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Worst-case optimal control of uncertain max-plus-linear systems

Ion Necoara, Eric C. Kerrigan, Bart De Schutter and Ton J.J. van den Boom

Abstract— In this paper the finite-horizon min-max optimal
control problem for uncertain max-plus-linear (MPL) discrete-
event systems is considered. We assume that the uncertain pa-
rameters lie in a given convex and compact set and it is required
that the input and state sequence satisfy a given set of linear in-
equality constraints. The optimal control policy is computed via
dynamic programming using tools from polyhedral algebra and
multi-parametric linear programming. Although the controlled
system is nonlinear, we provide sufficient conditions, which are
usually satisfied in practice, such that the value function is
guaranteed to be convex, continuous and piecewise affine, and
the optimal control policy is continuous and piecewise affine on
a polyhedral domain.

I. INTRODUCTION

We extend the classical formulation of worst-case optimal

control for linear and nonlinear systems to a particular

class of discrete-event systems (DES), called max-plus-linear

(MPL) systems. DES are event-driven dynamical systems

(i.e. the state transitions are initiated by events, rather than

a clock). This is in contrast to conventional time-driven

systems, where the state changes as time progresses. In the

last couple of decades there has been an increase in the

amount of research on DES that can be modeled as max-

plus-linear (MPL) systems. MPL systems are nonlinear dy-

namic systems that are “linear” in the max-plus-algebra [1],

i.e. the algebra having maximization and addition as basic

operations. MPL systems model DES with synchronization

and no concurrency and they often arise in the context of

manufacturing systems, telecommunication networks, rail-

way networks, parallel computing, etc.

Although there are many papers on optimal control for

MPL systems (see [5], [11] and the references therein), there

are only few papers on the robust control for this class of

systems. In [15] the authors propose an open-loop min-max

model predictive control scheme while in [8], [9] optimal

controllers based on residuation theory are derived.

In this paper we consider the MPL version of the finite-

horizon min-max control [3] for uncertain dynamic systems

using a dynamic programming (DP) approach as in [2], [6].

The main advantage of this paper compared to the papers

mentioned previously on robust control of MPL systems is

the fact that we optimize over feedback policies, rather than

open-loop input sequences, and that we incorporate state and

input constraints directly into the problem formulation. This
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results in increased feasibility and better performance. One

of the key contributions of this paper is to provide sufficient

conditions, which are not restrictive in practice, such that

we can employ results from convex analysis to compute

robust optimal controllers for MPL systems. It is important

to note that we require the stage cost to have a particular

representation in which the coefficients corresponding to the

state vector are non-negative and that the matrix associated

with the state constraints is also non-negative. Note that in

practice these conditions are often satisfied.

The paper is organized as follows. We continue this section

by introducing some notation and defining the finite-horizon

min-max problem of interest. In Section II we present the DP

solution to this problem. We conclude with an example in

Section III, where we compare our approach with the open-

loop controller of [15].

A. Preliminaries

Define ε := −∞ and Rε := R ∪ {ε}. The max-plus-

algebraic (MPA) addition (⊕) and multiplication (⊗) are

defined as [1]: x ⊕ y := max{x, y}, x ⊗ y := x + y, for

x, y ∈ Rε. For matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε we

can extend the definition as follows: (A⊕B)ij := Aij⊕Bij ,

(A ⊗ C)ij :=

n
⊕

k=1

Aik ⊗ Ckj for all i,j. Define the matrix

εm×n as the m × n MPA zero matrix: (εm×n)ij := ε for

all i, j. The matrix En is the n × n MPA identity matrix:

(En)ii := 0 for all i and (En)ij := ε for all i, j with i 6= j.

For a positive integer l, we denote with l := {1, 2, . . . , l}.
Given a matrix H = (Hij), by H ≥ 0 we mean that

Hij ≥ 0 for all i, j; H ≤ 0 is similarly defined. Given

a set Z ⊆ R
n × R

m, the operator Projn(·) denotes the

projection on R
n, defined by ProjnZ := {x ∈ R

n : ∃y ∈
R

m such that (x, y) ∈ Z}. A polyhedron is the intersection

of a finite number of closed half-spaces.

