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Stabilizing model predictive controllers for

randomly switching max-plus-linear systems

Ton van den Boom∗ and Bart De Schutter

Abstract— Randomly switching max-plus-linear (RSMPL)
systems are discrete event systems that can switch between
different modes of operation, where the switching is a stochastic
process. In each mode the system is described by a max-plus-
linear state equation and a max-plus-linear output equation,
with different system matrices for each mode. We discuss
conditions for stability and derive a stabilizing model predictive
controller for RSMPL systems.

I. INTRODUCTION

The class of discrete event systems (DES) essentially

consists of man-made systems that contain a finite number

of resources that are shared by several users all of which

contribute to the achievement of some common goal [1]. In

general, models that describe the behavior of a discrete event

system are nonlinear in conventional algebra.

In this paper we will consider randomly switching max-

plus-linear (RSMPL) systems, discrete event systems that can

switch between different modes of operation, in which the

mode switching depends on a stochastic sequence. In each

mode the system is described by a max-plus-linear state

equation and a max-plus-linear output equation, with dif-

ferent system matrices for each mode. The class of RSMPL

systems contains discrete event systems with synchronization

but no concurrency, in which the order of synchronization of

the event steps may vary randomly, or cannot be determined

a priori. Typical examples of RSMPL systems are flexible

manufacturing systems, telecommunication networks, traf-

fic signal controlled urban traffic networks, The random

switching between different MPL modes is then due to

e.g. randomly changing production recipes, varying customer

demands or traffic demands, or failures in production unit,

transmission lines or traffic links.

In [10] we have already discussed (ordinary) SMPL sys-

tems. The main difference with RSMPL systems is that in

[10] the switching was a function of the previous state, the

previous mode and the input, whereas in RSMPL systems

the switching is a random process.

The paper is organized as follows. In Section II we

introduce the max-plus algebra and the concept of RSMPL

systems. Section III gives conditions for a stabilizing con-

troller for RSMPL systems. In Section IV we derive a

stabilizing model predictive controller for RSMPL systems,

and in Section VI we give a worked example.
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II. MAX-PLUS ALGEBRA AND RSMPL SYSTEMS

A. Max-plus algebra

In this section we give the basic definition of the max-plus

algebra [1], [3].

Define ε = −∞ and Rε = R∪ {ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as follows:

x⊕ y = max(x, y) x⊗ y = x+ y

for any x, y ∈ Rε, and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε is

the max-plus-algebraic zero matrix: [ε]ij = ε for all i, j.

A max-plus diagonal matrix S = diag⊕(s1, . . . , sn) has

elements Sij = ε for i 6= j and diagonal elements Sii = si
for i = 1, . . . , n. If all si are finite we find that the inverse

of S is equal to S⊗
−1

= diag⊕(−s1, . . . ,−sn). There holds

S ⊗ S⊗
−1

= S⊗
−1

⊗ S = E, where E = diag⊕(0, . . . , 0)
is the max-plus identity matrix.

B. SMPL and RSMPL systems

In [10] we introduced Switching Max-Plus-Linear (SMPL)

systems, i.e. discrete event systems that can switch between

different modes of operation. For SMPL systems the switch-

ing is a function of the previous state. This is in contrast

to RSMPL systems, in which the mode switching depends

on a stochastic sequence. In each mode ℓ = 1, . . . , L, the

system is described by a max-plus-linear state equation and

a max-plus-linear output equation:

x(k) = A(ℓ(k)) ⊗ x(k − 1)⊕B(ℓ(k)) ⊗ u(k) (1)

y(k) = C(ℓ(k)) ⊗ x(k) (2)

in which the matrices A(ℓ) ∈ R
nx×n
ε , B(ℓ) ∈ R

nx×nu
ε ,

C(ℓ) ∈ R
ny×nx
ε are the system matrices for the ℓth mode.

The index k is called the event counter. For discrete event

systems the state x(k) typically contains the time instants at

which the internal events occur for the kth time, the input

u(k) contains the time instants at which the input events

occur for the kth time, and the output y(k) contains the time

instants at which the output events occur for the kth time1.

