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Robust hybrid MPC applied to the design

of an adaptive cruise controller for a road vehicle

Daniele Corona, Ion Necoara, Bart De Schutter and Ton van den Boom

Abstract— Hybrid Model Predictive Control (MPC) for piece-
wise affine (PWA) systems is used to solve a control problem
for the tracking of a road vehicle. The study originates from
the design of an adaptive cruise controller (ACC), that aims to
track the velocity transmitted by a leading vehicle. In addition
we consider disturbances due to model mismatch and to state
measurements. The design specifications and corresponding
constraints related to safety and comfort lead to nontrivial
control problem. We present the results of a method that merges
the use of hybrid MPC for tracking and regulation to a final
equilibrium state, for which we compute the terminal cost and
constraint set both in the deterministic and the perturbed case.

I. INTRODUCTION

Applying the control techniques developed for linear or

smooth nonlinear systems to control hybrid systems is pro-

hibited by the presence of integer variables, which yield

complex numerical problems. Nevertheless, a considerable

number of control methods were proposed in the litera-

ture. The results obtained by Bemporad and Morari in [2]

showed that, under general conditions, a Model Predictive

Control (MPC) based approach can be successfully used to

control hybrid systems, by solving on-line a mixed integer

optimization problem. The control law may also be ob-

tained off-line [3] by solving a parameterized mixed integer

programming problem. Properties like robustness [12], [17]

or stability [8], [14], [16] were also investigated. In the

survey [15] an overview on the approaches for guaranteeing

stability in nonlinear MPC is presented. The usual technique

is based on the computation of a terminal cost and constraint

set. The optimal cost is chosen as a candidate Lyapunov

function for the closed-loop system.

In this paper we design an on-line hybrid MPC controller

applied to tracking during transient and regulation to a

stationary state. This study was motivated by the design of an

adaptive cruise controller (ACC) for a Smart. The target is to

follow a leading vehicle in a highway environment. In order

to meet realistic conditions several constraints are introduced,

fulfilling safety, comfort and environmental issues. We as-

sume that the reference trajectory, transmitted by the leading

vehicle, will eventually reach a stationary state, around which

we guarantee stability and feasibility of the controller, even in

presence of bounded disturbances. In general this stationary

value is arbitrary, in the hybrid framework we choose it along

the switching manifold. The main added value of this paper
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lies in the combination and application of several existing

hybrid techniques for a relatively simple but challenging

case study. Furthermore the results of this study point to

interesting issues that merit further investigation.

We first describe the model, the optimal control problem

and the goals. Then we present the procedure used to

construct the terminal cost and constraint set to guarantee

stability even in presence of disturbances. Finally we show

simulation results on the considered application, highlighting

the necessity of a robust stabilizing hybrid control, at the

price of a higher computational effort.

II. MODEL AND PROBLEM STATEMENT

Model We consider the following nonlinear system

ẋ = f(x) +Bu+ w (1)

s.t. ēxϑ+ ēuu+ ēww ≤ ḡ (2)

where f(x) is a continuous function, B is a constant matrix,

w is a bounded disturbance, ϑ is a set of parameters.

Equation (2) defines the feasible set of the control problem.

Problem We address the issue of designing the control

input u(t), t > 0 for system (1) that tracks a time-varying

reference signal [r(t)T, uref(t)
T]T. We assume the property

that r(t) → xe, uref(t) → ue, as t → +∞ and that

[xT
e , u

T
e ]

T satisfy f(xe) +Bue = 0 and the constraints (2).