A function J :Rn→R ∪{+∞,−∞} is called proper if

{x ∈ R
n : −∞ < J(x) < +∞} 6= ∅ [12]. The epigraph

of a function J : X → R with X ⊆ R
n is defined as

epi J := {(x, t) ∈ X × R : J(x) ≤ t}. A function J(·)
is piecewise affine (PWA) if its epigraph is a finite union

of polyhedra [12]. Let Fmps denote the set of max-plus-

scaling functions, i.e. functions J : X → R such that

J(x) = maxj∈l{α
T
j x + βj} for all x ∈ X , with X a

polyhedron in R
q , αj ∈ R

q and βj ∈ R. Let F+
mps denote the

set of max-plus-non-negative-scaling functions, i.e. functions

defined by J(x) = maxj∈l{α
T
j x + βj} with αj ≥ 0 for all

j ∈ l.



B. MPL systems

The system matrices of a discrete event MPL system usually

consist of sums or maximization of process times and

transportation times. Therefore, we consider the following

uncertain MPL system (see also [15]):

x(k) = A(w(k))⊗ x(k − 1)⊕B(w(k))⊗ u(k) (1a)

y(k) = C(w(k))⊗ x(k), (1b)

where A(·) ∈ Fn×n
mps , B(·) ∈ Fn×m

mps and C(·) ∈ Fp×n
mps (it is

important to note that these matrix functions are nonlinear).

We frequently use the short-hand notation

f(x, u, w) := A(w)⊗ x⊕B(w)⊗ u. (2)

We gather in the vector w all the uncertainty caused

by disturbances and errors in the estimation of physical

variables. At each step, the value of the disturbance w(k)
is unknown, but takes on values from a compact and convex

set W . We also consider a reference signal {r(k) ∈ R
p}k≥0

which the system (1) may be required to track.

In the context of DES, k is an event counter while x(k),
y(k) and u(k) represent dates, i.e. processing times, finishing

times and feeding times, respectively. Since the states x(k)
represent times we assume they can always be measured.

Note that time is not scalable, therefore typical constraints

for DES are:

y(k) ≤ r(k) + hyr(k), ui(k)− uj(k) ≤ hu
ij(k) (3a)

xi(k)− uj(k) ≤ hxu
ij (k), u(k + 1)− u(k) ≥ 0 (3b)

The constraints in (3) can equivalently be written as:

Hx(k) +Gu(k) + Fr(k) + Ew(k) ≤ h(k),

u(k + 1)− u(k) ≥ 0, (4)

where H ≥ 0. The first constraint might express safety or

performance requirements, while the constraint u(k + 1) −
u(k) ≥ 0 appears in the context of DES where the input

represents times, so the signal u(·) should be non-decreasing.

Since it is more difficult to cope with this constraint when

we use the DP framework, we would like to eliminate it.

By remodeling the system, this constraint can be removed.

Indeed, introducing a new state vector x̃ = [xT , ũT ]T and

the dynamics:

x̃(k) =

[

A(w(k)) B(w(k))
εm×n Em

]

⊗ x̃(k − 1)⊕

[

B(w(k))
Em

]

⊗ u(k) (5a)

y(k) = [C(w(k)) εp×m]⊗ x̃(k) (5b)

with the constraint:

ũ(k) ≤ u(k) (6)

then it is clear that both systems have the same behavior.

Note that the constraints (4) and (6) can be written equiv-

alently as [H 0]x̃(k)+ Gu(k)+ Fr(k)+ Ew(k) ≤ h(k),
[0 Im]x̃(k)− Imu(k)≤0. So we get

H̃x̃(k) + G̃u(k) + F̃ r(k) + Ẽw(k) ≤ h̃(k).

Note that H̃ ≥ 0, i.e. by remodeling the system, the

properties of H are preserved.

C. Min-max control for MPL systems: problem formulation

We consider the uncertain MPL system (1) subject to general

control and state constraints over a finite horizon N :

Hkx(k)+Gku(k)+Fkr(k)+Ekw(k)≤hk, k ∈ N, (7)

where (7) may vary with k, i.e. Hk ∈ R
nHk

×n, Gk ∈
R

nHk
×m, Fk ∈ R

nHk
×p, Ek ∈ R

nHk
×q and hk ∈ R

nHk .

