observed rewards rk
and pairs of subsequent states xk, xk+1 [12]:

Qk+1(xk, uk) = Qk(xk, uk)+

α
[

rk+1 + γmax
u′∈U

Q(xk+1, u
′)−Qk(xk, uk)

]

, (4)

where α ∈ (0, 1] is the learning rate. The sequence Qk

provably converges to Q∗ under certain conditions, including

that the agent keeps trying all actions in all states with nonzero

probability [12]. This means that the agent must sometimes

explore, i.e., perform other actions than those dictated by the

current greedy policy.

B. Multi-Agent RL

The generalization of the Markov decision process to the

multi-agent case is the Markov game.

Definition 2: A Markov game is a tuple

〈A,X, {Ui}i∈A , f, {ρi}i∈A〉 where: A = {1, . . . , n} is

the set of n agents, X is the discrete set of process states,

{Ui}i∈A are the discrete sets of actions available to the agents,

yielding the joint action set U =×i∈AUi, f : X ×U → X
is the state transition function, and ρi : X × U → R, i ∈ A
are the reward functions of the agents.

Note that the state transitions, agent rewards ri,k, and thus

also the agent returns Ri,k, depend on the joint action uk =
[uT

1,k, . . . , u
T
n,k]

T,Uk ∈ U , ui,k ∈ Ui. The policies hi : X ×
Ui → [0, 1] form together the joint policy h. The Q-function

of each agent depends on the joint action and is conditioned

on the joint policy, Qh

i : X ×U → R.

A fully cooperative Markov game is a game where the

agents have identical reward functions, ρ1 = . . . = ρn. In

this case, the learning goal is the maximization the common

discounted return. In the general case, the reward functions

of the agents may differ. Even agents which form a team

may encounter situations where their immediate interests are

in conflict, e.g., when they need to share some resource. As the

returns of the agents are correlated, they cannot be maximized

independently. Formulating a good learning goal in such a

situation is a difficult open problem (see e.g., [13]–[15]).

III. COOPERATIVE DECENTRALIZED RL CONTROL

This section briefly reviews approaches to solving the

coordination issue in decentralized RL , and then mentions

some of the potential advantages of decentralized RL .

A. The Coordination Problem

Coordination requires that all agents coherently choose their

part of a desirable joint policy. This is not trivial, even if the

task is fully cooperative. To see this, assume all agents learn in

parallel the common optimal Q-function with, e.g., Q-learning:

Qk+1(xk,uk) = Qk(xk,uk)+

α
[

rk+1 + γ max
u′∈U

Q(xk+1,u
′)−Qk(xk,uk)

]

. (5)

Then, in principle, they could use the greedy policy to

maximize the common return. However, greedy action selec-

tion breaks ties randomly, which means that in the absence

of additional mechanisms, different agents may break a tie

in different ways, and the resulting joint action may be

suboptimal.

The multi-agent RL algorithms in the literature solve this

problem in various ways.

Coordination-free methods bypass the issue. For instance,

in fully cooperative tasks, the Team Q-learning algorithm [16]

assumes that the optimal joint actions are unique (which will

rarely be the case). Then, (5) can directly be used.

The agents can be indirectly steered toward coordination.

To this purpose, some algorithms learn empirical models of

the other agents and adapt to these models [17]. Others use

heuristics to bias the agents toward actions that promise to

yield good reward [18]. Yet others directly search through the

space of policies using gradient-based methods [11].

The action choices of the agents can also be explicitly

coordinated or negotiated:

– Social conventions [19] and roles [20] restrict the action

choices of the agents.

– Coordination graphs explicitly represent where coordi-

nation between agents is required, thus preventing the

agents from engaging in unnecessary coordination activ-

ities [21].

– Communication is used to negotiate action choices, either

alone or in combination with the above techniques.

B. Potential Advantages of Decentralized RL

If the coordination problem is efficiently solved, learning

speed might be higher for decentralized learners. This is

because each agent i searches an action space Ui. A centralized

learner solving the same problem searches the joint action

space U = U1 × · · · × Un, which is exponentially larger.

This difference will be even more significant in tasks where

not all the state information is relevant to all the learning

agents. For instance, in a team of mobile robots, at a given

time, the position and velocity of robots that are far away from

the considered robot might not be interesting for it. In such

tasks, the learning agents can consider only the relevant state

components and thus further decrease the size of the problem

they need to solve [22].

Memory and processing time requirements will also be

smaller for smaller problem sizes.

If several learners solve similar tasks, then they could gain

further benefit from sharing their experience or knowledge.