1More specifically, for a manufacturing system, x(k) contains the time
instants at which the processing units start working for the kth time, u(k)
the time instants at which the kth batch of raw material is fed to the system,
and y(k) the time instants at which the kth batch of finished product leaves
the system.



For the RSMPL system (1)-(2), the mode switching variable

ℓ(k) is a stochastic process. For a system with L possible

modes, we assume the probability of a switching from mode

i to a mode j to be given by Ps(i, j) for all i = 1, . . . , L,

j = 1, . . . , L.

III. CONDITIONS FOR STABILITY

Just like in [9], we adopt the notion of stability for DES

from [8], in which a DES is called stable if all its buffer levels

remain bounded. All the buffer levels in DES are bounded

if the dwelling times of the parts or batches in the system

remain bounded. This implies for the RSMPL system with

a due date signal r(k) that closed-loop stability is achieved

if there exist finite constants k0, Myr, Myx and Mxu such

that

| yi(k)− ri(k) | ≤ Myr, ∀i (3)

| yi(k)− xj(k) | ≤ Myx, ∀i, j (4)

|xj(k)− um(k) | ≤ Mxu, ∀j,m (5)

for all k > k0. Condition (3) means that the delay between

the actual output date y(k) and the due date r(k) remains

bounded (for y − r < ∞), and on the other hand, that the

stock time will remain bounded (for r−y < ∞). Conditions

(4) and (5) mean that the throughput time (i.e. the time

between the starting date u(k) and the output date y(k))
is bounded. For a due date defined as

r(k) = ρ k + d(k), where |di(k)| ≤ dmax, ∀i (6)

where r and d are vectors and ρ is a scalar, satisfying

ρ > 0, this implies finite buffer levels.

Similar to max-plus-linear systems, stability is not an

intrinsic feature of the RSMPL system, but it also depends

on the due dates (i.e., the reference signal) of the system. In

[9] we already observed that for max-plus-linear systems, the

max-plus-algebraic eigenvalue of the system matrix A gives

an upper bound on the asymptotic slope of the due date

sequence. For a strongly connected max-plus-linear system2

the A-matrix only has one max-plus-algebraic eigenvalue λ

and one max-plus-algebraic eigenvector v 6= ε, such that

A ⊗ v = v ⊗ λ. For RSMPL systems we cannot use the

max-plus-algebraic eigenvalue, but we use the concept of

maximum growth rate:

Definition 1: Consider an RSMPL the matrices A
(ℓ)
α with

[A
(ℓ)
α ]ij = [A(ℓ)]ij − α. The maximum growth rate λ of the

RSMPL system is the smallest α for which there exists a

max-plus diagonal matrix S = diag⊕(s1, . . . , sn) with finite

diagonal elements si, such that

[ S ⊗A(ℓ)
α ⊗ S⊗

−1
]ij ≤ 0, ∀ i, j, ℓ (7)

Remark 1: Note that for any RSMPL system the maximum

grow rate λ is finite, or more precisely:

λ ≤ max
i,j,ℓ

[A(ℓ)]ij .

2A max-plus-linear system is called strongly connected if its graph is
strongly connected. This means that for any two nodes i, j of the graph,
node j is reachable from node i [5].

This fact is easily verified by noting that for λ′ =
maxi,j,ℓ[A

(ℓ)]ij , and using the max-plus identity matrix S =
diag⊕(0, . . . , 0) gives us

[S⊗A
(ℓ)
λ′ ⊗S⊗

−1
]ij = [A

(ℓ)
λ′ ]ij = [A(ℓ)]ij−λ′ ≤ 0, ∀i, j, ℓ.

The maximum growth rate λ can be easily computed by

solving a linear programming problem.

Remark 2: For a max-plus-linear system (so L = 1), the

maximum growth rate λ is equivalent to the max-plus-linear

eigenvalue of the matrix A(1).