We now formulate the problem of finite-horizon min-

max control of this class of systems. Effective control in

the presence of disturbance requires one to optimize over

feedback policies [3], [10], rather than open-loop input

sequences. Therefore, we will define the decision variable

in the optimal control problem, for a given initial condition

x and the reference signal r := [rT1 , r
T
2 , . . . , r

T
N ]T , as a

control policy π := (µ1(·), µ2(·), . . . , µN (·)), where each

µi : R
n ×R

Np → R
m is a state feedback control. Let w :=

[wT
1 , w

T
2 , . . . , w

T
N ]T denote a realization of the disturbance

over the horizon k = 1, 2, . . . , N . Also, let φ(i;x, π,w)
denote the solution of (1) at step i when the initial state

is x at step 0, the control is determined by the policy π, i.e.

u(i) = µi(φ(i−1;x, π,w), r), and the disturbance sequence

is w. By definition, φ(0;x, π,w) := x.

The cost VN (x, π, r,w), for the initial condition x, the due

dates r, the control policy π and the disturbance realization

w, is:

VN (x, π, r,w) :=

N
∑

i=1

ℓi(xi, ui, ri, wi), (8)

where xi := φ(i;x, π,w), ui := µi(xi−1, r), and ℓi is a

variable stage cost (see e.g. (12)), for all i ∈ N . Note that

we do not consider a terminal cost on the state, since uN

directly influences the final state xN .

For each initial condition x and due dates r we define the

set of feasible policies π:

ΠN (x, r) :={π :Hiφ(i;x, π,w)+Giµi(φ(i−1;x, π,w), r)+

Firi+Eiwi≤hi, ∀w∈W, i∈N} (9)

where W := WN . Also, let XN denote the set of initial

states and reference signals for which a feasible policy exists,

i.e.

XN := {(x, r) : ΠN (x, r) 6= ∅}. (10)

The finite-horizon min-max problem considered is:

PN (x, r) : V 0
N (x, r) := inf

π∈Π
N
(x,r)

max
w∈W

VN (x, π, r,w). (11)

Let π0
N (x, r) =: (µ0

1(x, r), µ0
2(·, r), . . . , µ0

N (·, r))
denote a minimizer of PN (x, r), i.e. π0

N (x, r) ∈
argminπ∈Π

N
(x,r) maxw∈W VN (x, π, r,w), whenever the

infimum is attained.

Standard optimal control implements the policy u(k) =
µ0
k(x(k − 1), [rT (1), . . . , rT (N)]T ) for k = 1, 2, . . . , N ,

while receding horizon control [10] involves an iterative

approach in which at each step k the first sample of the



policy is applied to the system, i.e. u(k) = µ0
1(x(k −

1), [rT (k), . . . , rT (k +N − 1)]T ) for k = 1, 2, . . .
The following key assumptions will be used:

A1: The matrices Hi in (7), (9) are non-negative ∀i ∈ N .

A2: The stage cost ℓi(·) satisfies ℓi(·, u, r, w) ∈ F
+
mps,

∀(u, r, w) and ℓi(x, ·) ∈ Fmps, ∀x.

Assumptions A1 and A2 are key components of the proofs

of Proposition 2.4 and Theorem 2.8 respectively. See the

discussion from Section I-B for a justification of why A1

is not restrictive. A typical example of a stage cost that

satisfies A2 is the following [15]:

ℓi(xi, ui, ri, wi) =
p

∑

j=1

max{(C(wi)⊗ xi − ri)j , 0} − γ
m
∑

j=1

(ui)j , (12)

where (vi)j denotes the jth component of a vector vi and

0 ≤ γ. In the context of manufacturing systems, this stage

cost has the interpretation that the first term penalizes the

delay of the finishing times with respect to the due dates,

while the second term tries to maximize the feeding times.

We will proceed to show how for the above assumptions,

in conjunction with the convexity and monotonicity of the

system dynamics (1), an explicit expression of the solution

to problem PN (x, r) can be computed using results from

polyhedral algebra and multi-parametric linear programming.

As will be seen below, the results developed in this paper

are also valid for a larger class of systems that the MPL

systems, namely for convex PWA systems (i.e. f(·) ∈ Fn
mps)

that satisfy f(·, u, w) ∈ (F+
mps)

n for any fixed (u,w).