IV. EXAMPLE: TWO-LINK RIGID MANIPULATOR

A. Manipulator Model

The two-link manipulator, depicted in Fig. 1, is described

by the nonlinear fourth-order model:

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ (6)

where θ = [θ1, θ2]
T, τ = [τ1, τ2]

T. The system has two control

inputs, the torques in the two joints, τ1 and τ2, and four

measured outputs – the link angles, θ1, θ2, and their angular

speeds θ̇1, θ̇2.

The mass matrix M(θ), Coriolis and centrifugal forces

m

l

2

2

2θ

l1
m1

θ1

motor1

motor2

Figure 1. Schematic drawing of the two-link rigid manipulator.

matrix C(θ, θ̇), and gravity vector G(θ), are:

M(θ) =

[

P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2
P2 + P3 cos θ2 P2

]

(7)

C(θ, θ̇) =

[

b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2
P3θ̇2 sin θ2 b2

]

(8)

G(θ) =

[

−g1 sin θ1 − g2 sin(θ1 + θ2)
−g2 sin(θ1 + θ2)

]

(9)

The meaning and values of the physical parameters of the

system are given in Table I.

Using these, the rest of the parameters in (6) can be

computed by:

P1 = m1c
2
1 +m2l

2
1 + I1 P2 = m2c

2
2 + I2

P3 = m2l1c2

g1 = (m1c1 +m2l1)g g2 = m2c2g

(10)

In the sequel, it is assumed that the manipulator operates

in a horizontal plane, leading to G(θ) = 0. Furthermore, the

following simplifications are adopted in (6):

1) Coriolis and centrifugal forces are neglected, leading to

C(θ, θ̇) = diag[b1, b2];
2) θ̈1 is neglected in the equation for θ̈2;

3) the friction in the second joint is neglected in the

equation for θ̈1.

After these simplifications, the dynamics of the manipulator

can be approximated by:

θ̈1 =
1

P2(P1 + P2 + 2P3 cos θ2)
·

[

P2(τ1 − b1θ̇1)− (P2 + P3 cos θ2)τ2
]

θ̈2 =
τ2
P2

− b2θ̇2

(11)

The complete process state is given by x = [θT, θ̇T]T.

If centralized control is used, the command is u = τ ; for

decentralized control with one agent controlling each joint

motor, the agent commands are u1 = τ1, u2 = τ2.

Table I
PHYSICAL PARAMETERS OF THE MANIPULATOR

Symbol Parameter Value

g gravitational acceleration 9.81 m/s2

l1 length of first link 0.1 m
l2 length of second link 0.1 m
m1 mass of first link 1.25 kg
m2 mass of second link 1 kg

I1 inertia of first link 0.004 kgm2

I2 inertia of second link 0.003 kgm2

c1 center of mass of first link 0.05 m
c2 center of mass of second link 0.05 m

b1 damping in first joint 0.1 kgs−1

b2 damping in second joint 0.02 kgs−1

τ1,max maximum torque of first joint motor 0.2 Nm
τ2,max maximum torque of first joint motor 0.1 Nm

θ̇1,max maximum angular speed of first link 2π rad/sec

θ̇2,max maximum angular speed of second link 2π rad/sec

B. RL Control

The control goal is the stabilization of the system around

θ = θ̇ = 0 in minimum time, with a tolerance of ±5 · π/180
rad for the angles, and ±0.1 rad/sec for the angular speeds.

To apply RL in the form presented in Section II, the time

axis, as well as the continuous state and action components of

the manipulator, must first be discretized. Time is discretized

with a sampling time of Ts = 0.05 sec; this gives the discrete

system dynamics f . Each state component is quantized in

fuzzy bins, and three torque values are considered for each

joint: −τi,max (maximal torque clockwise), 0, and τi,max

(maximal torque counter-clockwise).

One Q-value is stored for each combination of bin centers

and torque values. The Q-values of continuous states are then

interpolated between these center Q-values, using the degrees

of membership to each fuzzy bin as interpolation weights. If

e.g., the Q-function has the form Q(θ2, θ̇2, τ2), the Q-values

of a continuous state [θ2,k, θ̇2,k]
T are computed by:

Q̃(θ2,k, θ̇2,k, τ2) =
∑

m=1,...,Nθ2

n=1,...,N
θ̇2

µθ2,m(θ2,k)µθ̇2,n
(θ̇2,k) ·Q(m,n, τ2), ∀τ2 (12)

where e.g., µθ̇2,n
(θ̇2,k) is the membership degree of θ̇2,k in

the nth bin. For triangular membership functions, this can be

computed as:

µθ̇2,n
(θ̇2,k) =

max(0,
cn+1−θ̇2,k
cn+1−cn

), if n = 1

max
[

0,min(
θ̇2,k−cn−1

cn−cn−1
,
cn+1−θ̇2,k
cn+1−cn

)
]

,

if 1 < n < Nθ̇2

max(0,
θ̇2,k−cn−1

cn−cn−1
), if n = Nθ̇2

(13)

where cn is the center of the nth bin – see Fig. 2 for an

example.