The set LN = { [ ℓ1 · · · ℓN ]T | ℓm ∈ {1, . . . , L}, m =
1, . . . , N} is the set of all possible consecutive mode switch-

ings vectors.

Definition 2: An RSMPL system is controllable if there

exists a finite positive integer N such that for all ℓ̃ ∈ LN

the matrices

ΓN
ρ (ℓ̃)=

[

B(ℓN ) A
(ℓN )
ρ ⊗B(ℓN−1) A

(ℓN )
ρ ⊗A

(ℓN−1)
ρ ⊗B(ℓN−2)

. . . A
(ℓN )
ρ ⊗· · ·⊗A

(ℓ2)
ρ ⊗B(ℓ1)

]

are row-finite, i.e. in each row there is at least one entry

larger then ε.

Theorem 3: Consider a switching MPL system with ran-

dom mode switching and due-date signal (6), and a maxi-

mum grow rate λ. Define the matrices A
(ℓ)
ρ with [A

(ℓ)
ρ ]ij =

[A(ℓ)]ij − ρ. Further assume C(ℓ) to be row-finite. Now if

1) ρ < λ (8)

2) the system is controllable,

then any input signal

u(k) = ρ k+µ(k), where µmin ≤ µi(k) ≤ µmax, ∀i, (9)

and µmin and µmax are finite, will stabilize the SMPL system.

Proof : First note that condition (8) holds if and only if

[ S ⊗A(ℓ)
ρ ⊗ S⊗

−1
]ij < 0, ∀ i, j, ℓ .

Let S be the diagonal matrix with finite diagonal elements,

such that (8) is satisfied, and define the signals

z(k) = S ⊗ (x(k)− ρ k)

w(k) = S ⊗ (y(k)− ρ k)

µ(k) = S ⊗ (u(k)− ρ k)

and the matrices Ā
(ℓ)
ρ , B̄(ℓ), and C̄(ℓ) with

Ā(ℓ)
ρ = S ⊗A(ℓ)

ρ ⊗ S⊗
−1

,

B̄(ℓ) = S ⊗B(ℓ),

C̄(ℓ) = C(ℓ) ⊗ S⊗
−1

.

To every ρ we can associate a shifted system [11]

z(k) = Ā(ℓ)
ρ ⊗ z(k − 1)⊕ B̄(ℓ) ⊗ µ(k) (10)

w(k) = C̄(ℓ) ⊗ z(k). (11)



Stability means that all signals in this system should remain

bounded, as will be proven later. In other words, we are

looking for finite values zmax, wmax, such that

|z(k)| ≤ zmax , |w(k)| ≤ wmax.

Now consider RSMPL system (10)–(11) for the input

signal µi(k) ≤ µmax, ∀i, k. Let zmax(k) = maxi zi(k) and

b̄max = maxℓ,i,j([B̄
(ℓ)]ij), then

zi(k) = max
(

max
j

([Ā(ℓ)
ρ ]ij + zj(k − 1)),

max
m

([B̄(ℓ)]im + µm(k))
)

≤ max
(

max
j

([Ā(ℓ)
ρ ]ij) + zmax(k − 1),

max
ℓ,i,m

([B̄(ℓ)]im) + µmax

)

≤ max
(

zmax(k − 1), b̄max + µmax

)

where we use the fact that [Ā
(ℓ)
ρ ]ij < 0 because of (8). We

find

zmax(k) ≤ max
(

zmax(k − 1), b̄max + µmax

)

This means that all entries of the shifted state z(k) have a

non-increasing function zmax(k) as an upper bound.

