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On Algorithms for a Binary-Real (max,×)

Matrix Approximation Problem

Bart De Schutter, Jan Schepers and Iven Van Mechelen

Abstract— We consider algorithms to solve the problem of
approximating a given matrix D with the (max,×) product of
a binary (i.e., a 0-1) matrix S and a real matrix P: minS,P ‖S⊙
P−D‖. The norm to be used is the ℓ1, ℓ2 or ℓ∞ norm, and
the (max,×) matrix product is constructed in the same way as
the conventional matrix product, but with addition replaced by
maximization. This approximation problem arises among others
in data clustering applications where the maximal component
instead of the sum of the components determines the final
result. We propose several algorithms to address this problem.
The binary-real (max,×) matrix approximation problem can be
solved exactly using mixed-integer programming, but since this
approach suffers from combinatorial explosion we also propose
some alternative approaches based on alternating nonlinear
optimization, and a method to obtain good initial solutions.
We conclude with a simulation study in which the performance
and optimality of the different algorithms are compared.

I. INTRODUCTION

We consider a matrix approximation problem in which a

data matrix D ∈ R
m×n should be approximated by a model

matrix M ∈ R
m×n with M the (max,×) product of a binary

matrix S ∈ {0,1}m×k and a real matrix P ∈ R
k×n: M =

S⊙P, where ⊙ denotes the (max,×) matrix product: mi j =
maxl=1,...,k sik · pk j for all i, j. This results in the following

problem:

Given a matrix D ∈ R
m×n and an integer k find

S ∈ {0,1}m×k and P ∈ R
k×n such that

‖S⊙P−D‖ is minimized. (1)

In Section II we will explain how this problem arises among

others in data clustering applications where the maximal

component instead of the sum of the components determines

the final result. Problem (1) is an extension of the HICLAS

problems considered in [1]–[3]. It is also related to the

(max,+) matrix approximation problem considered in [4].

Remark 1.1 Typical ranges for the dimension of the matrices

appearing in the applications we target are: m∈{20 . . . ,400},

n ∈ {10, . . . ,50}, and k ∈ {2, . . . ,7}. Furthermore, for practi-

cal applications the entries of D are often nonnegative, and

the same should then hold for M and P. �

We denote the transpose of a matrix A by AT. The ith row

of A is denoted by Ai,., and the jth column by A., j. For the
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norm in (1) we will consider the ℓ1, ℓ2 or ℓ∞ norm, which

are defined as follows for a matrix A ∈ R
m×n [5]:

‖A‖ℓ1
=

m

∑
i=1

n

∑
j=1

|ai j| , ‖A‖ℓ2
=

(

m

∑
i=1

n

∑
j=1

a2
i j

)
1
2

‖A‖ℓ∞ = max
i=1,...,m

max
j=1,...,n

|ai j| .

In Section II we show how the binary-real matrix (max,×)
approximation problem (1) arises in the context of some data

clustering approaches. Next, we discuss some properties of

the solutions of Problem (1) in Section III. In Section IV

we will then show that the optimization problem (1) can be

recast as a mixed-integer linear (for the ℓ1 and ℓ∞ norm)

or mixed-integer quadratic programming problem (for the

ℓ2 norm). Although there exist good commercial and free

solvers for mixed-integer linear and quadratic programming

problems, the problem is inherently combinatorial. There-

fore, we also present some alternative approaches to find

a suboptimal solution in a more efficient way in Section

V. These approaches are based on an alternating approach

in which S is determined using an enumerative or greedy

approach and P using nonlinear (real-valued) optimization.

For a given S we also propose a method to determine a good

initial solution for P. Finally, in Section VII we present the

results of a simulation study in which the performance and

optimality of the different algorithms are compared.

II. BACKGROUND OF THE PROBLEM

A challenge for a data analyst is to capture the structural

information that is present in a given data matrix of, say,

m objects by n variables. One way of achieving this goal

is to search for homogeneous clusters within the objects.