Approach This framework is suitable for MPC-based

techniques. In fact MPC handles constrained problems, af-

fected by disturbances and/or measurements errors. MPC is

commonly used in discrete-time (DT) and is in general an

on-line tool. Thus, a DT representation of system (1) with

a sampling time T adequate to trade off system behavior

with on-line optimization fulfillments. We tackle the problem

above in two steps. First we provide as prediction model a

PWA approximation of vector field f(x). To this purpose

we construct m affine systems (Ai, Fi), i = 1, . . . ,m and a

partition P of the state space such that f(x) ≈ Aix + Fi,

x ∈ Pi, where Pi’s are polyhedral sets, and then we derive

the corresponding DT representation [4]. Hence we consider

x(k + 1) = Aix(k) +Biu(k) + Fi + w(k), x ∈ Pi

s.t. exϑ(k) + euu(k) + eww(k) ≤ g,
(3)

where ϑ(k) is a vector of parameters given at time k. Sec-

ondly, we consider the following constrained optimization

problem.

Problem 1: Let the prediction horizon Np (1 ≤ Np <
∞) be given and Q,QNp

, R > 0 be matrices of appropriate
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Fig. 1. (a) ACC set up and (b) nonlinear to PWA approximation.

dimensions. We define the problem

min
u∈ΠNp (ϑ(k))

{

VNp
(ϑ(k),u) ,

Np−1
∑

j=0

L(ε(k + j), η(k + j)) + F (ε(k +Np)),
} (4)

s.t. (3), where ε(k) = x(k) − r(k) is the tracking error,

η(k) = u(k)− uref(k) and u(k) = [u(k)T, . . . , u(k +Np −
1)T]T is the sequence of Np control inputs constrained to

the feasible set ΠNp
(ϑ), see (5). We define F (ε(k)) ,

||QNp
ε(k)||

p
and L(ε(k), η(k)) , ||Qε(k)||p + ||Rη(k)||p.

�

At each time step Np samples of the reference trajectory are

known (predicted or pre-scheduled). Suppose that Problem 1

is feasible and let u0(ϑ(k)) denote its optimal solution. Then,

the control action u0(k) ,
(

u0(ϑ(k))
)

1
(i.e. the first block

element of the vector u0(ϑ(k)) is applied to the nonlinear

model (1), in a receding horizon manner. Next, the set of

parameters ϑ(k+1) is updated at time step k+1 and, a new

optimal control problem is solved to obtain the new control

action u0(k + 1).
We study problem (1) for norms p = 1 and p = 2, to

allow the conversion into a constrained mixed integer linear

and quadratic programming (MILP and MIQP) [1], [7], [13],

for which we use the solver Cplex.

The design of the control law is split into two phases:

during the transient of the reference trajectory we consider

tracking. When the reference has reached its steady state we

enforce stability of the hybrid MPC (which is not guaranteed

a priori [2]) in the regulation. To this aim we compute a

terminal cost and a constraint set, as in [16]. The disturbance

w(k), due to the PWA approximation and to the error

measurements, may give infeasibilities. For this reason we

also implement robust min max MPC [15], and use the

algorithm in [17] to guarantee robust stability.

So far it is not yet possible to ensure stability and ro-

bustness for time-varying reference signals, thus we compute

the invariant set and the corresponding terminal constraint in

stationary condition.

III. MPC FOR PWA SYSTEMS

In this section the methods used to compute the invariant

set and the terminal cost and constraint set in the determinis-

tic and robust case will be briefly summarized. In particular

the following subsection deals with model (3) considered

unperturbed, i.e., w = 0. The reader is referred to [16],

[17] for detailed descriptions and the proofs. It is relevant to

note that this study is significant when the equilibrium pair

[xT
e , u

T
e ]

T belongs to the switching manifold. To simplify

notation we will omit the dependencies of k from ϑ and u.

