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Model predictive control for uncertain max-min-plus-scaling
systems

I. Necoara∗, B. De Schutter, T. van den Boom and H. Hellendoorn

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract: In this paper we extend the classical min-max model predictive control framework to a class of uncertain

discrete event systems that can be modeled using the operations maximization, minimization, addition and scalar

multiplication, and that we call max-min-plus-scaling (MMPS) systems. Provided that the stage cost is an MMPS

expression and considering only linear input constraints then the open-loop min-max model predictive control

problem for MMPS systems can be transformed into a sequence of linear programming problems. Hence, the min-

max model predictive control problem for MMPS systems can be solved efficiently, despite the fact that the system

is nonlinear. A min-max feedback model predictive control approach using disturbance feedback policies is also

presented, which leads to improved performance compared to the open-loop approach.

1 Introduction

Discrete event systems (DES) are event-driven dynamical systems, i.e. the state transitions are initiated by events

rather than a clock. An important class of DES is the class of max-min-plus-scaling (MMPS) systems, the evolution

equations of which can be described using the operations maximization, minimization, addition and scalar multipli-

cation. We show that this class encompasses several other classes of DES such as max-plus-linear systems, bilinear

max-plus systems and max-min-plus systems. Using the results of Heemels et al. (2001), we can prove that MMPS

systems are also equivalent with a particular class of hybrid systems, called continuous piecewise (PWA) systems.

PWA systems are defined by partitioning the state space of the system in a finite number of polyhedral regions

and associating to each region a different affine dynamic. The relation between PWA and MMPS systems is useful

for the investigation of structural properties of PWA systems such as observability and controllability but also in

designing controller schemes like model predictive control (MPC) (Bemporad et al., 1999; Johansson, 2003).

MPC (Maciejowski, 2002; Mayne et al., 2000) is a very popular control methodology in the process industry.

MPC provides many attractive features: it is an easy-to-tune method, it is applicable to multi-variable systems, it

can handle constraints in a systematic way, and it is capable of tracking pre-scheduled reference signals. In MPC

at each sample step the optimal control inputs that minimize a given performance criterion over a given prediction

horizon are computed, and applied using a receding horizon approach until new measurements become available.

Feedback is incorporated by using these measurements to update the optimization problem for the next step.

Several authors have developed control design methods (e.g. MPC) for some specific subclasses of DES or hybrid

systems (Cassandras et al., 2001; Bemporad et al., 1999; Necoara , 2006), in particular for max-plus-linear systems

(Baccelli et al., 1992; Menguy et al., 1998; Cottenceau et al., 2001; Necoara et al., 2005; De Schutter et al., 2001)

or PWA systems (Kerrigan et al., 2002; Rakovic et al., 2004; De Schutter et al., 2004; Necoara et al., 2004). Using

the work of De Schutter et al. (2004) in which MPC for MMPS (or equivalently for continuous PWA) systems for

the deterministic case without disturbances and modeling errors is proposed, we further extend in this paper the

conventional min-max MPC approach for the cases with bounded disturbances and modeling errors. An important

difference between MPC and some other control methods is the explicit use of a prediction model. Because the
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2 2 PRELIMINARIES

models play an important role in MPC, we must take the disturbance and modeling errors into account when using

MPC. Both features can perturb the system by introducing uncertainty in the system equations and ignoring them

may lead to a bad tracking or even to unstable closed-loop behavior. In this paper we model disturbances and

modeling errors in one single framework by including extra terms in the equations of MMPS system.

Note that there are some results in the literature on specific classes of uncertain DES and hybrid systems (Kerrigan

et al., 2002; Rakovic et al., 2004; Necoara et al., 2005) but to the authors’ best knowledge this is the first time that

such an approach is used for the MMPS framework. Some papers (Kerrigan et al., 2002; Rakovic et al., 2004;

Necoara et al., 2005) focus on worst-case problems, which basically involves finding the maximum of the cost

criterion over some bounded disturbance set and then minimization over the feasible input set. In Kerrigan et al.

(2002); Rakovic et al. (2004) dynamic programming was used to solve the min-max feedback MPC problem for

continuous PWA systems with bounded disturbances. The core difficulty with the dynamic programming approach

is that optimizing over feedback policies with arbitrary nonlinear functions is in general a computationally hard

problem. Moreover, in the dynamic programming approach it is difficult to take into consideration variable input

constraints, which is typically the case in DES (e.g. bounded rate variation m ≤ u(k + 1) − u(k) ≤ M ). In

Necoara et al. (2005) it is proved that the min-max feedback MPC for max-plus systems is a convex problem if

some assumptions about the cost function and constraints are fulfilled. The main difficulty in this case is represented

by the - in the worst case - exponential number of constraints, that result from the transformation of max constraints

in linear constraints. The approach proposed in this paper addresses some of these issues.

In this paper we consider uncertain MMPS systems, and thus also uncertain continuous PWA systems. The paper

is organized as follows. As an introduction to our discussion and to make the paper self-contained, a brief overview

of MMPS and PWA systems is given, and MPC for them as it was developed in De Schutter et al. (2004) is presented

in Section 2. We also discuss some results on multi-parametric linear programming. In Section 3 we discuss open-

loop MPC for uncertain MMPS systems. We obtain an efficient MPC method that is based on minimizing the worst-

case cost criterion. One of the key results of this paper is showing that the optimization problem at each MPC step

can be transformed into a sequence of linear programming problems, for which efficient solution methods exist. It is

well-known (Mayne et al., 2000) that in the presence of disturbance, a feedback controller performs better than an

open-loop controller. Therefore, in Section 4 we introduce feedback in the worst-case MPC optimization problem,

optimizing over disturbance feedback policies. Although this approach was applied successfully to linear systems

(Goulart et al., 2006), the extension to DES has not been done yet, this paper being the first attempt. In Section 5

we discuss the complexity of the proposed and existing algorithms. We conclude with a worked example in Section

6 where these two approaches are compared.

2 Preliminaries

2.1 Equivalence between MMPS and continuous PWA systems

Definition 2.1 A scalar-valued MMPS function f : Rn → R is defined by the recursive relation:

f(x) =xi|α|max(fk(x), fl(x))|min(fk(x), fl(x))|fk(x) + fl(x)|βfk(x),

where i ∈ {1, ..., n}, α, β ∈ R and fk, fl : R
n → R are again MMPS functions, and the symbol | stands for “or”.

For vector-valued MMPS functions the above statements hold component-wise.