Now again consider RSMPL system (10)–(11) for the

input signal µi(k) ≥ µmin, ∀i, k, and let N be such that

γi,max(ℓ̃) = maxj([Γ
N
ρ (ℓ̃)]ij) > ε for all i, ℓ̃. By successive

substitution we find that for any m ≥ N there holds

[z(k +m)]i = [Ā(ℓ(k+m))
ρ ⊗ z(k+m− 1)]i⊕

B̄(ℓ(k+m))
ρ ⊗ µ(k+m)]i

= [Ā(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m−1))

ρ ⊗ z(k+m− 2)⊕

B̄(ℓ(k+m))
ρ ⊗ µ(k+m−N)

Ā(ℓ(k+m))
ρ ⊗ B̄(ℓ(k+m))

ρ ⊗ µ(k+m−N)]i

= [Ā(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m−1))

ρ ⊗ . . .⊗

Ā(ℓ(k+m−N+1))
ρ ⊗ z(k+m−N)]i⊕

[B̄(ℓ(k+m))
ρ ⊗ µ(k+m)

Ā(ℓ(k+m))
ρ ⊗ B̄(ℓ(k+m−1))

ρ ⊗ µ(k+m− 1)⊕

Ā(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m−1))

ρ ⊗ . . .⊗

B̄(ℓ(k+m−N+1))
ρ ⊗ µ(k+m−N + 1)]i

= [Ā(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m−1))

ρ ⊗ . . .

⊗ Ā(ℓ(k+m−N+2))
ρ ⊗ z(k+m−N)]i⊕

[

N
⊕

t=1

Ā(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m−1))

ρ ⊗ . . .

⊗ Ā(ℓ(k+m−N+t+1))
ρ ⊗ B̄(ℓ(k+m−N+t))⊗

⊗ µ(k+m−N+t)]i

≥ [

N
⊕

t=1

Ā(ℓ(k+m−1))
ρ ⊗ Ā(ℓ(k+m−2))

ρ ⊗ . . .

⊗ Ā(ℓ(k+m−N+t−1))
ρ ⊗ B̄(ℓ(k+m−N+t))⊗

⊗ µ(k+m−N+t)]i

≥ max
j

(

[

N
⊕

t=1

Ā(ℓ(k+m−1))
ρ ⊗ Ā(ℓ(k+m−2))

ρ ⊗ . . .

⊗ Ā(ℓ(k+m−N+t−1))
ρ ⊗ B̄(ℓ(k+m−N+t))]ij

+ µj(k+m−N+t)
)

≥ max
j

(

[S ⊗

N
⊕

t=1

A(ℓ(k+m−1))
ρ ⊗A(ℓ(k+m−2))

ρ ⊗ . . .

⊗A(ℓ(k+m−N+t−1))
ρ ⊗B(ℓ(k+m−N+t))]ij

)

+ µmin

≥ max
p

([S]pp) + max
j

(

[

N
⊕

t=1

A(ℓ(k+m−1))
ρ

⊗A(ℓ(k+m−2))
ρ ⊗ . . .⊗A(ℓ(k+m−N+t+1))

ρ

⊗B(ℓ(k+m−N−t))]ij

)

+ µmin

≥ max
p

(sp) + max
j

([ΓN
ρ (ℓ̃)]ij) + µmin

≥ max
p

(sp) + γi,max(ℓ̃) + µmin

≥ smax + γmin + µmin

where smax = maxp(sp) and γmin = minℓ̃,i γi,max(ℓ̃). We

conclude that after N event steps we have a lower bound for

our shifted state z(k). Let c̄max and c̄min be the largest and

the smallest finite values of C̄(ℓ), ∀ℓ, respectively. Now from

(11) it follows that

wi(k) = max
j

([C̄(ℓ)
ρ ]i,j + zj(k)])

and so after N event steps w(k) will be bounded by

smax + γmin + µmin + c̄min ≤ wi(k)

≤ max(zmax(k − 1), b̄max + µmax) + c̄max

where zmax(k) is a non-increasing signal.