A. Deterministic MPC

Given an equilibrium pair [xT
e , u

T
e ]

T for the system, i.e.
xe = Aixe + Biue + Fi for all i ∈ I0 ⊆ I we want to
determine a stabilizing PWA feedback controller u(x) ,
ϕix+γi and the corresponding common Lyapunov function:

V (x) , (x − xe)
TP (x − xe), respectively. In [16] we

provide a detailed discussion about the computations (based
on the S-procedure) of ϕi, γi and P using the structure
of the system. For the closed loop system x(k + 1) =
(Ai + Biϕi)x(k) + Biγi + Fi, x ∈ Pi, we construct a
positively invariant set Xf [16], [17]. The control objectives
are stability and performance within the constraints in (3)
with w = 0 (i.e., unperturbed). This is achieved as follows: at
time step k the control is determined by solving problem (1)
with r(k) = xe and uref(k) = ue. For each ϑ at time k we
define the feasible control set:

ΠNp(ϑ) , {u : ξ(ϑi, ui) ≤ g, ∀i ∈ Np − 1, xNp ∈ Xf}, (5)

where ξ(ϑi, ui) = exϑi + euui and N , {1, . . . , N}.

We define an MPC scheme based on a terminal cost and

constraint set approach [15]:

V 0
Np

(ϑ) = min
u∈ΠNp (ϑ)

VNp
(ϑ,u) (6)

MPC is an iterative approach in which at each

event (ϑ, k) the optimal control sequence u0(ϑ) ,

argminu∈Π(ϑ) VN (ϑ,u) is computed but only the first

component u0
0(x) is applied to the system.

Proposition 3.1: [16] Using the 2-norm (i.e., p = 2), the

unperturbed PWA system (3) in closed loop with the MPC

controller
(

u0(ϑ(k))
)

1
is asymptotically stable.

B. Robust MPC

The difference between the model of the plant (1) and the

prediction model (3) and the presence of disturbances may

cause poor performance of the MPC controller, leading to

bad tracking or even to infeasibility. Therefore, it is natural to

consider robust MPC, which takes care of this mismatch. We

now consider (3) as prediction model, where the disturbance

w lies in a given polytope: W = {w ∈ R
q : Sw ≤ s}.

With the feedback controller u(x) = ϕix + γi derived in

Section III-A, we construct a robustly positively invariant set



TABLE I

Definitions and values of the entries of equation (8).

m Mass of vehicle 800 kg
c Viscous coefficient 0.5 kg/m
µ Coulomb friction coefficient (dry asphalt) 0.01
b Traction force 3700 N
g Gravity acceleration 9.8 m/s2

TABLE II

Values of the parameters specifying the constraints.

T Sampling time 1 s
xmin Minimum velocity 5.0 m/s
xmax Maximum velocity 37.5 m/s
aacc Comfort acceleration 2.5 m/s2

adec Comfort deceleration -1 m/s2

umax Maximum throttle/brake 1
∆u Maximum throttle/brake variation 0.2
α Switching velocity 18.75 m/s

X̄f for the closed loop system x(k+1) = f(x(k), u(x(k)))+
w(k), using the procedure in [17].

Effective control in the presence of disturbance requires to

optimize over feedback policies [15] rather than open-loop

input sequences. Let w = [wT
0 , ..., w

T
Np−1]

T be a possible

realization of the disturbance over the interval 0 to Np−1, i.e.

w ∈ W = WN
p . Also, let φ(k;x, π,w) denote the solution

of (3) at step k when the initial state is x at step 0, the control

is determined by the policy π = (µ0(·) . . . µNp−1(·)) and the

disturbance sequence is w. For the stage cost we impose that

L(x, u) = 0 if x ∈ X̄f . We restrict the admissible control

policies π to those that guarantee that for every value of the

disturbance the mode of the system i(k) is unique at each

time sample k: φ(k;x, π,w) ∈ Pi(k), ∀w ∈ W . Since W

is a bounded polyhedron with v vertexes let L
Np

v denote

the set of indexes ν such that wν = [wν,T
0 . . . wν,T

Np−1]
T

takes values only on the vertexes of W . It is clear that

L
Np

v is a finite set with the cardinality VNp
= vNp . Fur-

ther, let uν = [uν,T
0 . . . uν,T

Np−1]
T denote a control sequence

associated with the ν-th disturbance realization wν and let

xν
i = φ(i;x,uν ,wν). For each event ϑ(k) the set of feasible

policies is:

Π̄Np
(ϑ) , {uν : ξ(ϑν

i , u
ν
i ) ≤ g, ∀ν ∈ L

Np

v , ∀i ∈ Np − 1,

ϑν1

i = ϑν2

i ⇒ uν1

i = uν2

i , ∀ν1, ν2 ∈L
Np

v , xNp
∈ X̄f}.