An example is the well-known K-means clustering tech-

nique [6], which describes an approximate (least squares)

decomposition of the data into on the one hand a binary

matrix which represents a partition, and on the other hand a

real-valued matrix usually referred to as the cluster centroid

matrix. In this paper, we will construct an approximation M

to the data D, that also tries to achieve the goal of capturing

the underlying structural information in D by decomposing

M into a binary matrix S and a real-valued matrix P. But

unlike K-means clustering, which implies a decomposition in

conventional linear algebra, we consider the problem where

the approximation M can be written as the (max,×) matrix

product of a binary matrix S (not necessarily a partition) and

a real-valued matrix P:

D ≈ M = S⊙P (2)



with D, M ∈ (R+)m×n, S∈{0,1}m×k and P∈ (R+)k×n, where

R
+ is the set of the nonnegative real numbers. The value of

k is assumed to be known in advance.

Of course, the decomposition according to (2) implies

that a specific type of structural information is captured.

As an example, one can think of data pertaining to the

response latencies of object recognition for a set of visually

presented objects, and a set of persons. Suppose a researcher

is interested in a number of latent tasks that need to be

processed in parallel by the visual system in order for the

objects to be recognized [7], [8]. Moreover, the researcher

does not know which latent tasks need to be processed

for each object or does not want to make certain a priori

assumptions about this. In this case, the binary matrix S in

(2) may represent the latent tasks performed by the visual

system as implied by each of the objects (such as processing

the information on spatial frequency, orientation, color, etc.),

and the real-valued matrix P in (2) may denote the response

times that each latent task requires from each persons visual

system. To illustrate this, consider the following hypothetical

data matrix where the rows correspond to the set of visually

presented objects and the columns to the set of persons

participating in the experiment:

D =













0.67 0.06 0.26 0.57

0.82 0.96 0.55 0.57

0.67 0.99 0.36 0.60

0.82 0.96 0.55 0.05

0.57 0.99 0.36 0.60













.

This data matrix can be decomposed, according to expression

(2), into a binary matrix S in which the three columns

represent the latent tasks that need or need not to be

processed (indicated by 1 and 0, respectively) in order for the

objects to be recognized. The matrix P represents, in each

column, the processing time required for each of the three

tasks corresponding to that particular person. We have

S =













0 0 1

0 1 1

1 0 1

0 1 0

1 0 0













, P =





0.57 0.99 0.36 0.60

0.82 0.96 0.55 0.05

0.67 0.06 0.26 0.57



 .

If we focus on the second object (i.e., the second row of S),

we see that both the second and third latent tasks need to

be processed in order for that object to be recognized. The

(max,×) algebra in (2) implies that the response latencies of

recognition for that object (as represented in the second row

of D) will only be affected by the most demanding of these

two latent tasks. This matches up in a very natural way with

the assumption of parallel processing of information by the

visual system.

Of course, in practice there will always be errors and noise

present in the data, and then we have to approximate D as

good as possible with the model matrix M = S⊙P, where

the error or goodness-of-fit is indicated by ‖D− S⊙P‖. In

this paper we will consider the ℓ1, ℓ2 and ℓ∞ norm. This

results in the optimization problem (1).

III. PROPERTIES OF THE SOLUTIONS

A. Uniqueness

If W ∈ {0,1}k×k is permutation matrix (i.e., W has exactly

one 1 on each row and each column, the other elements

being equal to 0), then for a given optimal solution (S∗,P∗)
of Problem (1), (S∗ ·W,W T ·P∗) is also an optimal solution

where · denotes the conventional matrix multiplication.

B. Range of the entries

Let us denote the jth column maximum and minimum of

D as follows: dmax, j = max
i

di j and dmin, j = min
i

di j.

Proposition 3.1: Given a data matrix D there always

exists an optimal approximation (S∗,P∗) for the ℓ1, ℓ2 or

ℓ∞ norm such that the entries of the jth column of P∗ are

bounded from above by dmax, j and bounded from below by

dmin, j for each j ∈ {1, . . . ,n}. ⋄
Proof: Let j ∈ {1, . . . ,n} and consider an optimal

approximation (S∗,P∗). We will prove that there exists

an(other) optimal solution (S#,P#) for which the entries of

the jth column of P# are bounded from above by dmax, j. The

proof for the lower bound is similar.