An MMPS system is written in the following form:

x(k + 1) = Mx(x(k), u(k)) (1)

y(k) = My(x(k), u(k)), (2)

where Mx, My are vector-valued MMPS functions with input u ∈ Rm, output y ∈ Rp and state x ∈ Rn and k is

an integer. In the context of DES, k is an event counter, and thus x, u and y correspond to time instants, while in

the context of hybrid systems k is a discrete time and x, u and y represent physical variables.
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Definition 2.2 A vector-valued function f : Rn → Rm is said to be a continuous PWA function if there exists a

finite family C1, ..., CN of closed polyhedral regions that covers Rn and for each i ∈ {1, ..., N}, j ∈ {1, ...,m}, the

component fj of f can be expressed as fj(x) = αT
i,j x + βi,j , for any x ∈ Ci with αi,j ∈ Rn, βi,j ∈ R and if f is

continuous on the boundary between any two regions.

A continuous PWA system in state space representation is a system of the form:

x(k + 1) = Px(x(k), u(k)) (3)

y(k) = Py(x(k), u(k)), (4)

where Px and Py are continuous PWA functions.

PROPOSITION 2.3 (De Schutter et al., 2004) Any scalar-valued MMPS function f : Rn → R can be written into

min-max canonical form

f(x) = min
j∈{1,...,l̂}

max
i∈Tj

(αT
i,jx+ βi,j), (5)

or into max-min canonical form

f(x) = max
j∈{1,...,l}

min
i∈Sj

(γTi,jx+ δi,j), (6)

for some integers l̂, l, N ; {Sj}
l
j=1 and {Tj}

l̂
j=1 each are a family of subsets of {1, ..., N} and αi,j , γi,j ∈ Rn,

βi,j , δi,j ∈ R.

PROPOSITION 2.4 (De Schutter et al., 2004) Any continuous PWA function having domain Rn can be written as

an MMPS function and vice versa.

COROLLARY 2.5 Continuous PWA systems and MMPS systems are equivalent in the sense that for a given contin-

uous PWA model there exists an MMPS model (and vice versa) such that the input-output behavior of both models

coincides.

Note that the above propositions imply that any continuous PWA system (3)–(4) can be written in the form

(1)–(2), with each component of Mx and My in min-max canonical form (5) or max-min canonical form (6).

2.2 MMPS systems and other classes of DES

In this section we will show that the model (1)–(2) can be considered as a generalized framework that encompasses

several subclasses of DES such as: max-plus-linear systems, max-plus-bilinear systems, max-min-plus systems.

2.2.1 Max-plus-linear systems. Max-plus-linear systems (Baccelli et al., 1992; Cuninghame-Green, 1979; Heider-

gott et al., 2005) are DES that can be described by a state space model of the following form:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k) (7)

y(k) = C ⊗ x(k), (8)

where the operations ⊕ and ⊗ are defined by

(U ⊕ V )ij = uij ⊕ vij = max(uij , vij) (9)

(U ⊗W )ij =

q
⊕

k=1

uik ⊗ wkj = max
k={1,...,q}

(uik + wkj) (10)
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for matrices U, V ∈ Rp×q
-∞ , and W ∈ Rq×r

-∞ with R -∞ = R∪{−∞}. Regarding the order of evaluation, the operation

⊗ has precedence over ⊕. We call ⊕ the max-plus-algebraic addition and ⊗ the max-plus-algebraic multiplication.

This also explains why the model (7)–(8) is called max-plus-linear, i.e. linear in the max-plus-algebraic sense.

Loosely speaking, this class corresponds to the class of DES in which there is synchronization (corresponding

to maximization) but no concurrency. Max-plus linear DES often arise in the context of manufacturing systems,

railway networks, parallel computing, etc.

The model (7)–(8) can be rewritten as

xi(k + 1) = max
(

max
j

(aij + xj(k)), max
j

(bij + uj(k))
)

for i = 1, 2, . . . , n,

yi(k) = max
j

(cij + xj(k)), for i = 1, 2, . . . , l,

which is clearly a special case of an MMPS system.

2.2.2 Max-plus-bilinear systems. Max-plus-bilinear systems are DES that can be described by a state space model

of the following form:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)⊕

m
⊕

p=1

Lp ⊗ up(k)⊗ x(k) (11)

y(k) = C ⊗ x(k)⊕D ⊗ u(k), (12)

where Lp ∈ Rn×n
-∞ for p = 1, 2, . . . ,m. This description is the max-plus-algebraic equivalent of conventional

bilinear discrete-time systems. Max-plus-bilinear systems could arise when some of the inputs of a max-plus-linear

system of the form (7)–(8) are used as a switch to control the entries of the system matrix A, i.e. the constant

system matrix A is replaced by the input-dependent system matrix A⊕ L1 ⊗ u1(k)⊕ · · · ⊕ Lm ⊗ um(k). Clearly,

max-plus-bilinear systems are also a subclass of the MMPS systems.

2.2.3 Max-plus-polynomial systems. The rth max-plus-algebraic power of the scalar variable v is defined by v⊗
r
=

rv. A max-plus-polynomial p of the scalar variables v1, v2, . . . , vn can be written as

p(v1, v2, . . . , vn) =

q
⊕

i=1

ci ⊗ v1
⊗
ri,1

⊗ v2
⊗
ri,2

⊗ · · · ⊗ vn
⊗
ri,n

, (13)

where ci and ri,j are scalars.

Max-plus-polynomial systems are a further extension of max-plus-linear and max-plus-bilinear DES. They can

be described by a state space model of the following form:

x(k) = px(x(k − 1), u(k)) (14)

y(k) = py(x(k), u(k)), (15)

where px and py are max-plus-polynomials. In van Egmond et al. (1999) a subclass of max-plus-polynomial systems

has been used in the design of traffic signal switching schemes.

Since (13) can be rewritten as

p(v1, v2, . . . , vn) = max
i=1,...,q

(ci + ri,1v1 + ri,2v2 + · · ·+ ri,nvn), (16)

which is an MMPS expression, the system (14)–(15) is also an MMPS system.
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2.2.4 Max-min-plus systems. Max-min-plus systems (or max-min systems as they are called in Olsder (1994)) are

described by the model

x(k + 1) = Mmmx(x(k), u(k)) (17)

y(k) = Mmmy(x(k), u(k)), (18)

where Mmmx,Mmmy are max-min-plus expressions, i.e. expressions defined recursively by

f := xi|fk + α|max(fk, fl)|min(fk, fl),

where α is a scalar, and fk and fl are again max-min-plus expressions. So max-min-plus expressions are special

cases of MMPS expressions. This implies that max-min-plus systems are also a subclass of the MMPS systems.

2.3 MPC for MMPS systems

In this section we give a short description of MPC for MMPS systems of the form (1)-(2) (see De Schutter et

al. (2004) for more details). Note that De Schutter et al. (2004) does not consider disturbances in the model. In

MMPS-MPC we define for each step k a cost criterion

J(k) = Jout(k) + λJin(k)

over the period [k, k+Np − 1], where Np is the prediction horizon and λ > 0 is a weighting factor. By optimizing

this cost criterion we obtain an optimal input sequence u∗(k), ..., u∗(k +Np − 1), but we apply to our system only

the first input sample u∗(k) according to a receding horizon strategy. At the next sample step the whole procedure

is repeated.