II. DYNAMIC PROGRAMMING SOLUTION

Dynamic programming (DP) [3], [10] is a well-known

method for solving sequential, or multi-stage, decision prob-

lems. More specifically, we compute sequentially the par-

tial return functions {V 0
i (·)}

N
i=1, the associated set-valued

optimal control laws {κi(·)}
N
i=1 (such that µ0

N−i+1(x, r) ∈
κi(x, r) for any (x, r) ∈ Xi) and their domains {Xi}

N
i=1;

here i ∈ N denotes “time-to-go”. If we define

Ji(x, r, u) := max
w∈W
{ℓN−i+1(f(x, u, w), u, rN−i+1, w)+

V 0
i−1(f(x, u, w), r)}, ∀(x, r, u)∈Zi, (13a)

where

Zi := {(x, r,u) : HN−i+1f(x, u, w) +GN−i+1u+

FN−i+1rN−i+1 + EN−i+1w ≤ hN−i+1,

(f(x, u, w), r) ∈ Xi−1, ∀w ∈W}, (13b)

then we can compute {V 0
i (·), κi(·), Xi}

N
i=1 recursively, as

follows [3], [10]:

V 0
i (x, r) =

min
u
{Ji(x, r, u) : (x, r, u) ∈ Zi}, ∀(x, r) ∈ Xi, (13c)

κi(x, r) =

argmin
u
{Ji(x, r, u) : (x, r, u)∈Zi}, ∀(x, r) ∈ Xi, (13d)

Xi = Projn+pNZi, (13e)

with the boundary conditions

X0 = R
n×RpN , V 0

0 (x, r) = 0, ∀(x, r) ∈ R
n×RpN . (13f)

Alternatively, we could also impose a terminal set for the

state as in the constraint formulation (7), in which case the

first part of (13f) would become

X0 = Xf = {(x, r) : Γx+Φr ≤ γ} (14)

for appropriately defined Γ, Φ, γ with Γ > 0.

To simplify notation in the rest of the paper, we define

two prototype problems and we study their properties. The

maximization problem Pmax(x, r, u) is defined as:

Pmax(x, r, u) : J(x, r, u) := max
w∈W
{ℓ(f(x, u, w), u, r, w)+

V (f(x, u, w), r)}, ∀(x, r, u)∈Z, (15)

where ℓ : Rn+m+p+q → R, V : Ω → R, r has the form

r = [. . . , rT , . . .]T (i.e., ∃k : rk = r) and

Z := {(x, r, u) : Hf(x, u, w) +Gu+ Fr + Ew ≤ h,

(f(x, u, w), r) ∈ Ω, ∀w ∈W}, (16a)

X := Projn+pNZ. (16b)

The minimization problem Pmin(x, r) is defined as:

Pmin(x, r) : V 0(x, r) := min
u
{J(x, r, u) : (x, r, u) ∈ Z},

∀(x, r) ∈ X (17a)

κ(x, r) := argmin
u
{J(x, r, u) : (x, r, u) ∈ Z},

∀(x, r) ∈ X. (17b)

In terms of these prototype problems, it is easy to identify the

DP recursion (13) by setting r ← rN−i+1, ℓ(·)← ℓN−i+1(·),
V (·) ← V 0

i−1(·), V 0(·) ← V 0
i (·), X ← Xi, Z ← Zi

and Ω← Xi−1. Moreover, H,G,F,E, h are identified with

HN−i+1, GN−i+1, FN−i+1, EN−i+1, hN−i+1, respectively.

Clearly, we can now proceed to show, via induction, that a

certain set of properties is possessed by each element in the

sequence {V 0
i (·), κi(·), Xi}

N
i=1 by showing that if {V (·),Ω}

has a given set of properties, then {V 0(·), X} also has these

properties, with the properties of κ(·) being the same as those

of each of the elements in the sequence {κi(·)}
N
i=1. In the

sequel, constructive proofs of the main results are presented,

so that the reader can develop a prototype algorithm for

computing the sequence {V 0
i (·), κi(·), Xi}

N
i=1.

A. Invariance properties of X

The first result states that some basic properties of max-

plus-scaling functions are preserved under addition, compo-

sition and multiplication with a non-negative scalar.

Lemma 2.1: Suppose the functions g1, g2 and g3 =
[g31, . . . , g3n]

T with g1, g2, g3j of the form g : W × Z →
R : (w, z) 7→ g(w, z) have the property that for each

w ∈ W , gi(·, w), g3j(·, w) ∈ F
+
mps and for each z ∈ Z,

gi(z, ·), g3j(z, ·) ∈ Fmps, for all i, j. Then, for any scalar

λ ≥ 0, (λg1)(·, w), (g1 + g2)(·, w), g1(g3(·, w), w) ∈ F
+
mps

for any fixed w ∈ W , and (λg1)(z, ·), (g1 + g2)(z, ·),
g1(g3(z, ·), ·) ∈ Fmps for any fixed z ∈ Z.