Given a maximum prediction horizon Np,max, the robust

feedback min-max optimization problem that we solve at

event ϑ(k) is the following:

V̄ 0
Np

(ϑ) , min
uν ∈ Π̄Np

(ϑ)
Np ∈ Np,max

max
ν∈L

Np
v

VNp
(ϑ,uν) (7)

The feedback min-max MPC controller is based on a dual-

mode approach. For any k ≥ 0, given the current state x, the

algorithm is formulated as follows:

1) if x ∈ X̄f ∩ Pi then u(x) = ϕix+ γi, ∀i ∈ I;

u(k) x(k)

r(k)

w(k)Controller

Model

Fig. 2. MPC setup: prediction model vs. simulation model and
disturbance injection.

2) otherwise, solve (7) and set u(k) equal to the first

sample in the optimal solution computed.

Proposition 3.2: [17] The uncertain PWA system (3) in

closed loop with the feedback min-max MPC law given by

the Algorithm 1 makes X̄f robustly finite-time stable [11].

From computational point of view, the optimization prob-

lem (7) can be recast as an MILP if p ∈ {1,∞} or as an

MIQP if p = 2.

IV. CRUISE SETUP AND SIMULATIONS

The goal of a cruise controller is to track the veloc-

ity of the vehicle in front, to guarantee secure driving,

smoothness of platoons traffic [10], comfort and optimal

usage of the engine/brake system. The descriptive scenario

is shown in Figure 1.a, where two cars are driving after

another. We consider here platoons of two vehicles, but the

extension to general case is also possible. The speed mea-

surements/predictions of the leading vehicle are collected and

transmitted to the follower that will consider it as a reference.

We first describe the general setup, then we implement a

deterministic MPC in both 1 and 2-norm. We observe that

due to disturbances, infeasibilities occur, motivating thus the

use of robust MPC. When the reference reaches a stationary

value, we implement, for both cases, the stabilizing methods

in Section III, by plugging into the MPC scheme the terminal

cost and constraint set.

Model We consider a nonlinear viscous friction and a

road-tire static friction, proportional to the mass m of the

vehicle. Braking will be simulated by applying a negative

input. The model for positive velocity of the rear vehicle is:

mẋ(t) + cx2(t) + µmg = bu(t) (8)

where x(t) is the speed of the vehicle, bu(t) is the trac-

tion/brake force, proportional to the input u(t). Numerical

values are listed in Table I. An approximation (Figure 1.b)

of the nonlinear friction curve V = cv2 leads to the PWA

system:

{

mẋ(t) + c1x(t) + f1 = bu(t), x < α
mẋ(t) + c2x(t) + f2 = bu(t), x ≥ α,
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Fig. 3. Results for 1-norm deterministic MPC without external noise. (a) System (solid) and reference (dashed) velocities, (b) Control
input and constraints, (c) Acceleration and constraint (note the violations), (d) ∆u and constraints.

where the coefficients c1, c2, f1, f2 are derived via least

square1. The DT (T = 1s) model is
{

x(k + 1) = A1x(k) +B1u(k) + F1 + w(k), x < α
x(k + 1) = A2x(k) +B2u(k) + F2 + w(k), x ≥ α

(9)

with A1 = 0.9912, B1 = 4.6047, F1 = −0.0976,

A2 = 0.9626, B2 = 4.5381, F2 = 0.44284, and w(k) ∈
[−0.5, 0.5] is a bounded disturbance on the measurement on

the speed.