Now we explain in more detail how MPC for MMPS systems can be implemented efficiently in the case when the

cost criterion J(k) is an MMPS function of the input. Assuming that at each step k, the state x(k) can be measured

or predicted, we can make an estimation of the output of the model (1)–(2):

ŷ(k + j|k) = Mj(x(k), u(k), ..., u(k + j)) (19)

at sample step k+j, for j = 0, ..., Np−1 using the information available up to sample step k. It is easy to verify that

Mj is an MMPS function of x(k), u(k), ..., u(k+j). Our goal is to track a reference (due dates) signal r. We define

the vectors ũ(k) = [uT (k), ..., uT (k+Np−1)]T , ỹ(k) = [ŷT (k|k), ..., ŷT (k+Np−1|k)]T , and r̃(k) = [rT (k), ...,
rT (k +Np − 1)]T .

We consider only linear constraints on the input1

P (k)ũ(k) + q(k) ≤ 0. (20)

In practical situations, such constraints occur when we have to guarantee that the input signal or the rate of variation

of the input signal must stay within certain bounds, e.g. m(k + j) ≤ u(k + j)− u(k + j − 1) ≤ M(k + j), where

m(·) and M(·) are the lower and upper bounds respectively. As output cost functions one could take:

Jout,1(k) = ‖ỹ(k)−r̃(k)‖1, Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞

Jout,t(k) = max{ỹ(k)− r̃(k), 0}, (21)

which reflect the tracking error or tardiness, and which are MMPS functions of x(k), ũ(k), r̃(k). As input cost

1We can take into account also constraints on states, but in this case the number of optimization problems that must be solved increases.
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function one could take:

Jin,1(k) = ‖ũ(k)‖1, Jin,∞(k) = ‖ũ(k)‖∞, Jin,t(k) = −
∑

i

ũi(k), (22)

which are also MMPS functions of ũ(k). Or we can use any other output or input cost criterion that can be expressed

as an MMPS function of ũ(k). We introduce a control horizon Nc such that

u(k + j) = u(k +Nc − 1) for j = Nc, ..., Np − 1, (23)

to decrease the number of degrees of freedom for ũ(k). As a consequence, we obtain a reduction in computational

effort but this also makes the control signal more smooth and the controller more robust. Note that (23) can also be

expressed in the form (20).

Since after substitution of ỹ(k) using (19), the cost function J(k) is an MMPS function of ũ(k) which can be

written in min-max canonical form, it follows that at each step k we have to solve an optimization problem of the

following form

min
ũ(k)

min
j∈{1,...,l̂}

max
i∈Tj

(αT
i,j ũ(k) + βi,j(k)) (24)

subject to: P (k)ũ(k) + q(k) ≤ 0,

and thus for any j ∈ {1, ..., l̂} we obtain a linear programming problem:

min
ũ(k),t(k)

t(k) (25)

subject to:

{

P (k)ũ(k) + q(k) ≤ 0

t(k) ≥ αT
i,j ũ(k) + βi,j(k)), for all i ∈ Tj .

The linear programming problems are easy to solve using the simplex method or an interior point algorithm (Parda-

los et al., 2002). Let [t∗(k) ũ∗T(j)(k)]
T be the optimal solution of (25). To obtain the solution of (24), we solve (25)

for j ∈ {1, ..., l̂} and afterward we select the ũ∗(j)(k) for which maxi∈Tj
(αT

i,j(k)ũ
∗
(j)(k) + βi,j(k)) is the smallest.

2.4 Multi-parametric linear programming

A multi-parametric linear programming (MP-LP) problem is defined (Gal, 1995; Borrelli et al., 2003) as:

max cTx (26)

subject to Sx ≤ q + Uθ, (27)

where x ∈ Rn is the optimization variable, θ ∈ Θ ⊆ Rs is a vector of parameters, S ∈ Rm×n, c ∈ Rn, q ∈ Rm,

and U ∈ Rm×s. We assume that Θ is a polytope given by Θ = {θ ∈ Rs : Wθ ≤ ω}. For simplicity, we assume that

for any θ ∈ Θ (recall that Θ is bounded), the problem (26)–(27) has a finite optimal solution. Let V ∗(θ) denote the

maximum value of the objective function in problem (26)–(27) and x∗(θ) the optimizer1 related to V ∗(θ) for any

θ ∈ Θ. The following proposition which is a slight adaptation of a result of Gal (1995) characterizes the solution of

an MP-LP problem:

PROPOSITION 2.6 With the above notations, the function V ∗ : Θ → R is a concave MMPS function (i.e. only a

min-plus-scaling expression).

1In general, x∗(θ) is set-valued.
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Proof In Gal (1995) it is proved that V ∗ : Θ → R is a continuous concave PWA function, which implies that V ∗ is

also an MMPS function (according to Proposition 1.4). Actually we know (Pardalos et al., 2002) that any concave,

PWA function can be written as:

V ∗(θ) = min
i∈{1,...,k}

(αT
i θ + βi).

�

The reader is referred to (Borrelli et al., 2003; Kvasnica et al., 2005) for a geometric algorithm for computing

the solution to an MP-LP. Furthermore, a method that allow us to compute a continuous minimizer X∗ : Θ → Rn

such that X∗(θ) ∈ x∗(θ) for all θ ∈ Θ is given in Spjøtvol et al. (2005).

The following lemma deals with the special case of a multi-parametric program having as cost function an MMPS

function (for a less restrictive version of this lemma see Lemma 5.1.2 in Necoara (2006)). Note that similar results

were obtained in Kerrigan et al. (2002) for continuous PWA functions, but our proof is somewhat more intuitive

and easier and moreover we obtain that V ∗(θ) is also continuous and thus an MMPS function (a property that is

crucial in Section 3.2).

LEMMA 2.7 Let V : Rn × Rnθ → R, (x, θ) 7→ V (x, θ) be an MMPS function and consider the following

multi-parametric optimization problem:

max V (x, θ) (28)

subject to Sx ≤ q + Uθ. (29)

Assuming that for any parameter θ ∈ Θ the optimization problem (28)–(29) has a finite solution, then the solution

of the multi-parametric optimization problem can be obtained by solving a set of MP-LPs. Moreover, V ∗(θ) is an

MMPS function.