Define L = {l ∈ {1, . . . ,k} | p∗l j > dmax, j}. If L = /0 the upper

bound part of the proposition is proved. So let us now

consider the case L 6= /0.

Consider l ∈ L such that l = argmaxu p∗u j, and define Il = {i |
sil = 1}. Now we distinguish between two cases: Il = /0 and

Il 6= /0. If Il = /0, then we can change the value of p∗l j without

changing the value of S∗⊙P∗ and thus also of ‖S∗⊙P∗−D‖.

Hence, we can always set p∗l j = dmax, j in this case.

Now we consider the case Il 6= /0 and we show by contra-

diction that this case will never occur. We define S# = S∗,

P# ∈ R
k×n such that p#

uv = p∗uv for all (u,v) ∈ {1, . . . ,k}×
{1, . . . ,n} with (u,v) 6= (l, j) and such that p#

l j = dmax, j.

Define E∗ = S∗⊙P∗−D, and E# = S# ⊙P# −D. Then for

any i 6∈ Il we have e#
i j = e∗i j and for any i ∈ Il , we have e#

i j =

maxu(s
#
iu p#

u j)−di j = s#
il p#

l j −di j = p#
l j −di j = dmax, j−di j > 0.

Furthermore, as in addition p∗l j > dmax, j we have e∗i j > e#
i j for

each i ∈ Il . So 0 6 e#
i j < e∗i j for each i ∈ Il and e#

i j = e∗i j for

each i 6∈ Il . As a consequence, we have ‖E#‖< ‖E∗‖ for the

ℓ1, ℓ2, and ℓ∞ norm. As (S∗,P∗) is an optimal approximation,

we thus obtain a contradiction. Hence, the initial assumption

that Il 6= /0 is not valid.

By repeating the reasoning above we can show for each l ∈ L

we have Il = /0. As in this case we can replace p∗l j > dmax, j

by dmax, j without changing S∗⊙P∗, there always exists an

optimal approximation (S∗,P∗) for which the entries of the

jth column of P∗ are bounded from above by dmax, j.

IV. AN OPTIMAL APPROACH BASED ON MIXED-INTEGER

PROGRAMMING

We will show that by introducing some auxiliary variables

Problem (1) can be recast into a mixed integer quadratic

programming (MIQP) problem (for the ℓ2 norm), or into a

mixed integer linear programming (MILP) problem (for the

ℓ1 and the ℓ∞ norms).



In general, an MILP problem is defined as follows:

min
x∈Rn

f Tx

subject to Ax 6 b and xi ∈ Z for i ∈ Iint,

and an MIQP problem as follows:

min
x∈Rn

1
2
xTHx+ f Tx

subject to Ax 6 b and xi ∈ Z for i ∈ Iint,

for appropriately sized matrices H and A, and vectors f and

b, and where Iint ⊆{1, . . . ,n} and Z is the set of the integers.

MILP and MIQP problems can be solved using branch-and-

bound methods [9].

Consider Problem (1) and introduce the auxiliary matrix

variable E ∈ R
m×n such that E = S⊙P−D. Then we have

ei j = maxl=1,...,k(sil pl j)−di j for each i, j. This equation can

be rewritten as

max
l=1,...,k

(sil pl j −di j − ei j) = 0 . (3)

Now we introduce additional boolean variables δil j that

indicate whether or not sil pl j −di j − ei j is different from 0.

Let Bil j be a lower bound for sil pl j −di j − ei j (see equation

(15) below) and consider the equations

Bil jδil j 6 sil pl j −di j − ei j 6 0 (4)

k

∑
l=1

δil j 6 k−1 (5)

δil j ∈ {0,1} . (6)

Let us now show that the system (4)–(6) is equivalent to

equation (3). Note that (5) together with (6) implies that at

least one δil j is equal to 0. If δil j = 0 then (4) implies that

sil pl j − di j − ei j = 0, whereas δil j = 1 implies that sil pl j −
di j − ei j 6 0. Hence, (4)–(6) is indeed equivalent to (3). In

order to obtain linear equations we now introduce additional

(real-valued) auxiliary variables zil j such that zil j = sil pl j.