Constraints Safety, comfort and economy or environmen-

tal issues constrain the state x and the control input u. In

particular we consider limitations on the velocity, accelera-

tion, control input u(k) and its variation u(k + 1) − u(k).
We require, for all k,

xmin ≤ x(k) ≤ xmax

−umax ≤ u(k) ≤ umax

adecT ≤ x(k + 1)− x(k) ≤ aaccT
−∆uT ≤ u(k + 1)− u(k) ≤ ∆uT.

(10)

Numerical values are listed in Table II. Although some

of these constraints may be violated without causing major

damages, i.e., collision or engine breakdown, we consider all

of them as hard. For the sake of simplicity only velocity was

modeled. A more general setup, with position constraints, is

studied in [5].

Prediction model The PWA model (9) is transformed

into a mixed logical dynamics (MLD) model using a binary

variable δ(k) [2] that equals 0(1) when the active mode is

system 1(2). More precisely the MLD model is x(k + 1) =
A1x(k) + Lv(k) + F1 + w(k), where L = [A2 − A1|B2 −
B1|F2 − F1|B1] and v(k) = [z(k), y(k), δ(k), u(k)]T (with

z(k) = x(k)δ(k), y(k) = u(k)δ(k), δ(k) ∈ {0, 1}) is the

auxiliary mixed logical vector. To overcome the nonlinearity

of z(k), y(k) we introduce the inequalities [2]:

xminδ(k) ≤ z(k) ≤ xmaxδ(k)
−xmax(1− δ(k)) ≤ z(k)− x(k) ≤ −xmin(1− δ(k))

|y(k)| ≤ umaxδ(k)
|y(k)− u(k)| ≤ umax(1− δ(k)),

1A finer approximation is possible by setting more breakpoints.

and the switching condition −δ(k)(vmin−α) ≤ x(k)−vmin

and δ(k)(α − vmax) ≤ −x(k) + α. Finally, we have the

following prediction model:

x(k + 1) = A1x(k) + Lv(k) + F1 + w(k) (11)

s.t. ēxϑ(k) + ēuu(k) + ēww(k) ≤ ḡ, (12)

k ≥ 0, where ϑ(k) = [x(k), u(k − 1)]T is the vector of

parameters.

Tracking and regulation The weight matrices in prob-

lem (1) are Q = 1 and R = 0.01. The length of the

prediction horizon is Np = 4. The goal is to tune an

on-line controller u(k) that tracks the reference velocity

within the constraints (12). The initial velocity is x0 = 6
m/s. As depicted in Figure 2, at each k the controller

receives the Np steps ahead prediction of the reference speed

of the front vehicle. Specific scenarios, such as intelligent

platooning or automatically driven/supervised vehicles, allow

to predict exactly the future actions of the front vehicle.

In road traffic scenario the intentions of the driver may be

modeled statistically, or taken constant, or averaged on past

actions.

By measuring the current speed, it computes the best

control action using the prediction model (11)-(12) and feeds

the first element to the car actuators, modeled here by

equation (8). In the framework of the hybrid system it is

relevant to study the behavior of the stabilizing controller

around the switching velocity xe = α. Without loss of

generality, our reference signal has the steady state xe = α.

Simulations using deterministic MPC: The stabilizing con-

troller obtained via the Lyapunov arguments described in

Section III-A is u(x) = −0.072x + 1.411, and we observe

that it is common for both subsystems. Additionally we

obtain the terminal cost QNp
= 1.766 and the terminal

constraint set Xf = {x : 16.011 ≤ x ≤ 21.488} to be

used only when the reference signal of the front vehicle has

reached its stationary value.

In Figure 3.(a-d) we show Velocity, Control, Acceleration

and ∆u, obtained using the 1-norm in the unperturbed case.

The same simulation with the 2-norm is depicted in Figure 4.

From both figures we point out that even in the absence
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Fig. 4. Results for the 2-norm deterministic MPC without external noise. (a) System (solid) and reference (dashed) velocities, (b) Control
input and constraints, (c) Acceleration and constraint (note the violations), (d) ∆u and constraints.

TABLE III

Number of variables, constraints and on-line time.