µ

1

0.5

c1=−2π c2 c3 c4 c5 c6 c7=2π
[rad/sec]

2θ

µ
Θ2,6

Figure 2. Example of quantization in fuzzy bins with triangular membership

functions for θ̇2.

Such a set of bins is completely determined by a vector

of bin center coordinates. For θ̇1 and θ̇2, 7 bins are used,

with their centers at [−360,−180,−30, 0, 30, 180, 360]·π/180
rad/sec. For θ1 and θ2, 12 bins are used, with their centers at

[−180,−130,−80,−30,−15,−5, 0, 5, 15, 30, 80, 130] ·π/180
rad; there is no ‘last’ or ‘first’ bin, because the angles evolve

on a circle manifold [−π, π). The π point is identical to −π,

so the ‘last’ bin is a neighbor of the ‘first’.

Algorithm 1 Fuzzy value iteration for a SISO RL controller

1: Q0(m,uj) = 0, for m = 1, . . . , NX , j = 1, . . . , NU

2: ℓ = 0
3: repeat

4: for m = 1, . . . , NX , j = 1, . . . , NU do

5:

Qℓ+1(m,uj) = ρ(cm, uj)

+ γ

NX
∑

m̃=1

µx,m̃(f(cm, uj))max
ũj

Qℓ(m̃, ũj)

6: end for

7: ℓ = ℓ+ 1
8: until ‖Qℓ −Qℓ−1‖ ≤ δ

The optimal Q-functions for both the centralized and decen-

tralized case are computed with a version of value iteration (3)

which is altered to accommodate the fuzzy representation of

the state. The complete algorithm is given in Alg. 1. For easier

readability, the RL controller is assumed single-input single-

output, but the extension to multiple states and / or outputs is

straightforward. The discount factor is set to γ = 0.98, and

the threshold value to δ = 0.01.

The control action in state xk is computed as follows

(assuming as above a SISO controller):

uk = h(xk) =

NX
∑

m=1

µx,m(xk) argmax
ũj

Q(m̃, ũj) (14)

Centralized RL . The reward function ρ for the centralized

learner computes rewards by:

rk =

0 if |θi,k| ≤ 5 · π/180 rad

and

∣

∣

∣
θ̇i,k

∣

∣

∣
≤ 0.1 rad/sec, i ∈ {1, 2}

−0.5 otherwise

(15)

The centralized policy for solving the two-link manipulator

task must be of the form:

[τ1, τ2]
T = h(θ1, θ2, θ̇1, θ̇2) (16)

Therefore, the centralized learner uses a Q-table of the form

Q(θ1, θ2, θ̇1, θ̇2, τ1, τ2).
The policy computed by value iteration is applied to the

system starting from the initial state x0 = [−1,−3, 0, 0]T.

The resulting command, state, and reward signals are given in

Fig. 3(a).

Decentralized RL . In the decentralized case, the rewards

are computed separately for the two agents:

ri,k =

0 if |θi,k| ≤ 5 · π/180 rad

and

∣

∣

∣
θ̇i,k

∣

∣

∣
≤ 0.1 rad/sec

−0.5 otherwise

(17)

For decentralized control, the system (11) creates an asym-

metric setting. Agent 2 can choose its action τ2,k by only

considering the second link’s state, whereas agent 1 needs to

take into account θ2,k and τ2,k besides the first link’s state. If

agent 2 is always the first to choose its action, and agent 1

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0
L
in

k
 a

n
g
le

s
[r

a
d
]

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

L
in

k
 v

e
lo

c
it
ie

s
[r

a
d
/s

e
c
]

0 0.5 1 1.5 2 2.5 3

−0.2

−0.1

0

0.1

0.2

C
m

d
 t
o
rq

u
e
 j
o
in

t
1
[N

m
]

0 0.5 1 1.5 2 2.5 3

−0.2

−0.1

0

0.1

0.2

C
m

d
 t
o
rq

u
e
 j
o
in

t
2
[N

m
]

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

R
e
w

a
rd

 [
−

]

t [sec]

(a) Centralized RL (thin line–link 1, thick line–link 2)

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

L
in

k
 a

n
g
le

s
[r

a
d
]

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

L
in

k
 v

e
lo

c
it
ie

s
[r

a
d
/s

e
c
]