Proof: The proof is straightforward and uses the fact

that λmax{a, b} = max{λa, λb} if λ ≥ 0, max{a, b}
+max{c, d} = max{a + c, a + d, b + c, b + d} and

max{max{a, b}, c} = max{a, b, c}.
Lemma 2.2: The set Z = {(x, u) : H̄f(x, u, w) + Ḡu +

Ēw ≤ h̄, ∀w ∈W} with H̄ ≥ 0, can be written equivalently

as Z = {(x, u) : H̃x+ G̃u ≤ h̃} with H̃ ≥ 0.

Proof: Since f(·) ∈ Fn
mps and f(·, w) ∈ (F+

mps)
n for

each w, it follows from Lemma 2.1 that the function x 7→
H̄f(x, u, w) is in (F+

mps)
n for any (u,w). Recall that, given

any finite set of scalar-valued functions {ϕj(·)}j∈l we have

that {z : maxj∈l{ϕj(z)} ≤ α} = {z : ϕj(z) ≤ α, ∀j ∈ l}.
Hence, it is easy to verify that the set Z has the equivalent

representation Z = {(x, u) : H̃x+G̃u+F̃w ≤ h, ∀w ∈W},
where H̃ ≥ 0 and G̃, F̃ and h are suitably defined. If we

define f∗
j := maxw∈W {F̃jw}, where F̃j denotes the jth row

of F̃ , then the result follows by letting h̃ := h− f∗, where

f∗ := (f∗
1 , f

∗
2 , . . .). Note that f∗ can be computed by solving

a set of convex optimization problems (Recall that W is a

compact, convex set.)

The next result shows that some useful properties of a

class of polyhedra are inherited by its projection.

Lemma 2.3: Let Z = {(x, r, t, u) ∈ R
n×R

p×R
q×R

m :
H̄x + F̄ r + K̄t + Ḡu ≤ h̄} be given, where H̄ ≥ 0 and

K̄ ≤ 0. The set X := {(x, r, t) : ∃u s.t. (x, r, t, u) ∈ Z} is

a polyhedral set of the form X = {(x, r, t) : H̃x+F̃ r+K̃t ≤
h̃}, where H̃ ≥ 0 and K̃ ≤ 0.

Proof: Since X = Projn+p+qZ , it is clear that X is

a polyhedron. We begin by considering the case m = 1.

The proof for this case will lead to a solution for the case

m > 1. Let H̄i, F̄i, K̄i and Ḡi be the ith row of respectively

the matrices H̄, F̄ , K̄ and the vector Ḡ. Define I+ := {i ∈
q : Ḡi > 0}, I− := {i ∈ q : Ḡi < 0} and I0 := {i ∈ q :
Ḡi = 0}. We have the following cases:

1) i ∈ I0 ⇒ H̄ix+ F̄ir+ K̄it ≤ hi and H̄i ≥ 0, K̄i ≤ 0.

2) j ∈ I+ ⇒ u ≤ − 1
Ḡj

H̄jx−
1
Ḡj

F̄jr−
1
Ḡj

K̄jt+
h̄j

Ḡj
and

1
Ḡj

H̄j ≥ 0, 1
Ḡj

K̄j ≤ 0.

3) l ∈ I− ⇒ u ≥ − 1
Ḡl

H̄lx −
1
Ḡl

F̄lr −
1
Ḡl

K̄lt +
h̄l

Ḡl
and

− 1
Ḡl

H̄l ≥ 0, − 1
Ḡl

K̄l ≤ 0.

It is then straightforward to combine the above and show

that the set X is described by the following inequalities:

H̄ix+ F̄ir + K̄it ≤ h̄i, ∀i ∈ I0

(−
1

Ḡl

H̄l +
1

Ḡj

H̄j)x+ (−
1

Ḡl

F̄l +
1

Ḡj

F̄j)r+

(−
1

Ḡl

K̄l +
1

Ḡj

K̄j)t ≤ −
h̄l

Ḡl

+
h̄j

Ḡj

, ∀j ∈ I+, l ∈ I−

The result follows, since the rows of H̃ are composed of the

vectors H̄i ≥ 0 and − 1
Ḡl

H̄l +
1
Ḡj

H̄j ≥ 0 for all i ∈ I0,

j ∈ I+, l ∈ I−, while the rows of K̃ are composed of the

vectors K̄i ≤ 0 and − 1
Ḡl

K̄l +
1
Ḡj

K̄j ≤ 0 for all i ∈ I0,

j ∈ I+, l ∈ I−.