Proof Since V (x, θ) is an MMPS function and thus continuous we can use the max-min canonical representation

of it. We have V (x, θ) = maxi∈{1,...,p}minj∈{1,...,q}(α
T
ijx+βT

ijθ+γij). Therefore, for each i ∈ {1, . . . , p} we must

solve: maxxminj∈{1,...,q}(α
T
ijx+βT

ijθ+γij) subject to (29). The last multi-parametric program is in fact an MP-LP

problem: V ∗
i (θ) = maxx,µi

µi subject to αT
ijx+ βT

ijθ + γij ≥ µi, for j = 1, . . . , q and (29). From Proposition 2.6,

we know that V ∗
i (θ) is a min expression of affine terms in θ. In conclusion, we have to solve p MP-LPs and then

V ∗(θ) = maxi∈{1,...,p} V
∗
i (θ), i.e. V ∗ is an MMPS function. �

3 Open-loop MPC for uncertain MMPS or continuous PWA systems

3.1 Uncertain MMPS or continuous PWA systems

In this section we extend the MMPS (or equivalently the continuous PWA) deterministic model (1)–(2) or (3)–(4),

to take also the disturbances and modeling errors into account. As in conventional linear systems, we model the

disturbances and modeling errors by including an extra term in the system equations for MMPS systems. Hence,

we consider the uncertain MMPS model:

x(k + 1) = Mx(x(k), u(k), e(k)) (30)

y(k) = My(x(k), u(k), e(k)), (31)

where Mx, My are vector-valued MMPS functions. The uncertainty caused by disturbances and modeling errors

in the estimation of the real system is gathered in the uncertainty vector e(k). We assume that this uncertainty is

included in a bounded polyhedral set E = {e ∈ Rs : Se ≤ q} and if consecutive samples e(k),...,e(k + j) are

related (which is typically the case in the context of DES), we assume that this relation is linear (e.g. a system of

linear equalities or inequalities).
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Using the link between MMPS and continuous PWA systems, the uncertain MMPS system (30)–(31) can be also

written as a uncertain continuous PWA system:

x(k + 1) = Px(x(k), u(k), e(k)) (32)

y(k) = Py(x(k), u(k), e(k)), (33)

where Px and Py are continuous vector-valued PWA functions. Therefore, the algorithms derived in this paper can

be also applied to uncertain continuous PWA systems. Note that in conventional uncertain PWA systems (Kerrigan

et al., 2002; Rakovic et al., 2004; Johansson, 2003) the partition that generates the system is independent on the

disturbance e. In our definition of an uncertain MMPS and uncertain continuous PWA system the partition will in

general also depend on the disturbance (note that this is necessary to guarantee continuity of the system). Therefore,

our modeling approach is more general than the one used in (Kerrigan et al., 2002; Rakovic et al., 2004; Johansson,

2003) where the partition is fixed.

We assume that at each step k of MPC, the state x(k) is available1 and we gather the uncertainty over the interval

[k, k +Np − 1] in the vector ẽ(k) = [eT (k), ..., eT (k +Np − 1)]T ∈ Ẽ , where Ẽ , according to our assumption, is

a bounded polyhedral set. Then it is easy to see that the prediction ŷ(k + j|k) of the future output for the system

(30)–(31) can be written in MMPS form, for j = 0, ..., Np − 1.

Using as cost criterion a combination of the output and input cost criterion as defined in (21) and (22):

J(k) = Jout(k) + λJin(k)

and keeping in mind that all these cost criteria are MMPS expressions2, we can write J as a max-min canonical

expression:

J(ẽ(k), ũ(k), x(k)) = max
j∈{1,...,l}

min
i∈Sj

(ᾱT
i,jx(k) + β̄T

i,j ũ(k) + γ̄Ti,j ẽ(k) + δ̄i,j). (34)

Note that if the reference signal r depends on k then δ̄i,j will depend also on k (i.e. δ̄i,j are affine expressions in r̃).

3.2 Worst-case MMPS-MPC

In this section we study open-loop MPC for an uncertain MMPS system when e(k) is a bounded uncertainty. We

want to minimize an MMPS cost criterion J(k) = Jout(k) + λJin(k) subject to some constraints. As we said

before, we consider only linear constraints on the input, i.e. constraints of the form (20). The worst-case MMPS-

MPC problem at step k is then defined as:

J∗(x(k)) =min
ũ(k)

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k), x(k)) (35)

subject to: P (k)ũ(k) + q(k) ≤ 0, (36)

where J(·) is given by (34).

For a given ũ(k), x(k) we define the inner worst-case MMPS-MPC problem

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k), x(k)). (37)

1In the case of DES this assumption is not restrictive since the components of x(k) correspond to event times and thus they are in general easy to measure.
2Recall that |x| = max(x,−x) for x ∈ R.
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We denote3

ẽ∗(ũ(k), x(k)) = arg max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k), x(k)) (38)

J∗(ũ(k), x(k)) = J(ẽ∗(ũ(k), x(k)), ũ(k), x(k)). (39)

PROPOSITION 3.1 For a given ũ(k) and x(k), ẽ∗(ũ(k), x(k)) given by (38) can be computed using a sequence of

linear programming problems.

Proof Because the uncertainty e(k) is in a bounded polyhedral set E and if e(k), · · · , e(k + j) are related then

this relation is linear we conclude that ẽ(k) will also be in a bounded polyhedral set: Ẽ = {ẽ(k) : S̃ẽ(k) ≤ q̃}.

We determine for any fixed [ũT (k) xT (k)]T the optimal ẽ∗(ũ(k), x(k)), using the max-min canonical form (34) of

J(·), by solving the following optimization problem:

max
ẽ(k)

max
j∈{1,...,l}

min
i∈Sj

(ᾱT
i,jx(k) + β̄T

i,j ũ(k) + γ̄Ti,j ẽ(k) + δ̄i,j)

subject to: S̃ẽ(k) ≤ q̃, (40)

which is equivalent with:

max
j∈{1,...,l}

max
ẽ(k)

min
i∈Sj

(ᾱT
i,jx(k) + β̄T

i,j ũ(k) + γ̄Ti,j ẽ(k) + δ̄i,j)

subject to: S̃ẽ(k) ≤ q̃. (41)

Now for each j ∈ {1, ..., l} we have to solve the following optimization problem:

max
ẽ(k)

min
i∈Sj

(ᾱT
i,jx(k) + β̄T

i,j ũ(k) + γ̄Ti,j ẽ(k) + δ̄i,j)

subject to: S̃ẽ(k) ≤ q̃,

which is equivalent with the following linear programming problem:

max
ẽ(k),t(j)(k)

t(j)(k) (42)

subject to:
{

t(j)(k) ≤ ᾱT
i,jx(k) + β̄T

i,j ũ(k) + γ̄Ti,j ẽ(k) + δ̄i,j for each i ∈ Sj

S̃ẽ(k) ≤ q̃.
(43)

To obtain the solution of (40) we solve (42)–(43) for each j ∈ {1, ..., l}, with the optimal solution

[t∗(j)(ũ(k), x(k)) ẽ∗T(j)(ũ(k), x(k))]
T and then we select as ẽ∗(ũ(k), x(k)), the optimal solution ẽ∗(j)(ũ(k), x(k))

for which mini∈Sj
(ᾱT

i,jx(k) + β̄T
i,j ũ(k) + γ̄Ti,j ẽ

∗
(j)(ũ(k), x(k)) + δ̄i,j) is the largest. �

Now, we define U = {ũ(k) : P (k)ũ(k)+q(k) ≤ 0} and we assume U to be bounded. Note that this assumption is

not restrictive, because in practice the input ũ(k) will always be bounded. Furthermore, the feasible set of the states

X is also assumed to be a bounded polyhedron (since for physical systems operational range is usually known).