0 0.5 1 1.5 2 2.5 3

−0.2

−0.1

0

0.1

0.2

C
m

d
 t
o
rq

u
e
 j
o
in

t
1
[N

m
]

0 0.5 1 1.5 2 2.5 3

−0.2

−0.1

0

0.1

0.2
C

m
d
 t
o
rq

u
e
 j
o
in

t
2
[N

m
]

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

R
e
w

a
rd

 [
−

]

t [sec]

(b) Decentralized RL (thin line–link / agent 1, thick line–link / agent 2)

Figure 3. State, command, and reward signals for RL control.

can learn about this action before it is actually taken (e.g., by

communication) then the two agents can learn control policies

of the following form:

τ2 = h2(θ2, θ̇2)

τ1 = h1(θ1, θ2, θ̇1, τ2)
(18)

Therefore, the two agents use Q-tables of the form

Q2(θ2, θ̇2, τ2), and respectively Q1(θ1, θ2, θ̇1, τ2, τ1). Value

iteration is applied first for agent 2, and the resulting policy is

used in value iteration for agent 1.

The policies computed in this way are applied to the

system starting from the initial state x0 = [−1,−3, 0, 0]T.

The resulting command, state, and reward signals are given in

Fig. 3(b).

C. Discussion

Value iteration converges in 125 iterations for the cen-

tralized case, 192 iterations for agent 1, and 49 iterations

for agent 2. The learning speeds are therefore comparable

for centralized and decentralized learning in this application.

Agent 2 of course converges relatively faster, as it state-action

space is much smaller.

Both the centralized and the decentralized policies stabilize

the system in 1.2 seconds. The steady-state angle offsets are

all within the imposed 5 degrees tolerance bound. Notice

that in Fig. 3(b), the first link is stabilized slightly faster

than in Fig. 3(a), where both links are stabilized at around

the same time. This is because decentralized learners are

rewarded separately (17), and have an incentive to stabilize

their respective links faster.

The form of coordination used by the two agents is

Table II
COMPUTATIONAL REQUIREMENTS

Q-table size CPU time [sec]

Centralized (12× 7× 3)2 = 63504 ≈ 18300
Agent 1 12× 7× 12× 3× 3 = 9072 ≈ 1.7
Agent 2 12× 7× 3 = 252 ≈ 1000
Agent 1 + Agent 2 9324 ≈ 1000

indirect. The second agent can safely ignore the first (18).

The first agent includes θ2 and τ2 in its state signal, and

in this fashion accounts for the second agent’s influence on

its task. This is visible in Fig. 3(b) around t = 0.8s, when

the first link is pushed counterclockwise (‘up’) due to the

negative acceleration in link 2. Agent 1 counters this effect

by accelerating clockwise (’down’). A similar effect is visible

around t = 1s in Fig. 3(a).

The memory and processing time requirements1 of value

iteration for the two learning experiments are summarized in

Table II. Both memory and CPU requirements are more than

an order of magnitude higher for the centralized case. This is

mainly because, as discussed in Section III, in the decentralized

case the two agents were able to disregard state components

that were not essential in solving their task, and thus reduce

the size of their search space.

V. CONCLUSION AND FUTURE RESEARCH

We have pointed out the differences between centralized

and multi-agent cooperative RL , and we have illustrated these

differences on an example involving learning control of a two-

link robotic manipulator. The decentralized solution was able

to achieve good performance while using significantly less

computational resources than centralized learning.

As can be seen in Table II, the memory (column 2) and

time complexity (column 3) of the solutions scale poorly

with the problem size. The multi-agent RL literature has not

yet focused on the problem of scalability, although solutions

for the centralized case exist (based mainly on generalization

using function approximation to learn the value function). Such

solutions might be extended to the decentralized case.

Another issue is that RL updates assume perfect knowledge

of the task model (for model-based learning, e.g., value iter-

ation (3)), or perfect measurements of the state (for online,

model-free learning, e.g., Q-learning (4)). Such knowledge

is often not available in real life. Studying the robustness

of solutions with respect to imperfect models or imperfect

observations is topic for future research.

ACKNOWLEDGEMENT

This research is financially supported by Senter, Ministry

of Economic Affairs of the Netherlands within the BSIK-ICIS

project “Interactive Collaborative Information Systems” (grant

no. BSIK03024).

1The CPU times were recorded on a Centrino Dual Core 1.83 GHz machine
with 1GB of RAM. Value iteration was run on Matlab 7.1 under Windows
XP.