Define ζ(k) = S⊗(r(k)−ρ k) = S⊗d(k). Then |ζi(k)| ≤
ζmax = smax + dmax. For any k > N , there holds

yi(k)− ri(k) =

= [(S⊗
−1

⊗ w(k)) + ρ k]i − [(S⊗
−1

⊗ ζ(k)) + ρ k]i

= (−si + wi(k) + ρ k)− (−si + ζi(k) + ρ k)

= wi(k)− ζi(k)

≤ max(zmax(0), b̄max + µmax) + c̄max + smax + dmax

= Myr1,

ri(k)− yi(k) = ζi(k)− wi(k)

≤ dmax − γmin − µmin − c̄min

= Myr2,

|yi(k)− ri(k)| = |wi(k)− ζi(k)|

≤ max(Myr1,Myr2) = Myr < ∞,



yi(k)− xj(k) =

= [(S⊗
−1

⊗ w(k)) + ρ k]i − [(S⊗
−1

⊗ z(k)) + ρ k]j

= (−si + wi(k) + ρ k)− (−sj + zj(k) + ρ k)

= wi(k)− zj(k) + (sj − si)

≤ max(zmax(0), b̄max + µmax) + c̄max

− smax − γmin − µmin + smax − smin

= Myx < ∞,

xj(k)− um(k) =

= [(S⊗
−1

⊗ z(k)) + ρ k]j − [(S⊗
−1

⊗ µ(k)) + ρ k]m

= (−sj + zj(k) + ρ k)− (−sm + µm(k) + ρ k)

= zj(k)− µm(k) + (sm − sj)

≤ max(zmax(0), b̄max + µmax)− µmin + smax − smin

= Mxu < ∞ ,

which proves stability for the RSMPL system (1)–(2). ⋄

Remark 4: For a max-plus-linear system (so L = 1), con-

dition (8) is equivalent to the condition that the production

rate ρ should be larger than the max-plus-linear eigenvalue

λ of the matrix A(1).

IV. A STABILIZING MODEL PREDICTIVE

CONTROLLER

Model predictive control (MPC) [2], [7] is a model-based

predictive control approach that has its origins in the process

industry and that has mainly be developed for linear or

nonlinear time-driven systems. Its main ingredients are: a

prediction model, a performance criterion to be optimized

over a given horizon, constraints on inputs and outputs, and

a receding horizon approach. In [4], [10] we have extended

this approach to MPL systems and switching MPL systems

and shown that the resulting optimization problem can be

solved efficiently. In this section we show that also for

RSMPL systems the MPC optimization problem can be

solved efficiently.

In MPC we use predictions of future signals based on the

RSMPL model. Define the prediction vectors

ỹ(k)=











ŷ(k|k)
...

ŷ(k+Np−2|k)
ŷ(k+Np−1|k)











, ũ(k)=











u(k)
...

u(k+Np−2)
u(k+Np−1)











,

ℓ̃(k)=











ℓ(k)
...

ℓ(k+Np−2)
ℓ(k+Np−1)











,

where ŷ(k+j|k) denotes the prediction of y(k+j) based on

knowledge at event step k, u(k+j) denotes the future inputs,

ℓ(k+j) denotes the future modes, and Np is the prediction

horizon (so it determines how many cycles we look ahead

in our control law design).

Now for any mode sequence ℓ̃(k) the prediction model for

(1)–(2) is given by:

ỹ(k) = C̃(ℓ̃(k))⊗ x(k − 1)⊕ D̃(ℓ̃(k))⊗ ũ(k) (12)

in which C̃(ℓ̃(k)) and D̃(ℓ̃(k)) are given by

C̃(ℓ̃(k))=







C̃1(ℓ̃(k))
...

C̃Np
(ℓ̃(k))







D̃(ℓ̃(k))=







D̃11(ℓ̃(k)) · · · D̃1Np
(ℓ̃(k))

...
. . .

...