For simplicity we assume that the multi-parametric program (37) has a finite optimal solution for any parameter

[ũT (k) xT (k)] ∈ U ×X .

PROPOSITION 3.2 With the notations (38)–(39), J∗ : U ×X → R is an MMPS function and ẽ∗ : U ×X → Rs is

a PWA function.

3Note that in general ẽ∗(ũ(k), x(k)) may be set-valued, but as we will use Proposition 2.6, this is not an issue.
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Proof For each j ∈ {1, ..., l} we denote with [t∗(j)(ũ(k), x(k)) ẽ∗T(j)(ũ(k), x(k))]
T the optimal solution of the MP-

LP problem (42)–(43), with the parameter θ = [ũT (k) xT (k)]T ∈ Θ with Θ = U ×X a bounded polyhedral set.

Using similar arguments as in Lemma 2.7 we know that t∗(j)(·, ·) is a min expression of the form t∗(j)(x(k), ũ(k)) =

mini(µ̄
T
i,jx(k) + ν̄Ti,j ũ(k) + ξ̄i,j) and

J∗(ũ(k),x(k))= max
j∈{1,...,l}

(t∗(j)(ũ(k), x(k)))= max
j∈{1,...,l}

min
i
(µ̄T

i,jx(k) + ν̄Ti,j ũ(k) + ξ̄i,j).

We thus obtain directly the max-min expression of J∗(·, ·).
Furthermore ẽ∗(ũ(k), x(k)) = ẽ∗(j)(ũ(k), x(k)) if t∗(j)(ũ(k), x(k)) ≥ t∗(i)(ũ(k), x(k)) for each i ∈ {1, ..., l}\{j}.

But each ẽ∗(j)(·, ·) is an MMPS function, and therefore a continuous PWA function. This implies that ẽ∗(·, ·) is a

PWA function. Note that ẽ∗(·, ·) is not necessarily continuous. �

The outer worst-case MMPS-MPC problem is now defined as:

min
ũ(k)

J∗(ũ(k), x(k)) (44)

subject to P (k)ũ(k) + q(k) ≤ 0, (45)

where we assume that at step k, the state x(k) is given (or can be estimated).

PROPOSITION 3.3 Given x(k), the outer worst-case MMPS-MPC problem can be solved using a sequence of

linear programming problems.

Proof From Proposition 3.2 we know that J∗ : U ×X → R is an MMPS function. Therefore it can be written in

the following min-max canonical form

J∗(ũ(k), x(k)) = min
j∈{1,...,l̂}

max
i∈Tj

(µT
i,jx(k) + νTi,j ũ(k) + ξi,j).

Then, the outer worst-case MMPS-MPC problem (44)–(45) can be written as

min
ũ(k)

min
j∈{1,..,l̂}

max
i∈Tj

(µT
i,jx(k) + νTi,j ũ(k) + ξi,j)

subject to: P (k)ũ(k) + q(k) ≤ 0.

For each j ∈ {1, ..., l̂} we must thus solve the following linear programming problem:

min
ũ(k),t(j)

t(j)

subject to:

{

t(j) ≥ µT
i,jx(k) + νTi,j ũ(k) + ξi,j , for each i ∈ Tj

P (k)ũ(k) + q(k) ≤ 0.
(46)

In order to obtain the solution of (44)–(45), we solve (46), obtaining the optimal solution [t∗(j)(x(k)) ũ
∗T
(j)(x(k))]

T ,

for each j ∈ {1, ..., l̂} and then we select the optimal ũ∗(x(k)) as the optimal solution ũ∗(j)(x(k)) for which

maxi∈Tj
(µT

i,jx(k) + νTi,j ũ
∗
(j)(x(k)) + ξi,j) is the smallest. �

Based on the results discussed above we now present an algorithm to solve the worst-case MMPS-MPC problem.

Algorithm 1

Step 1: Compute the max-min expression of J(·). Solve off-line the inner worst-case MMPS-MPC problem (37)

using MP-LP. According to Proposition 3.2 J∗(x, u) is an MMPS function. Compute also off-line the min-max

canonical form of this function.
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Step 2: Compute on-line (at each step k) the solution of the outer worst-case MMPS-MPC problem (44)-(45)

according to Proposition 3.3.

COROLLARY 3.4 According to Algorithm 1, the outer worst-case MMPS-MPC problem can be solved using a

sequence of linear programming problems. Moreover the associated controller is a PWA function of the argument

x(k).

Proof In order to solve the problem (35)–(36), first we look for the worst-case uncertainty ẽ(k) as a function of

ũ(k), x(k) (Proposition 3.1) while in the second step of the algorithm we want to find the optimal input ũ(k)
corresponding to the worst-case uncertainty (Proposition 3.3). The first step is computed off-line. The second step

can be solved using a sequence of linear programming problems according to Proposition 3.3.

For the second part of the corollary, we consider the MP-LP problem (46), with the parameter x(k) ∈ X with X
a polyhedral set. Then the optimal solution [t∗(j)(·) u

∗T
(j)(·)]

T is an MMPS function of the argument x(k) (according

to Proposition 2.6). Therefore ũ∗(j)(·) is a PWA function. But

ũ∗(k) = ũ∗(j)(x(k)) if t∗(j)(x(k)) ≤ t∗(i)(x(k))

for i ∈ {1, ..., l̂} \ {j}. In conclusion, the worst-case MMPS-MPC controller u∗(k) is a PWA function of the

argument x(k). �

Remark 1 It is clear from Proposition 3.2 that the outer worst-case MMPS-MPC problem can also be solved

off-line, using again Lemma 2.7. Then, step 2 of Algorithm 1 consists in solving off-line the outer worst-case

MMPS-MPC problem and then on-line at each step k we need only to evaluate a PWA function corresponding to

the controller.

3.3 Solution of the inner worst-case problem based on duality

In Algorithm 1 we have to solve off-line the inner-worst case MMPS-MPC using MP-LP. In the case when the

reference signal r is a non-zero sequence we have to include r(k), ..., r(k + Np − 1) as additive parameters in

the MP-LP program when we want to solve the inner-worst case problem off-line, using MP-LP, because the cost

function depends also on r. Of course, the computational complexity increases in that case because the dimension

of the vector of parameters ([x(k)T ũ(k)T r̃(k)T ]T ) is much larger than θ = [x(k)T ũ(k)T ]T , corresponding to the

case r = 0. An alternative method is to use the duality theory of linear programming (Pardalos et al., 2002). For

each j ∈ {1, · · · , l} the primal problem (42)-(43) can be written (for simplicity we drop the index k):

(P):











maxẽ,t(j) t(j)

subject to:

{

t(j) − γ̄Ti,j ẽ ≤ ᾱT
i,jx+ β̄T

i,j ũ+ δ̄i,j , for each i ∈ Sj

S̃ẽ ≤ q̃.