When m > 1, the previous reasoning for the case m = 1
can be repeated m times, eliminating one component of the

vector u at a time.

We are now in a position to show that X has the same

structural properties as Ω.

Proposition 2.4: Suppose Ω is a polyhedral set given by

Ω = {(x, r) : Γx+Φr ≤ γ} with Γ ≥ 0, and assume that H
in (16a) satisfies H ≥ 0. Then, the set X defined in (16b) is

a polyhedron given by X = {(x, r) : Ĥx+ F̂ r ≤ ĥ}, where

Ĥ ≥ 0.

Proof: The set Z is described as follows:

Z={(x, r, u) :

[

H
Γ

]

f(x, u, w)+

[

G
0

]

u+

[

Fr
Φr

]

+

[

E
0

]

w≤

[

h
γ

]

, ∀w∈W}, (18)

with H,Γ ≥ 0. From Lemma 2.2 it follows that Z can be

written as Z = {(x, r, u) : H̃x + G̃u + F̃ r ≤ h̃} where

H̃ ≥ 0. The result follows by applying a particular case of

Lemma 2.3.

Note that the set X0 in (13f) and (14) is of the form given

in Proposition 2.4.

B. Invariance properties of Pmax(x, r, u)

This section derives an invariance property of the proto-

type maximization problem Pmax.

Proposition 2.5: If ℓ(·, u, r, w), V (·, r) ∈ F+
mps for any

fixed (u, r, w) and ℓ(x, ·), V (x, ·) ∈ Fmps for any fixed

x, then J(·) possesses the same properties, i.e. J(·, r, u) ∈
F+

mps for any fixed (r, u) and J(x, ·) ∈ Fmps for fixed x.

Proof: It follows from Lemma 2.1 that we can write

ℓ(f(x, u, w), u, r, w) + V (f(x, u, w), r) = maxj∈l{α
T
j x +

βT
j w + γT

j u+ δTj r + θ̃j}, where αj ≥ 0 ∀j ∈ l, so that

J(x, r, u)=max
w∈W
{max

j∈l
{αT

j x+ βT
j w + γT

j u+ δTj r + θ̃j}}

= max
j∈l
{max
w∈W
{αT

j x+ βT
j w + γT

j u+ δTj r + θ̃j}}

= max
j∈l
{αT

j x+ γT
j u+ δTj r + θj},

where θj := θ̃j + maxw∈W {β
T
j w} for all j ∈ l. Note that

{θj}j∈l can be computed by solving a sequence of convex

optimization problems.

Note that ℓ(·) and V 0
0 (·) given in (12) and (13f) satisfy

the conditions of Proposition 2.5.

C. Invariance properties of Pmin(x, r)

This section derives the main properties of V 0(·) and

κ(·). Before proceeding, we show that if V 0(·) is proper,

then V 0(·) is finite everywhere on X . Note that since we

always have that u(0) should be larger than the current time

instant, i.e. the time instant at which we start performing the

computations, u(0) is bounded from below and V 0(·) will

always be proper.

Lemma 2.6: Suppose Ω is a polyhedral set given by Ω =
{(x, r) : Γx + Φr ≤ γ} with Γ ≥ 0, and assume that H
in (16a) satisfies H ≥ 0. Suppose also that Z 6= ∅ and

J(·) ∈ Fmps. There exists a (x̄, r̄) ∈ X such that V 0(x̄, r̄)
is finite if and only if V 0(x, r) is finite for all (x, r) ∈ X .

Proof: From the proof of Proposition 2.4 it follows that

Z is a non-empty polyhedron: Z = {(x, r, u) : H̃x+ G̃u+



F̃ r ≤ h̃}, with H̃ ≥ 0. Since J(·) ∈ Fmps, we can write

J(x, r, u) = maxj∈l{α
T
j x+γT

j u+δTj r+θj}. The prototype

minimization problem Pmin(x, r) becomes:

V 0(x, r) =

min
u
{max

j∈l
{αT

j x+ γT
j u+ δTj r + θj} : (x, r, u) ∈ Z}

=min
µ,u
{µ : αT

j x+ γT
j u+ δTj r + θj ≤ µ, ∀j ∈ l,

H̃x+ G̃u+ F̃ r ≤ h̃}, (19)

i.e. we have obtained a feasible linear program for any fixed

(x, r) ∈ X .