Now we use the following result taken from [10]:

Lemma 4.1: Consider the function f : X →R : x 7→ f (x)
with X a bounded subset of R. Consider two real numbers

M f and m f with M f > supx∈X f (x) and m f 6 infx∈X f (x).
Then the expression y = δ f (x) with δ a boolean variable is

equivalent to the system

m f δ 6 y 6 M f δ

f (x)−M f (1−δ )6 y 6 f (x)−m f (1−δ ) . ⋄

Recall that it follows from Proposition 3.1 that dmin, j 6

pi j 6 dmax, j for all i, j. Hence, by Lemma 4.1 we can replace

the expression zil j = sil pl j by the system

dmin, jsil 6 zil j 6 dmax, jsil

pl j −dmax, j(1− sil)6 zil j 6 pl j −dmin, j(1− sil) .

So summarizing, the equation E = S⊙P−D with S a boolean

matrix can be recast into the following system of mixed

integer linear inequalities

sil ∈ {0,1} (7)

Bil jδil j 6 zil j −di j − ei j 6 0 (8)

k

∑
l=1

δil j 6 k−1 (9)

δil j ∈ {0,1} (10)

dmin, jsil 6 zil j 6 dmax, jsil (11)

pl j −dmax, j(1− sil)6 zil j 6 pl j −dmin, j(1− sil) (12)

for i = 1, . . . ,m, l = 1, . . . ,k and j = 1, . . . ,n.

Now we have to minimize ‖E‖ over the system (7)–(12).

Clearly, for the ℓ2 norm this implies that we have to minimize

a quadratic objective function1 ∑
i, j

e2
i j over (7)–(12), i.e., we

have to solve an MIQP problem.

For the ℓ∞ norm we introduce an additional auxiliary

variable t such that |ei j|6 t or equivalently

−t 6 ei j 6 t for all i, j, (13)

and then we minimize t over the system (7)–(13), which

yields an MILP problem. It is easy to verify that for the

optimal solution we have t∗ = max
i, j

|e∗i j|, i.e., in the optimum

the condition |ei j|6 t holds with equality.

For the ℓ1 norm we take a similar approach: we introduce

additional auxiliary variables ti j for i = 1, . . . ,m and j =
1, . . . ,n such that |ei j|6 ti j or equivalently

−ti j 6 ei j 6 ti j for all i, j, (14)

and we minimize ∑
i, j

ti j over the system (7)–(12) and (14),

which also yields an MILP problem. It is easy to verify that

for the optimal solution we have t∗i j = |e∗i j|.

Determination of Bil j

Let us now determine a lower bound Bil j for sil pl j −di j −
ei j. From Proposition 3.1 it follows that we may assume

that for an optimal solution we have dmin, j 6 pi j 6 dmax, j

for all i, j, and thus min(dmin, j,0) 6 sil pl j 6 max(dmax, j,0)
for all i, l, j. Furthermore, ei j = max

l=1,...,k
(sil pl j)−di j and thus

ei j+di j =maxl=1,...,k(sil pl j)6max(dmax, j,0) for all i, j. This

implies that

Bil j
def
= min(dmin, j,0)−max(dmax, j,0) (15)

6 sil pl j −di j − ei j for all i, l, j.

The approach to determine S and P presented in this

section will in principle always yield the optimal solution to

the Problem (1) (provided that the MILP or MIQP algorithm

is allowed to run until the exact solution is found). However,

as the number of variables in the MILP or MIQP increases

(i.e., as n, m, and/or k increase), the running time and

the memory requirements of the MILP or MIQP algorithm

will in general increase (exponentially) as MILP and MIQP

problems are NP-hard [11], [12]. Therefore, in the next

section we will propose some alternative algorithms that will

require less computing time and memory (but in general they

will not always provide the optimal solution).

1Note that minimizing ‖E‖ℓ2
is equivalent to minimizing ‖E‖2

ℓ2
.



V. SUBOPTIMAL ALGORITHMS

A. A suboptimal alternating approach for S and P

We propose an approach which is based on alternately

determining S and P. Note that in general the convergence

of this approach to an optimal solution cannot be guaranteed

(see also Section VII). This algorithm works as follows:

• Given: D, k, a maximum number of iteration steps N,

and a termination tolerance τ
• Initialization: Compute an initial guess S0 and P0 (cf.