We denote with ci,j(x, ũ) = ᾱT
i,jx + β̄T

i,j ũ + δ̄i,j , which is an affine expression in (x, ũ) ∈ X × U , where δ̄i,j
depends on r̃, which varies with k. In matrix notation the primal problem becomes:

(P):











maxẽ,t(j) t(j)

subject to:

[

1 −γ̄Ti,j
0 S̃

][

t(j)
ẽ

]

≤

[

ci,j(x, ũ)

q̃

]

, for each i ∈ Sj .
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Note that in primal problem (P) the variables t(j), ẽ are free. The dual problem then has the following form:

(D):



















minyj
[c1,j(x, ũ), ..., c#Sj ,j(x, ũ), q̃1, ..., q̃nS̃

]T yj

subject to:

[

1 0

−γ̄i,j S̃T

]

yj =

[

1

0

]

, for each i ∈ Sj

yj ≥ 0,

where #Sj denotes the cardinality of the set Sj and nS̃ denotes the number of rows of the matrix S̃.

There are algorithms (e.g. the double description method of Motzkin et al. (1953)) to compute a compact explicit

description of the elements of the polyhedral set:

Kj =
{

yj ≥ 0 :

[

1 0

−γ̄i,j S̃
T

]

yj =

[

1
0

]

, for each i ∈ Sj

}

.

These elements can be expressed as follows (according to the finite basis theorem):

yj =

Nj
∑

i=1

αijy
i
j +

Mj
∑

i=1

βijz
i
j ,

with
∑

i αij = 1, αij ≥ 0 and βij ≥ 0. The yij are called vertexes and the zij are called extremal rays (using the

definitions of Pardalos et al. (2002)). Because we assume that the primal problem (P) has a finite optimum, we are

interested only in the vertexes (as extremal rays give rise to infinite solutions):

{y1j , ..., y
Nj

j }.

Note that the finite vertexes y1j , ..., y
Nj

j do not depend on the reference signal r̃(k), since r̃(k) appears linearly in

the δ̄i,j’s which are present in the expressions of ci,j but not in the expression of the polyhedral set Kj . According

to strong duality theorem for linear programming1 we have:

t∗(j)(x, ũ) = min(cTj (x, ũ)y
1
j , ..., c

T
j (x, ũ)y

Nj

j ), (47)

where cj(x, ũ) = [c1,j(x, ũ), ..., c#Sj ,j(x, ũ), q̃1, ..., q̃nS̃
]T . Then,

J∗(x, ũ) = max
j∈{1,··· ,l}

(t∗(j)(x, ũ)) = max
j∈{1,··· ,l}

min(cj(x, ũ)y
1
j , ..., cj(x, ũ)y

Nj

j ). (48)

Therefore we obtain directly the max-min canonical form of J∗. Algorithm 1 of the previous section can be applied

also for this case (i.e. when r̃ is a non-zero sequence). Note that after we eliminate the redundant terms the max-min

expression of J∗(x(k), ũ(k)) obtained applying duality coincides with the max-min expression of J∗(x(k), ũ(k))
obtained considering r̃(k) as an extra parameter in the MP-LPs.

4 Disturbance feedback MPC for uncertain MMPS systems

It is well-known (Mayne et al., 2000) that in the presence of uncertainties, the MPC controller performs better

if we optimize over feedback policies in the worst-case optimization problem (35)–(36). So, another approach to

controlling an uncertain MMPS system different from the ones presented in Section 3 is to include feedback by

1Computational geometry based on epigraph theory was used in Diehl et al. (2004) for solving MP-LPs.
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searching over the set of affine functions of the past disturbances as it was done in (Lofberg, 2003; Goulart et al.,

2006) for linear systems. Therefore, we consider disturbance feedback policies of the form:

u(k + i) =

i−1
∑

j=0

Mi,je(k + j) + v(k + i), ∀i ∈ {0, · · · , Np − 1}, (49)

where each Mi,j ∈ Rm×s such that M0,j = 0 and v(k + i) ∈ Rm. Let us denote with ũ = [uT (k) uT (k +
1) · · ·uT (k +Np − 1)]T , ṽ = [vT (k) vT (k + 1) · · · vT (k +Np − 1)]T and

M̃ =











0 0 · · · 0
M1,0 0 · · · 0

...
...

. . .
...

MNp−1,0 MNp−1,1 · · · 0











, (50)

so that the disturbance feedback policy becomes

ũ = M̃ ẽ+ ṽ. (51)

Note that in contrast to optimal control approach Goulart et al. (2006) where one has to determine e(k), . . . , e(k +
j − 1) in order to compute the optimal control input u(k + j), in the MPC framework, where we use a receding

horizon approach, we do not need to know the value of the previous disturbance since at step k we apply the control

input u(k) = v(k).
Under this type of policy (51), the worst-case MMPS-MPC problem becomes:

J∗(x(k)) =min
M̃,ṽ

max
ẽ∈Ẽ

J(ẽ, M̃ ẽ+ ṽ, x(k)) (52)

subject to: P (k)(M̃ ẽ+ ṽ) + q(k) ≤ 0, ∀ẽ ∈ Ẽ . (53)

We also split the optimization problem (52)–(53) into two subproblems, as it was done in Section 3. The inner

worst-case problem is formulated as:

J∗(M̃, ṽ, x(k)) =max
ẽ

max
j∈{1,...,l}

min
i∈Sj

(ᾱT
i,jx(k) + (β̄T

i,jM̃ + γ̄Ti,j)ẽ+ β̄T
i,j ṽ + δ̄i,j)

subject to: S̃ẽ(k) ≤ q̃.

Using similar arguments as in Proposition 3.1, we conclude that for a given (M̃, ṽ), J∗(M̃, ṽ, x(k)) can be com-

puted efficiently using a sequence of linear programming problems. Note that in this particular case we cannot

obtain an explicit expression for J∗(M̃, ṽ, x(k)) as in the open-loop case since the function (M, e) 7→ βTMe, for

some fixed β, is neither convex nor concave.