Note that the feasible set of the dual of (19) does not

depend on x or r. Assume that V 0(x̄, r) is finite. From

strong duality for linear programs [12], [13] it follows that

the dual problem of (19) is feasible, independent of x and r.

Using again strong duality for linear programs, we conclude

that V 0(x, r) is finite if (x, r) ∈ X and V 0(x, r) = +∞ if

(x, r) /∈ X . The reverse implication is obvious.

The following proposition gives a characterization of the

solution and of the optimal value of the prototype minimiza-

tion problem Pmin.

Proposition 2.7: Suppose Ω is a polyhedral set given by

Ω = {(x, r) : Γx + Φr ≤ γ} with Γ ≥ 0, and assume

that H in (16a) satisfies H ≥ 0. Suppose also that Z 6= ∅,
J(·) ∈ Fmps and V 0(·) is proper. Then, the value function

V 0(·) is in Fmps and has domain X , where X is a polyhedral

set. The (set-valued) control law κ(x, r) is a polyhedron for

a given (x, r) ∈ X . Moreover, it is always possible to select

a continuous and PWA control law µ(·) such that µ(x, r) ∈
κ(x, r) for all (x, r) ∈ X .

Proof: It follows from (19) that Pmin(x, r) is a multi-

parametric linear program of the type minz{c
T z : H̄φ +

Ḡz ≤ h̄}, where the vector of parameters is φ and the

optimization variable is z (in our case, from (19) we conclude

that φ = [xT rT ]T and z = [µ uT ]T ). The properties stated

above then follow from the properties of the multi-parametric

linear program (see [4], [7], [14]).

Now we can state the following key result that, to-

gether with Propositions 2.4–2.7, allow us to deduce,

via induction, some important properties of the sequence

{V 0
i (·), κi(·), Xi}

N
i=1:

Theorem 2.8: Suppose that the same assumptions as in

Proposition 2.7 hold. If, in addition, J(·, r, u) ∈ F+
mps for

any (r, u), then the value function V 0(·, r) ∈ F+
mps for any

r ∈ R
Np.

Proof: Using Proposition 2.4 it follows that Z =
{(x, r, u) : H̃x+ G̃u+ F̃ r ≤ h̃}, with H̃ ≥ 0. The function

J(·) can be written as: J(x, r, u) = maxj∈l{α
T
j x + γT

j u +
δTj r+θj}, where αj ≥ 0 for all j. From Proposition 2.7 and

the fact that V 0(·) is proper, it follows that V 0(·) ∈ Fmps

and its domain is X . The epigraph of V 0(·) is given by:

epiV 0 :={(x, r, t) : V 0(x, r) ≤ t, x ∈ X} =

{(x, r, t) : ∃u s.t. (x, r, u) ∈ Z, J(x, r, u) ≤ t}

={(x, r, t) : ∃u s.t. H̃x+ G̃u+ F̃ r ≤ h̃,

αT
j x+ γT

j u+ δTj r + θj ≤ t, ∀j ∈ l}

={(x, r, t) : ∃u s.t. H̄x+ F̄ r + K̄t+ Ḡu ≤ h̄},

where H̄ = [H̃T αT
1 · · · αT

l ]
T ≥ 0 and K̄ =

[0,−1, . . . ,−1]T ≤ 0. From Lemma 2.3 we obtain that the

epigraph of V 0(·) is a polyhedral set given by epi V 0 =
{(x, r, t) : Ĥx+ F̂ r+K̂t ≤ ĥ}, where Ĥ ≥ 0, K̂ ≤ 0. Let l
be the number of inequalities describing epiV 0. We arrange

the indices1 j ∈ l such that K̂j < 0 for j = 1, 2, . . . , v
but K̂j = 0 for j = v + 1, v + 2, . . . , l (possibly v = 0, i.e.

K̂j = 0 for all j). Taking aj = −Ĥj/K̂j , bj = −F̂j/K̂j and

cj = −ĥj/K̂j for j = 1, 2, . . . , v, we get that the epigraph

of V 0(·) is expressed as:

epiV 0 ={(x, r, t) : ajx+ bjr− cj ≤ t, ∀j ∈ v;

Ĥjx+ F̂jr ≤ ĥj for j = v + 1, . . . , l} (20)

But V 0(·) is proper, therefore v > 0. Since V 0(·) ∈ Fmps,

(20) gives us a representation of V 0(·) as V 0(x, r) =
maxj∈v{ajx+bjr−cj}, where aj = −Ĥj/K̂j ≥ 0, ∀j ∈ v,

i.e. V 0(·, r) ∈ F+
mps for any fixed r ∈ R

p. Moreover,

the domain of V 0(·) is {(x, r) : Ĥjx+ F̂jr ≤ ĥj for j =
v+1, . . . , l} and coincides with X (Proposition 2.7).