Section VI), and set l := 0

• Loop: while l 6 N and ‖D−Sl ⊙Pl‖> τ do

– Determine a (sub)optimal P∗ for S = Sl (cf. Section

V-B) and set Pl+1 := P∗

– Determine a (sub)optimal S∗ for P = Pl+1 (cf.

Section V-C) and set Sl+1 := S∗

– Set l := l +1

• Output: S = Sl and P = Pl

In the next sections we propose methods to determine a

(sub)optimal P for a given S, a (sub)optimal S for a given

P, and appropriate initial guesses for S and P.

Note that instead of the alternating approach we could also

use, e.g., simulated annealing [13] on S and P.

B. Algorithms to determine P for a given S

For a given S the problem to be solved becomes

min
P∈Rk×n

‖S⊙P−D‖ . (16)

Note that for the ℓ1, ℓ2, and ℓ∞ norm this problem can

be solved column by column as the jth column of P only

influences the jth column of the product S⊙P. Problem (16)

is in general not convex. To solve this problem we can use a

multi-start unconstrained optimization method, a multi-start

nonlinear least-squares method, or if we also include the

bounds as given in Proposition 3.1 a multi-start constrained

optimization method. An alternative approach would be to

use simulated annealing. We refer to [13], [14] for more

information on these nonlinear optimization methods.

C. Algorithms to determine S for a given P

For a given P the problem to be solved becomes

min
S∈{0,1}m×k

‖S⊙P−D‖ (17)

For the ℓ1, ℓ2, and ℓ∞ norm this problem can be solved row by

row as the ith row of S only influences the ith row of S⊙P.

Note that now we have the additional condition that si j ∈
{0,1} for all i, j, which makes this problem combinatorial.

Some approaches to determine S are enumeration2, tabu

search [15], simulated annealing [13], a genetic algorithm

[16], a mixed integer programming approach similar to that

of Section IV to simultaneously determine optimal values for

S and P, or the following greedy approach:

• Given: D, P, and a termination tolerance τ

2Note that for practical problems k ranges from 2 to 7 (cf. Remark 1.1).
So enumeration over all possible 2k values for each row is still feasible.

• for each row Si,. of S do

– Initialize Si,. to
[

0 0 . . . 0
]

– Set F := {1, . . . ,n} (F contains the indices of the

“free” entries of Si,.)
– while F 6= /0 and ‖Si,.⊙P−Di,.‖> τ do

∗ Define e0 = ‖Si,.⊙P−Di,.‖
∗ For each index f ∈F flip the f th entry of Si,. to

1, determine the corresponding value e f = ‖Si,.⊙
P−Di,.‖, and flip the entry back to 0

∗ Select the index f ∗ for which e f is the smallest

∗ if e f
∗ < e0 then

Remove f ∗ from F and

permanently fix Si f ∗ to 1

else

Set F = /0 (no further improvement possible)

• Output: S

Many of the suboptimal approaches for S and P presented

above require an initial starting point. Therefore, in the next

section we present a method to determine initial solutions,

first, for S, and next, for P (for a given S).

VI. INITIAL SOLUTIONS FOR S AND P

A. Initial solution for S

To determine an initial S we could consider a random

binary matrix of size m by k, or use a heuristic initial solution

constructed as follows: Assuming that k 6 n (which generally

is the case), we select the k first columns of D and we

determine the average value of the entries of this m by k

submatrix. Next we replace all entries that are larger than or

equal to this average value by 1 and the other entries by 0.

B. A suboptimal initial solution for P based on the largest

subsolution

Note that if S contains a zero row, the corresponding row

of S⊙P is also a zero row, so these rows cannot be influenced

by changing P. Hence, we now assume that the zero rows

of S and the corresponding rows of D have been removed.

Furthermore, for the sake of simplicity we assume that all

entries of D are nonnegative.