The outer worst-case problem becomes:

min
M̃,ṽ

J∗(M̃, ṽ, x(k)) (54)

subject to P (k)(M̃ ẽ+ ṽ) + q(k) ≤ 0, ∀ẽ ∈ Ẽ . (55)

Note that the constraints (55) are nonlinear in M̃ and ẽ. We can write the constraints as P (k)M̃ ẽ ≤ −P (k)ṽ−q(k)
for all ẽ ∈ Ẽ or

[max
ẽ∈Ẽ

(P (k)M̃)1ẽ · · ·max
ẽ∈Ẽ

(P (k)M̃)nP
ẽ]T ≤ −P (k)ṽ − q(k),
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where (P (k)M̃)i denotes the ith row of the matrix P (k)M̃ . Therefore, using duality for linear programs and the

fact that Ẽ = {ẽ : S̃ẽ ≤ q̃} is a polytope and thus compact, it follows that the constraint (55) are equivalent with:

P (k)M̃ = ZT S̃, ZT q̃ + P (k)v + q(k) ≤ 0, Z ≥ 0,

where by Z ≥ 0 we mean Zij ≥ 0 for all i, j. It follows that the outer worst-case problem can be written as:

min
M̃,ṽ,Z

J∗(M̃, ṽ, x(k))

subject to: P (k)M̃ = ZT S̃, ZT q̃ + P (k)v + q(k) ≤ 0, Z ≥ 0.

Note that now the constraints are linear in M̃ , ṽ and Z. The following algorithm provides a solution to the min-max

disturbance feedback MPC approach formulated in this section:

Algorithm 2

Step 1: Compute the max-min expression of J(·)
Step 2: Solve (52)–(53) using a standard nonlinear optimization algorithm for nonlinear optimization problems

with linear constraints (e.g., a gradient projection algorithm Pardalos et al. (2002)1).

Note that in each iteration step ℓ of the algorithm for the outer problem the function values of J∗ (and its gradient,

which can be obtained using numerical approximation) have to be computed in the current iteration point (Mℓ, vℓ).
This involves solving the inner problem for the given Mℓ and vℓ. This can be done efficiently by solving a sequence

of linear programming problems as was shown before.

It is clear that in the particular case when Mi,j = 0 for all i, j, we obtain the open-loop controller derived in

previous section.

5 Computational complexity

From a computational point of view, both approaches that we have derived before (the open-loop scheme and the

disturbance feedback scheme) consist in two steps. In the first step we have to solve the maximization problem

corresponding to the worst-case uncertainty. This can be done off-line solving a set of MP-LP problems as in

Section 3.2 (or alternatively by computing the vertexes of some polyhedral set as in Section 3.3). In the second step

we have to solve on-line a set of linear programming problems or to apply an iterative procedure based on solving a

set of linear programming problems in order to determine the optimal MPC input. The main advantage of the second

approach is that by introducing feedback, the corresponding MPC controller will perform better than the open-loop

MPC controller. This improvement in performance is obtained at the expense of introducing
Np(Np−1)

2 m s+nP nS̃
extra variables and nP + nS̃ extra inequalities (recall that nP and nS̃ denote the number of rows of the matrices

P and S̃, respectively). Note that the number of min terms in the max-min canonical form of the cost is the same

in both approaches. See also Table 1 for a comparison of computational times for different methods applied to an

example.

From Table 1 we see that in the case of open-loop min-max MPC, the CPU time corresponding to the dual

approach (Section 3.3) is less than the CPU time corresponding to the MP-LP approach (Section 3.2). Theoretically,

it is known (Borrelli et al., 2003) that the number of partitions Nr generated by an MP-LP (i.e. (42)–(43)) is less

than or equal to the number of vertexes ν corresponding to the polyhedron generated by the associated dual (i.e.

Kj). The complexity of algorithms (Pardalos et al., 2002; Motzkin et al., 1953) for enumerating the vertexes of

Kj with n0 = nS̃ + 1 rows and n1 columns is O(n2
0n1ν). An upper bound on the number of vertexes is given by

1Note that sequential quadratic programming is less suited due to the PWA nature of the objective function.
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(Goodman et al., 1979):

Nr ≤ ν ≤

(

n0 + n1 − ⌊n1/2⌋

⌊n1/2⌋

)

+

(

n0 + n1 − 1− ⌊(n1 − 1)/2⌋

⌊(n1 − 1)/2⌋

)

,

where ⌊x⌋ is the largest integer less or equal to x and
(

m
n

)

= m!
n!(m−n)! . This means that in the worst-case the number

of vertexes ν can be of the order O((n0 + n1)
⌊n1/2⌋) if n0 + n1 ≫ n1. Of course, we need extra computations in

order to compute the optimal value in the case of MP-LP approach. Since the execution time of an MP-LP algorithm

depends on many factors it is difficult to give a net characterization of the computational complexity as a function of

the number of variables, parameters and inequalities. But, after elimination of the redundant terms both approaches

produces the same number of affine expressions, i.e. we get the same MMPS function for J∗(ũ(k), x(k)). Moreover,

when r̃ is not a constant vector, the dimension of the vector of parameters θ = [xT (k) ũT (k) r̃T (k)]T is large, which

makes the computation of an MP-LP solution difficult.

The worst-case complexity of the approaches presented above is largely determined by the number of linear

terms in the equivalent max-min canonical forms. In the worst case scenario this number increases rapidly as

the prediction horizon, the number of states of the MMPS systems, or the number of min-max nestings in the

state equations or the objective function increases. However, although the number of terms in the full max-min

canonical expression may be very large, it can sometimes be reduced significantly (in De Schutter et al. (2004) the

authors provide an example where the full canonical form contains 216 max-terms, of which only 4 are necessary).

Although to the authors’ best knowledge there are currently not yet any efficient algorithms for the simplification

and reduction to a minimal canonical form (i.e., the canonical form with the minimal number of terms), some ad-

hoc methods can be used (Heidergott et al., 2005; De Schutter et al., 2004) to reduce the number of min-terms

significantly. Furthermore, the complexity of the reduction process can also be reduced by already eliminating

redundant terms during the intermediate steps of the transformations. In conclusion, although the reduction to

canonical form is computationally intensive, it can be done off-line (for both the inner and the outer worst-case

MMPS-MPC problems).

If we consider reference tracking (the reference signal r 6= 0) or if consecutive disturbances are related, using

dynamic programming approach (Kerrigan et al., 2002) we must include r̃ or ẽ as parameters in the multi-parametric

program, which increases the computational complexity. Note that these issues can be easily handled with our

approaches (open-loop or disturbance feedback MPC). From the above we can conclude however that also our

algorithms (Algorithm 1 and 2) are not well suited for large problems with many states, inputs and inequalities.

This is not surprising since the computation of optimal control laws for PWA systems reduces to mixed-integer

linear/quadratic optimization problems, which are difficult to solve (Bemporad et al., 1999).

6 Example

6.1 Set-up and the model of the plant

In this section we present an example for which we apply the above method. Consider a room with a basic heat

source and an additional controlled heat source (see Figure 1). Let u be the contribution to the increase in room

temperature per time unit caused by the controlled heat source (so u ≥ 0). For the basic heat source, this value

is assumed to be constant and equal to 1. The temperature in the room is assumed to be uniform and obeys the

first-order differential equation

Ṫ (t) = α(T (t))T (t) + u(t) + 1 + e1(t) ,

the disturbance being gathered in the scalar variable e1. We assume that the temperature coefficient has the following

piecewise constant form:

α(T ) =

{

−1/2 if T < 0

−1 if T ≥ 0.
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Figure 1. Temperature in a room.