MPC Problem nc nv nd Time (s)

1-norm deterministic (MILP) 20 4 82 0.063
2-norm deterministic (MIQP) 16 4 66 0.059
1-norm robust (MILP) 310 4 1336 0.6

of external disturbances there is a minor violation of the

acceleration constraints, due to model mismatch. We also

highlight a numerical aspect of the solution obtained using

the 2-norm criterion. In the vicinity of the equilibrium point

the solver presents some chattering, that is not present in the

1-norm solution. The MIQP problem related to the MPC

cost minimization is positive semidefinite because of the

unweighted auxiliary variables of the MLD system. This may

provoke numerical inaccuracy around the global minimum.

Although stability is guaranteed a priori only in the 2-norm

case (Proposition 3.1), in this case the 1-norm is also stable.

In Figure 5 we show the solution offered by the determin-

istic MPC when the disturbance signal is active2. The large

infeasibilities motivate the use of the robust MPC.

In Table III we give data of the on-line problems that

affect the computational effort: the number of continuous

and discrete variables nc and nd, of constraints nv and the

maximum computation time during the simulation. In both

deterministic cases the latter is approximately 0.06 s, smaller

than the sample time T .

Simulations using robust MPC: Figure 6 shows the results

obtained with the use of robust MPC described in Section III-

B. This robust MPC scheme is implemented only in 1-norm,

leading to a MILP problem, of size given in Table III. We

observe the benefits of robust MPC which eliminates the

infeasibilities due to disturbances. For this robust rejection

we use the terminal cost QNp
= 0 for all simulation time.

Using the arguments of Section III-B, we construct, around

the reference stationary state, a robust positively invariant

set to which it corresponds the terminal constraint set X̄f =

2The signal w(k) is random, but common in all simulations.

{x : 11.903 ≤ x ≤ 22.634}, that guarantees stability of the

hybrid MPC despite the disturbances. Note that both sets

(Xf , X̄f ) are not the maximal, thus they may be different.

The robust MPC requires a significantly higher computation

effort, as remarked in Table III. In fact the number of

variables of the MILP corresponding to the min max optimal

control problem (7) grows exponentially with Np, making

the method unpractical in fast applications. The 2-norm case

was omitted here because computationally very demanding.

V. COMPUTATIONAL COMPLEXITY

The mixed-integer programs are widely solved with

branch and bound methods. The general paradigm of branch

and bound deals with optimization problems over a search

space that can be presented as the nodes of a tree. New

subproblems are created by restricting the range of the

integer variables. The whole subtree below a specific node i
can be pruned as long as the corresponding LP/QP problem is

either infeasible or its lower bound is greater than the lower

bound of all pending nodes [9]. Improved lower bounds are

obtained in the context of the active set methods. Despite the

numerous techniques that, in practice, speed up the search

considerably, none of the branch and bound algorithms

guarantees to lower the worst-case exponential complexity.

VI. CONCLUSIONS

We have studied the problem of designing an adaptive

cruise controller for a road vehicle by means of hybrid

MPC, which enabled us to tackle the control problem in an

MILP/MIQP formulation. Once the reference has reached

a steady state value we have also considered the problem

of guaranteeing stability, via the construction of terminal

cost and invariant set. Moreover we have considered the

robust MPC that allowed us to remove infeasibilities due

to disturbances, at the cost of higher computational effort. It

is not yet clear whether the hybrid MPC with feasibility and

stability properties may be extended to tracking problems,

opening a possible area of future investigation [6].
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Fig. 5. Results for 1-norm deterministic MPC with external noise. (a) System (solid) and reference (dashed) velocities, (b) Control input
and constraints, (c) Acceleration and constraints (note the violations), (d) ∆u and constraints.
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Fig. 6. Results for robust MPC with external noise. (a) System (solid) and reference (dashed) velocities, (b) Control input and constraints,
(c) Acceleration and constraints, (d) ∆u and constraints. No infeasibilities occur.
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