The proposed approach is based on a two-step procedure:

• First we compute the “largest subsolution” of S⊙P6D,

i.e., we solve the multi-objective optimization problem

max
P

P (18)

subject to S⊙P 6 D .

This problem can be solved analytically as will be

shown below. Furthermore, as S is assumed to have no

zero rows, the solution of Problem (18) is always finite.

• Next, for each column j of P we add a constant α j to the

column such that ‖D., j −S⊙ (P., j +α j)‖ is minimized.

We will show that this problem can also be solved

analytically for the ℓ1, ℓ2, and ℓ∞ norm.

Note that this approach yields the exact solution for a given

S if there exists a P such that (S,P) is the optimal solution

of Problem (1). These solutions can also be used as an initial



solution for the approaches used to determine both S and P

(cf. Section V-A), or P for a given S (cf. Section V-B).

Step 1: Consider Problem (18) and define Il = {i | sil = 1}
for l = 1, . . . ,k. Note that due to our assumption that S has no

zero rows, we always have Il 6= /0 for each l ∈{1, . . . ,k}. For a

feasible solution of Problem (18) we should have sil pl j 6 di j

for all i, l, j, and thus pl j 6 mini∈Il di j as Il 6= /0 and as we

have assumed that di j > 0 for all i, j. Hence, the entries of

the optimal solution Pls of Problem (18) are given by

(Pls)l j = min
i∈Il

di j . (19)

It is easy to verify that the following property holds:

for each j ∈ {1, . . . ,n} there exists an index i j (20)

such that (S⊙Pls)i j j = di j j .

Also note that if all the entries of D are nonnegative this also

holds for the entries of Pls.

Step 2: Let j ∈ {1, . . . ,n} and now consider the following

optimization problem for the given matrix S and for the

matrix Pls given by (19):

min
α j

‖D., j −S⊙ ((Pls)., j +α j)‖ .

In order to simplify the notation we define α = α j, p =
(Pls)., j, d = D., j, and we consider the problem

min
α

‖d −S⊙ (p+α)‖ . (21)

If we define e(α) = d−S⊙(p+α) and µ = S⊙ p (note that

by construction µ 6 d), then we have

ei(α) = di − max
l=1,...,k

sil(pl +α)

= di − max
l=1,...,k

(sil pl + silα)

= di − max
l=1,...,k

(sil pl)−α (as there is at least one

index l with sil 6= 0)

= di −µi −α .

Note that e(0) > 0 and that e is a decreasing function of

α . This implies that the optimal α for Problem (21) will

satisfy the condition α > 0. Now we consider the solution

of Problem (21) for the ℓ1, ℓ2, and ℓ∞ norm respectively:

• ℓ1 norm:

In this case the optimization problem becomes:

minα ∑m
i=1 |di − µi − α| . Using generalized gradients,

the optimal value for α is then given by the solution of

the equation ∑m
i=1 sgn(di − µi −α) = 0, which loosely

speaking implies that the optimal value of α is such

that for half of the indices i the sign is positive and for

the other half the sign is negative, i.e., α∗ is the median

of the set {d1 −µ1,d2 −µ2, . . . ,dm −µm}.

• ℓ2 norm:

In this case the optimization problem results in

minα ∑m
i=1(di − µi − α)2. The optimal value for α is

then given by the solution of the equation
m

∑
i=1

2(di −

µi −α)(−1) = 0, i.e., α∗ = 1
m ∑m

i=1(di −µi).

• ℓ∞ norm:

In this case the optimization problem becomes:

min
α

max
i=1,...,m

|di −µi −α|

⇔ min
α

max
i=1,...,m

max(di −µi −α,α +µi −di))

⇔ min
α

max
(

max
i=1,...,m

(di −µi −α),

max
i=1,...,m

(α − (di −µi))
)

⇔ min
α

max
(

max
i=1,...,m

(di −µi)−α,

α − min
i=1,...,m

(di −µi))
)

⇔ min
α

max(δmax −α,α)

with δmax = max
i=1,...,m

(di − µi) and where we have taken

into account that d > µ and that there exists at least

one index i such that di = (S⊙ p)i = µi (cf. (20)), which

implies that mini=1,...,m(di−µi) = 0. As both arguments

of the max function are affine in the scalar variable α , it

is easy to verify that the optimal value of α is obtained

when δmax −α = α . So α∗ = δmax
2

.