We now summarize the main results. Based on the in-

variance properties of the two prototype problems Pmax and

Pmin, we can derive the properties of V 0
i (·), κi(·) and Xi

for all i ∈ N . The next result follows by applying Proposi-

tions 2.4–2.7 and Theorem 2.8 to the DP equations (13):

Theorem 2.9: Suppose that A1 and A2 hold, Zi is non-

empty and V 0
i (·) is proper for all i ∈ N . The following holds

for each i ∈ N :

(i) Xi is a non-empty polyhedron,

(ii) V 0
i (·) is a convex, continuous PWA function with

domain Xi,

(iii) V 0
i (·, r) ∈ F+

mps for any fixed r.

(iv) There exists a continuous PWA function µ0
N−i+1(·)

such that µ0
N−i+1(x, r) ∈ κi(x, r) for all (x, r) ∈ Xi.

Since the proofs of all the above results are constructive,

the sequences {V 0
i (·), κi(·), Xi}

N
i=1 and {µ0

i (·)}
N
i=1 can be

computed iteratively, without gridding, by noting the follow-

ing:

• Given Xi−1, we can compute Xi by first computing

Zi, as in the proof of Proposition 2.4, followed with a

projection operation,

• Given V 0
i−1(·), a max-plus-scaling expressions of Ji(·)

can be computed by referring to the proof of Proposition

2.5,

• Given Ji(·) and Zi, we can compute V 0
i (·), κi(·) and

a µ0
N−i+1(·) as in the proof of Proposition 2.7 or

Theorem 2.8, either by using multi-parametric linear

1We denote with Cj the jth row of a matrix C.
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Fig. 1. The results obtained from feedback controller (full star) and the
open-loop controller (dashed star). The full line represents the due dates.

programming algorithms [4], [7], [14] or projection

algorithms [7].

Note that if Zi is non-empty the problem is infeasible

anyway; furthermore, as explained before, V 0 will always

be proper.

III. EXAMPLE

We consider the following example:

x(k)=

[

−w2(k) + 2 ε
−w1(k) + 3w2(k) −w1(k) + 3

]

⊗x(k−1)⊕

[

−w1(k) + w2(k) + 2
w2(k)

]

⊗ u(k)

y(k) = [0 ε]⊗ x(k).

We assume a bounded disturbance: W =
{

[w1, w2]
T : 2 ≤ w1 ≤ 3, 1 ≤ w2 ≤ 2, w1+w2≤4

}

.

We consider a finite horizon N = 10. The due date signal

is r = [4.5 6 9 12 14 16.7 19 21.5 23.5 26]T and the initial

state is x(0) = [7 9]T .

The system is subject to input-output constraints: x2(k)−
u(k) ≤ 2, x1(N)+x2(N) ≤ 2rN , u(k+1)−u(k) ≥ 0,−5+
rk ≤ u(k) ≤ 5 + rk.

We use the stage cost defined in (12) with γ = 0.2, and a

random sequence of disturbances.

In Figure 1 we have plotted the output (top) and the input

(bottom) obtained from the open-loop controller (using the

approach of [15]) and from the feedback controller presented

in this paper. The top figure shows that the feedback con-

troller gives a better tracking than the open-loop controller.

Since γ = 0.2, it follows that for the stage cost (12)

tracking has priority compared to the latest input. Therefore,

V 0
N (x(0), r) < V 0,ol

N (x(0), r), where V 0,ol
N (x(0), r) is the

optimal value function of (11) when we optimize over open-

loop input sequences (see [15]).

IV. CONCLUSIONS

In this paper we have extended the min-max optimal con-

trol problem traditionally applied to linear and nonlinear sys-

tems to the class of discrete event max-plus-linear systems.

We have provided sufficient conditions that guarantee that

the value function of the finite-horizon min-max problem for

max-plus-linear systems is convex, continuous and piecewise

affine, and that the optimal control policy is continuous and

piecewise affine on a polyhedral domain. Furthermore, we

have shown that we can compute an optimal control policy

over a prediction horizon of N steps by solving N multi-

parametric linear programming problems.
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