REFERENCES

[1] N. Vlassis, “A concise introduction to multiagent systems and distributed
AI,” University of Amsterdam, The Netherlands, Tech. Rep., September
2003, URL: http://www.science.uva.nl/˜vlassis/cimasdai/cimasdai.pdf.

[2] P. Stone and M. Veloso, “Multiagent systems: A survey from the machine
learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383,
2000.

[3] M. J. Matarić, “Learning in multi-robot systems,” in Adaptation and
Learning in Multi–Agent Systems, G. Weiß and S. Sen, Eds. Springer
Verlag, 1996, pp. 152–163.

[4] R. H. Crites and A. G. Barto, “Elevator group control using multiple
reinforcement learning agents,” Machine Learning, vol. 33, no. 2–3, pp.
235–262, 1998.

[5] A. Schaerf, Y. Shoham, and M. Tennenholtz, “Adaptive load balancing: A
study in multi-agent learning,” Journal of Artificial Intelligence Research,
vol. 2, pp. 475–500, 1995.

[6] S. Sen and G. Weiss, “Learning in multiagent systems,” in Multia-
gent Systems: A Modern Approach to Distributed Artificial Intelligence,
G. Weiss, Ed. MIT Press, 1999, ch. 6, pp. 259–298.

[7] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,
pp. 387–434, November 2005.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, US: MIT Press, 1998.

[9] G. Chalkiadakis, “Multiagent reinforcement learning: Stochastic games
with multiple learning players,” Dept. of Computer Science, Uni-
versity of Toronto, Canada, Tech. Rep., 25 March 2003, URL:
http://www.cs.toronto.edu/˜gehalk/DepthReport/DepthReport.ps.

[10] K. Tuyls and A. Nowé, “Evolutionary game theory and multi-agent
reinforcement learning,” The Knowledge Engineering Review, vol. 20,
no. 1, pp. 63–90, 2005.

[11] M. Bowling and M. Veloso, “Multiagent learning using a variable
learning rate,” Artificial Intelligence, vol. 136, no. 2, pp. 215–250, 2002.

[12] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-learning,” Machine
Learning, vol. 8, pp. 279–292, 1992.

[13] Y. Shoham, R. Powers, and T. Grenager, “Multi-agent reinforcement
learning: A critical survey,” Computer Science Dept., Stanford Univer-
sity, California, US, Tech. Rep., 16 May 2003.

[14] R. Powers and Y. Shoham, “New criteria and a new algorithm for
learning in multi-agent systems,” in Advances in Neural Information
Processing Systems 17 (NIPS-04), Vancouver, Canada, 2004, pp. 1089–
1096.

[15] M. Bowling, “Convergence and no-regret in multiagent learning,” in
Advances in Neural Information Processing Systems 17 (NIPS-04), Van-
couver, Canada, 13–18 December 2004, pp. 209–216.

[16] M. L. Littman, “Value-function reinforcement learning in Markov
games,” Journal of Cognitive Systems Research, vol. 2, pp. 55–66, 2001.

[17] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in
cooperative multiagent systems,” in Proc. 15th National Conference on
Artificial Intelligence and 10th Conference on Innovative Applications of
Artificial Intelligence (AAAI/IAAI-98), Madison, US, 26–30 July 1998,
pp. 746–752.

[18] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coor-
dination in cooperative multi-agent systems,” in Proc. 18th National
Conference on Artificial Intelligence and 14th Conference on Innovative
Applications of Artificial Intelligence (AAAI/IAAI-02), Menlo Park, US,
28 July – 1 August 2002, pp. 326–331.

[19] C. Boutilier, “Planning, learning and coordination in multiagent decision
processes,” in Proc. Sixth Conference on Theoretical Aspects of Rational-
ity and Knowledge (TARK-96), De Zeeuwse Stromen, The Netherlands,
17–20 March 1996, pp. 195–210.

[20] M. T. J. Spaan, N. Vlassis, and F. C. A. Groen, “High level coordination
of agents based on multiagent Markov decision processes with roles,”
in Workshop on Cooperative Robotics, 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS-02), Lausanne,
Switzerland, 1 October 2002, pp. 66–73.

[21] C. Guestrin, M. G. Lagoudakis, and R. Parr, “Coordinated reinforcement
learning,” in Proc. Nineteenth International Conference on Machine
Learning (ICML-02), Sydney, Australia, 8–12 July 2002, pp. 227–234.

[22] L. Buşoniu, B. De Schutter, and R. Babuška, “Multiagent reinforcement
learning with adaptive state focus,” in Proc. 17th Belgian-Dutch Confer-
ence on Artificial Intelligence (BNAIC-05), Brussels, Belgium, October
17–18 2005, pp. 35–42.