D̃Np1(ℓ̃(k)) · · · D̃NpNp
(ℓ̃(k))







where

C̃m(ℓ̃(k)) = C(ℓ(k+m−1)) ⊗A(ℓ(k+m−1)) ⊗ . . .⊗A(ℓ(k))

and

D̃mn(ℓ̃(k))=



























C(ℓ(k+m−1)) ⊗A(ℓ(k+m−1))

⊗A(ℓ(k+n)) ⊗B(ℓ(k+n−1)) if m>n

C(ℓ(k+m−1)) ⊗B(ℓ(k+m−1)) if m=n

ε if m<n

The probability for the switching sequence ℓ̃(k) ∈ LNp
,

given the previous mode ℓ(k − 1), is given by

P (ℓ̃(k)|ℓ(k − 1)) = Ps(ℓ(k − 1), ℓ(k))·

Ps(ℓ(k), ℓ(k+1)) · · ·Ps(ℓ(k+Np−2), ℓ(k+Np−1))

where Ps denotes the switching probability (see Section II-

B).

In MPC we aim at computing the optimal ũ(k) that

minimizes the expectation of a cost criterion J(k), subject

to linear constraints on the inputs. The cost criterion

reflects the input and output cost functions (Jin and Jout,

respectively) in the event period [k, k +Np − 1]:

J(k) = Jout(k) + βJin(k) , (13)

where β ≥ 0 is a tuning parameter, chosen by the user. The

output cost function is defined by

Jout(k) = IE







Np−1
∑

j=0

ny
∑

i=1

max(yi(k + j)− ri(k + j), 0)







= IE







nyNp
∑

i=1

max(ỹi(k)− r̃i(k), 0)







= IE







nyNp
∑

i=1

[(ỹ(k)− r̃(k))⊕ 0̄]i







= IE







nyNp
∑

i=1

[(

(C̃(ℓ̃(k))⊗ x(k − 1)

⊕ D̃(ℓ̃(k))⊗ ũ(k))− r̃(k)
)

⊕ 0̄
]

i









=
∑

ℓ̃∈LN







nyNp
∑

i=1

[(

C̃(ℓ̃)⊗ x(k − 1)⊕ D̃(ℓ̃)⊗ ũ(k))

− r̃(k)
)

⊕ 0̄
]

i







P (ℓ̃|ℓ(k − 1)) (14)

where IE stands for the expectation over all possible

switching sequences, and 0̄ is a zero column vector. The

input cost function is chosen as

Jin,u(k) = −

Np−1
∑

j=0

nu
∑

i=1

ui(k + j) = −

nuNp
∑

i=1

[ũ(k)]i . (15)

The MPC problem for RSMPL systems with due-date signal

(6) can be defined at event step k as

min
{ũ(k)}

J(k) (16)

subject to

u(k + j)− u(k + j − 1) ≥ 0, j=0, . . . , Np−1 (17)

µmin ≤ ui(k)− ρ k ≤ µmax, i = 1, . . . , nu, (18)

where (17) guarantees a non-decreasing input sequence, and

(18) guarantees stability (cf. Theorem 3).

MPC uses a receding horizon strategy. So after com-

putation of the optimal control sequences ũ∗(k), only the

first control sample u(k) = u∗(k) will be implemented,

subsequently the horizon is shifted and the model and the

initial state estimate can be updated if new measurements

are available, then the new MPC problem is solved, etc.

Theorem 4: Assume that LNp
can be rewritten as LNp

=

{ℓ̃1, ℓ̃2, . . . , ℓ̃M} for M = LNp . The MPC problem (16)-(18)

can be recast as a linear programming problem:

min
{ũ(k),ti,m}

nyNp
∑

i=1

N
∑

m=1

ti,mP (ℓ̃m|ℓ(k − 1))− β

nuNp
∑

i=1

ũi(k)

(19)

subject to

ti,m ≥ [C̃(ℓ̃m)]i,l + xl(k − 1)− r̃i(k) , ∀i,m, l (20)

ti,m ≥ [D̃(ℓ̃m)]i,l + ũl(k)− r̃i(k) , ∀i,m, l (21)

ti,m ≥ 0 , ∀i,m (22)

ui(k + j)− ui(k + j − 1) ≥ 0, ∀i, j (23)

µmin ≤ ui(k + j)− ρ k ≤ µmax, ∀i, j (24)

Proof : From (14) we derive:

Jout(k) =

nyNp
∑

i=1

M
∑

m=1

max{
[

C̃(ℓ̃m(k))⊗ x(k − 1)