We assume that the temperature is measured, but the measurement is noisy: y(t) = T (t) + e2(t). Using the Euler

discretization scheme, with a sample time of 1 time unit and denoting the state x(k) = T (k), we get the following

continuous discrete-time PWA system:

x(k + 1) =

{

1/2x(k) + u(k) + e1(k) + 1 if x(k) < 0

u(k) + e1(k) + 1 if x(k) ≥ 0
(56)

y(k) = x(k) + e2(k). (57)

Assume that we have −2 ≤ e1(k), e2(k) ≤ 2, e1(k) + e2(k) ≤ 1, i.e. the uncertainty is given by the bounded

polyhedron

E =
{

[e1 e2]
T : −2 ≤ e1(k), e2(k) ≤ 2, e1(k) + e2(k) ≤ 1

}

.

The equivalent MMPS representation of (56)–(57) is the following:

x(k + 1) = min(1/2x(k) + u(k) + e1(k) + 1, u(k) + e1(k) + 1), (58)

y(k) = x(k) + e2(k). (59)

6.2 MPC and simulations

Because at sample step k the input u(k) has no influence on y(k), we take Np = 3, Nc = 2, ỹ(k) = [ŷ(k +
1|k) ŷ(k + 2|k)]T , r̃(k) = [r(k + 1) r(k + 2)]T , ũ(k) = [u(k) u(k + 1)]T . Let the uncertainty vector e(k) be

e(k) = [e1(k) e2(k + 1)]T . Therefore, ẽ(k) = [eT (k) eT (k + 1)]T . We consider the following constraints on the

input1:

−4 ≤ ∆u(k) = u(k + 1)− u(k) ≤ 4 and u(k) ≥ 0 for all k.

As cost criterion we take

J(k) =Jout,∞(k) + λJin,1(k) = ‖ỹ(k)− r̃(k)‖∞ + λ‖ũ(k)‖1. (60)

The first term of J(k) expresses the fact that we penalize the maximum difference between the reference and the

output signal, while the second term penalizes the absolute value of the control effort. Because u(k) ≥ 0, we have

‖u(k)‖1 = u(k) and therefore we get the following max-min expression for J(k) :

J(k) = max{min{t1, t2}, t3, t4,min{t5, t6, t7}, t8, t9, t10},

1Because we have only heating, a physical constraint on input is u(k) ≥ 0. Furthermore we assume that the rate of heating is bounded.
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off-line on-line

Np 2 3 4 2 3 4

Nr. of MP-LPs/LPs 7 12 18 4 8 16

Time MP-LP saved (s) 10.2 45 130 0.12 0.35 0.79

Time Dual (s) 0.35 0.9 2 0.06 0.08 0.1

Time Dist. feedback (s) 0.65 2.3 7.5 0.09 0.3 0.95

Time MP-LP ref. (s) 2 6.8 32 0.06 0.08 0.1

Table 1. The CPU time for Np ∈ {2, 3, 4} with different methods: MP-LP saved=computes off-line and stores the controller for different values of r; Dual=computes off-line

the controller based on Section 3.3; Dist. feedback=computes the controller based on Section 4; MP-LP ref= the reference signal is considered as an extra parameter (Kerrigan et al.,

2002).

where tj are appropriately defined affine functions of x(k), u(k), u(k + 1), e(k), e(k + 1), r(k + 1), r(k + 2).
We compute now the closed-loop MPC controller over a simulation period [1, 20], with λ = 0.1, initial state

x(0) = −6, u(−1) = 0 and the reference signal {r(k)}20k=1 = −5,−5,−5,−5,−5,−3,−3, 1, 3, 3, 8, 8, 8, 8, 10,
10, 10, 7, 7, 7, 4, 3, 1, 1, 6, 7, 8, 9, 11, 11 using the methods given in Sections 3 and 4.

After we compute off-line the max-min canonical form of J∗(x, ·) and after elimination of the redundant terms

we obtain a min-max canonical form of J∗(x(k), ·) that gives rise to only 4 LPs that must be solved on-line at each

sample step k in the open-loop approach.

In Table 1 we provide the CPU time1 for different steps of the algorithms and for different methods, where the

values for the prediction horizon Np are 2, 3 and 4. Note that the number of MP-LP or LP problems increases with

Np (see the third row). Note that in this example the computational time for the approach from Section 3.3 is less

than the computational time for the MP-LP approach from Section 3.2. Since the reference signal is not constant,

we have to include r̃ as an extra parameter when we apply the approach of (Kerrigan et al., 2002), which results in

a large CPU time.

In Figure 2, the top plot represents the reference signal (dashed line) and the output of disturbance feedback ap-

proach (full line) and the open-loop approach (star line). We see that the MPC controller obtained using disturbance

feedback policies performs the tracking better than the open-loop MPC controller. In the second plot we show the

optimal input: we can see that always u(k) ≥ 0. The third plot shows the absolute value of the tracking error. Note

that the error from the open-loop approach is substantially above the error from disturbance feedback approach.

Finally, we plot ∆u∗(k) = u∗(k + 1) − u∗(k) and the vector of uncertainty. We can see that also the constraint

|u∗(k + 1)− u∗(k)| ≤ 4 is fulfilled, and that at some moments this constraint is indeed active.

7 Conclusions and future research

In this paper we have extended the MPC framework for MMPS (or equivalently for continuous PWA) systems

to include also bounded disturbances. This allowed us to design a worst-case MMPS-MPC controller for such

systems based on optimization over open-loop input sequences and disturbance feedback policies. We have shown

that the resulting optimization problems can be computed efficiently using a two-step optimization approach that

involves basically to solve a sequence of linear programming problems. In the first step we have to solve off-line

an MP-LP (or alternatively, we can compute the vertexes of some polyhedral set) and next we have to write the

min-max expression of the worst-case performance criterion. In the second step we solve only a sequence of linear

programming problems in both approaches. As we expected and was also illustrated in an example, the disturbance

feedback based MPC controller performs better that the open-loop MPC controller, at the expense of introducing

some extra variables.

For future research we want to investigate stability for uncertain max-min-plus-scaling systems by building upon

the results already obtained for uncertain max-plus-linear systems (see e.g. Necoara (2006)). Moreover, we want to

improve the computational efficiency of the proposed algorithms and to extend them to cope efficiently with state

constraints using results from parallel processing and distributed optimization.

1On a 1.5 GHz Pentium 4 PC with 512 MB RAM.
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Figure 2. Illustration of the worst-case MPC for a uncertain MMPS system: full line: disturbance feedback approach, star line: open-loop approach, dashed
line: reference signal r.
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