VII. COMPARISON OF THE ALGORITHMS

In this section we present the results of a comparison of

the algorithms proposed above. We consider the ℓ2 norm, and

we define a set of 250 random test matrices, in which all data

matrices can be represented exactly as S⊙P. The fact that

an exact solution exists allows us to assess the optimality of

an algorithm when applied to the given data matrix.

For constructing a test matrix D(i) for which an ex-

act approximation exists, we first select a random integer

m(i) ∈ {2, . . . ,9}, and we define n(i) = max
(

2,
⌊

2
3
m(i)

⌋)

,

k(i) = max
(

2,min
(

n(i)− 1,
⌊

1
2
m(i)

⌋))

, where ⌊x⌋ with x a

real number denotes the largest integer less than or equal

to x. Next, we create a random non-zero binary matrix

S(i) ∈ {0,1}m(i)×k(i) , and a random integer matrix P(i) ∈

{0, . . . ,10}k(i)×n(i) , and we construct D(i) = S(i)⊙P(i).

We have applied the following 5 approaches:

1) the MIQP-based approach of Section IV,

2) a heuristic approach using the initial solution for S

of Section VI-A and the corresponding suboptimal

solution for P of Section VI-B,

3) an alternating approach (cf. Section V-A) that uses an

enumerative approach for (the rows of) S and an multi-

start SQP-based approach for (the columns of) P,

4) an alternating approach that uses the greedy approach

of Section V-C for (the rows of) S and an multi-start

SQP-based approach for (the columns of) P,

5) a simulated annealing approach for S and P jointly.

The algorithms were implemented in Matlab (except for

the MIQP solver, for which we used the TOMLAB Matlab

interface to CPLEX). The tuning parameters for each of the

approaches above (such as the number of initial starting

points for the multi-start SQP-based approach, the initial

temperature, annealing period and rate for the simulated



annealing approach, etc.) have been set to heuristically

determined “optimal” values. As the (first) starting point for

the alternating approaches and for the simulated annealing

approach we have used the initial solutions presented in

Sections VI-A and VI-B. For the MIQP-based approach we

took the default initial value of CPLEX.

In Figure 1 we plot the percentage of optimal solutions,

the average CPU time3, and the average relative error values

‖S ⊙ P − D‖ℓ2
/‖D‖ℓ2

as a function of the row dimension

m of the (max,×) matrix product for each of the solution

approaches. From these plots we conclude that the MIQP

approach indeed always retrieves the exact solution, but at the

cost of higher computation times. We note that the alternating

approaches perform better than the heuristic approach and the

simulated annealing approach. Although for the alternating

approaches the number of times the exact optimal solution

is retrieved drops below 50 % for larger values of m (see

leftmost plot), the relative error is still sufficiently small (see

rightmost plot), i.e., we obtain a suboptimal solution. So we

could say that the alternating approaches offer a reasonable

trade-off between speed and optimality.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We have considered a binary-real (max,×) matrix ap-

proximation problem that arises in the context of some

data clustering applications. We have shown that the ex-

act solution of this problem can be obtained by solving

a mixed-integer linear or quadratic programming problem.

However, as these mixed-integer programming problems are

in general combinatorial, we have proposed some alternative

suboptimal solution approaches for the binary-real (max,×)
matrix approximation problem. We have discussed how good

initial solutions can be obtained. Finally, we have made a

comparison of the proposed algorithms. These experiments

show that the mixed-integer approach indeed always retrieves

the optimal solution, and that the alternating approaches offer

a reasonable trade-off between speed and optimality.

Topics for future research include: Further analysis of the

properties of the binary-real (max,×) matrix approxima-

tion problem and its optimal solutions, further tuning and

improvement of the proposed algorithms, development of

tuning guidelines, investigating other approximations (e.g.,

semidefinite programming [17]) and a more extensive com-

parison and assessment (also for real data sets).
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Fig. 1. Percentage of optimal solutions, average CPU time, and average relative error values as a function of m for the data matrices of the test set.