⊕ D̃(ℓ̃m(k))⊗ ũ(k)]i − r̃i(k), 0
}

P (ℓ̃m|ℓ(k − 1))

=

nyNp
∑

i=1

M
∑

m=1

max
{

max
l

(

[C̃(ℓ̃m(k))]i,l

+ xl(k − 1)− r̃i(k)
)

,max
j

(

[D̃(ℓ̃m(k))]i,j

+ ũj(k)− r̃i(k)
)

, 0
}

P (ℓ̃m|ℓ(k − 1))

=

nyNp
∑

i=1

M
∑

m=1

ti,mP (ℓ̃m|ℓ(k − 1))

where

ti,m =max
(

max
l

([C̃(ℓ̃m(k))]i,l + xl(k − 1)− r̃i(k)),

max
j

([D̃(ℓ̃m(k))]i,j + ũj(k))− r̃i(k + j)), 0
)

(25)

If we would minimize Jout subject to (20)-(24) then, given

the fact that the coefficients P (ℓ̃m|ℓ(k−1)) are nonnegative,

and the variables ti,m only appear in the left-hand side of

the inequalities (20)-(24), the inequality indeed becomes an

equality for at least one of the indices and so ti,m will be

equal to the maximum (25).

This implies that the MPC problem (16)-(18) can indeed

be written as the linear programming problem (19)-(24). ⋄

So the optimization in the MPC algorithm boils down to a

linear programming problem, which is polynomially solvable

[6] and for which efficient algorithms are available.

V. TIMING ISSUES

Discrete event MPL systems are different from conven-

tional time-driven systems in the sense that the event counter

k is not directly related to a specific time. In the previous

we use the assumption that at event step k the state x(k) is

available. However, in general not all components of x(k) are

known at the same time instant (recall that x(k) contains the

time instants at which the internal activities or processes of

the system start for the kth cycle). Therefore, we will present

a method to address the availability issue of the state at a

certain time t0. We consider the case of full state information.

Note that in practical applications the entries of the system

matrices are nonnegative or take the value ε. Since the com-

ponents of x correspond to event times, they are in general

easy to measure. Also note that measurements of occurrence

times of events are in general not as susceptible to noise

and measurement errors as measurements of continuous-

time signals involving variables such as temperature, speed,

pressure, etc. Let t0 be the time when an optimal control

problem is performed. We can define the initial cycle k0 as

follows:

k0 = argmax
{

l : xi(l) ≤ t0 ∀i{1, 2, . . . , n}
}

Hence, the state x(k0) is completely known at time t0 and

thus u(k0 − 1) is also available. Note that at time t0 some

components of the forthcoming states and of the forthcoming

inputs might be known (so xi(k0+l) ≤ t0 and uj(k0+l) ≤ t0
for some l > 0). Due to causality, these states are completely

determined by the known forthcoming inputs. During the

optimization at time t0 the known values of the input have

to be fixed by equality constraints, which fits perfectly in the

linear programming problem. Due to the information at time

t0 it might be possible to conclude that certain forthcoming

modes (ℓ(k0 + l) for l > 0) are not feasible any more.



In that case we can set the switching probabilities for this

mode at zero, and normalize the switching probabilities of

the other modes. With these new probabilities we can do the

optimization at time t0.

VI. EXAMPLE

A. Production system

Consider the production system of Figure 1. This system

consists of three machines M1, M2, and M3. Three products

(A,B,C) can be made with this system, each with its own

recipe, meaning that the order in the production sequence is

different for every product.

M1

M2

M3

d1 = 1

d2 = 3

d3 = 6

�
�
�
��7

-

S
S
S
SS -

-

@
@
@R
@

@
@I �

�
�	
�

�
��

u(k) y(k)

A,C

B

A

B

B,C

C

A

C

A,B

Fig. 1. A production system.

For product A the production order is M1-M2-M3, which

means that the raw material is fed to machine M1 where it is

processed. The intermediate product is sent to machine M2

for further processing, and finally the product is finished in

machine M3. Similarly, for product B the processing order is

M2-M1-M3, and for product C the processing order is M1-

M3-M2. We assume that the type of the kth product (A, B,

or C) only becomes available at the start of the production,

so that we do not know ℓ(k) when computing u(k).
Each machine starts working as soon as possible on each

batch, i.e., as soon as the raw material or the required

intermediate products are available, and as soon as the

machine is idle (i.e., the previous batch has been finished

and has left the machine). We define u(k) as the time instant

at which the system is fed for the kth time, xi(k) as the time

instant at which machine i starts for the kth time, and y(k)
as time instant at which the kth product leaves the system.

We assume that all the internal buffers are large enough, and

no overflow will occur.

We assume the transportation times between the machines

to be negligible, and the processing time of the machines

M1, M2 and M3 are given by d1 = 1, d2 = 2 and d3 = 3,

respectively. The system equations for x1 and x2 for recipe

A are given by

x1(k) = max(x1(k − 1) + d1, u(k)) ,

x2(k) = max(x1(k) + d1, x2(k − 1) + d2)

= max(x1(k − 1) + 2d1, x2(k − 1) + d2, u(k) + d1) ,

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

= max(x1(k − 1) + 2d1 + d2, x2(k − 1) + 2d2,

x3(k − 1) + d3, u(k) + d1 + d2) ,

y(k) = x3(k) + d3 ,

leading to the systems matrices for recipe A:

A(1) =





d1 ε ε

2d1 d2 ε

2d1 + d2 2d2 d3



 , B(1) =





0
d1

d1 + d2



 ,

C(1) =
[

ε ε d3
]

.

Similarly we derive for recipe B:

A(2) =





d1 2d2 ε

ε d2 ε

2d1 d1 + 2d2 d3



 , B(2) =





d2
0

d1 + d2



 ,

C(2) =
[

ε ε d3
]

,

and for recipe C:

A(3) =





d1 ε ε

2d1 + d3 d2 2d3
2d1 ε d3



 , B(3) =





0
d1 + d3

d1



 ,

C(3) =
[

ε d2 ε
]

.

The switching probability from one recipe to the next one is

assumed to be given by:

P (1, 1) = 0.5 , P (1, 2) = 0.25 , P (1, 3) = 0.25 ,

P (2, 1) = 0.25 , P (2, 2) = 0.5 , P (2, 3) = 0.25 ,

P (3, 1) = 0.25 , P (3, 2) = 0.25 , P (3, 3) = 0.5 ,

which means that if we have a specific recipe in cycle k, then

the probability of having the same recipe for cycle k + 1 is

50%, and the probability of a switching to any other recipe

is 25%. Note that this system is indeed an RSMPL system.

The maximum growth rate of the system is equal to λ =
11. We therefore choose a reference signal given by r(k) =
ρ · k , where ρ = 12.1 > λ. The initial state is equal to

x(0) =
[

4 4 4
]T

, and J is given by (13) for Np = 3,

and β = 10−5.
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Fig. 2. (a) Tracking error y(k)−r(k) and (b) switching sequence

Figure 2-a gives the tracking error between the reference

signal and the output signal y(k), for a switching sequence

given in Figure 2-b, when the system is in closed-loop with

the receding horizon model predictive controller. It can be

observed that y(k)−r(k) is initially larger than zero, which



is due to the initial state. The error decreases very rapidly

and for k ≥ 6 the error is always equal to zero, which means

that the the product is always delivered in time.

VII. DISCUSSION

In this paper we have considered the control of randomly

switching max-plus-linear systems, a subclass of the discrete

event systems, in which we can switch between different

modes of operation. In each mode the system is described

by max-plus-linear equations with different system matrices

for each mode. The moments of switching are determined

by a stochastic variable.

We have derived a stabilizing model predictive controller

for switching max-plus-linear systems. The resulting opti-

mization problem can be solved using linear programming

algorithms.
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