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Abstract

The design of a look-ahead traffic adaptive control system is as well a science as an

art. Along the way compromises have to be made in order to end up with a workable

system that is not only able to come up with good signal timings, but is also able to

deliver them on time. In this paper we propose a taxonomy of the various look-ahead

traffic adaptive control algorithms based both on their underlying principles and the

compromises that were made to come up with a workable, albeit less optimal system.

A new hybrid algorithm is subsequently defined which combines the strengths of all

current approaches and incorporates constraint programming techniques.

Keywords

traffic signal control, adaptive control, look-ahead search
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1 Introduction

A common function of a traffic controller is to seek to minimize the delay experienced

by vehicles through manipulation of the traffic signal timings. There are various levels

of sophistication in traffic signal control system applications.

Basically, the modes of operation can be divided into four primary categories:

pre-timed Under pre-timed operation, the timing plan is based on predetermined rates.

These predetermined rates are determined from historical data. Pre-timed control

frequently results in inefficient use of intersection capacity because of the inabil-

ity to adjust to variations in traffic flow and actual traffic demand; this inefficiency

is pronounced when flows are substantially below capacity.

responsive In traffic responsive mode, signals receive inputs that reflect current traffic

conditions, and use this data to choose an appropriate timing plan from a library

of different plans. In traffic responsive mode, the signal timing plan responds to

current traffic conditions measured by a detection system. The general traffic re-

sponsive strategies in use are either selection of a background signal timing plan

based on detector data, or online computation of a background timing plan. The

computation time interval may range from one cycle length to several minutes.

actuated Vehicle-actuated controllers operate in real-time by applying a control in re-

sponse to the current traffic state. An actuated controller operates based on traffic

demands as registered by the actuation of vehicle and/or pedestrian detectors.

There are several types of actuated controllers, but their main feature is the abil-

ity to adjust the length of the currently active phase in response to traffic flow.

The green time for a phase is a function of the traffic flow, and can be varied be-

tween pre-timed minimum and maximum lengths depending on flows. Although

vehicle-actuated controllers operate in real-time, they attempt no systematic op-

timization.

adaptive Traffic adaptive systems are currently the most advanced and complex con-

trol systems available. Traffic adaptive systems apply an optimization algorithm

in real-time to create optimal signal timings. They differ from vehicle-actuated

controllers because they incorporate decision making. That is, the system eval-

uates a set of feasible control actions and chooses an action that is optimal with

respect to its current objectives. As traffic adaptive systems incorporate informa-

tion from further upstream in their decision making (i.e. predicted arrivals) traffic

actuated controllers are considered to be myopic (i.e. shortsighted) with respect

to their control actions.

With recent advances in communication network, computer, and sensor technologies,

there is increasing interest in the development of traffic adaptive signal control sys-

tems. Numerous systems have been proposed including PRODYN (Henry et al. (1983),
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Barriere et al. (1986), Henry & Farges (1989)), UTOPIA-SPOT (Mauro & Di Taranto

(1989)), OPAC (Gartner (1983), Gartner et al. (1995), Gartner et al. (1999)), RHODES

(Sen & Head (1997), Mirchandani & Head (2001)), SPPORT (Dion & Hellinga (2001),

Dion & Hellinga (2002)) and ALLONS-D Porche et al. (1996), Porche (1998), Porche

& Lafortune (2005). This overview is based on these references and the references

contained therein.

The design of a traffic adaptive control system is as well a science as an art. Along the

way compromises have to be made in order to end up with a workable system that is

not only able to come up with good signal timings, but is also able to deliver them on

time. Each adaptive system mentioned above has a different approach in dealing with

the computational complexity of determining the best set of signal timings.

All adaptive systems therefore have their own specific strengths and weaknesses that

make that system more - or - less suited for particular networks and traffic demand

patterns. In this paper we propose a taxonomy of the various traffic adaptive systems

based both on their underlying principles and the compromises that were made to come

up with a workable, albeit less optimal system.

2 A Taxonomy of Approaches

Traffic signal control essentially comes down to making the right decisions at the right

time. As such the traffic signal control problem solved by all traffic adaptive systems

can be formulated in the form of a general decision problem. This general decision

problem in turn can be represented as a simple decision tree. The root of a decision tree

represents the current state si,si ∈ S, where i is the current time index and S is the set

of all states. The cost involved in order to transition to the subsequent state, si+1 when

deciding for an action ui is denoted by ci.

In general, the nodes of a search tree represent choices. These choices are mutually ex-

clusive and therefore partition the search space into two or more simpler sub-problems.

At each time step, the controller observes the system’s current state si, and selects a

control action, u∈Ui, where u is the action and Ui is the finite set of actions available to

a controller in state si. When the controller chooses an action u ∈Ui, the cost incurred

by taking that action and subsequently transition to state s j with probability pi, j(u), is

denoted by c(i). The objective of a traffic adaptive system is to find an optimal sequence

of actions.

Looking at the various traffic adaptive systems we can discern the following features on

which they differ:

• the optimization method. Is the optimal sequence of actions found by searching

the decision tree using a rule-based method, or an approach based on dynamic

programming or branch-and-bound?

• the possible actions (ui) considered in the optimization. Is the order in which

phases can be given green to predetermined or can this be determined (and opti-

mized) on-line?

• the length and resolution of the planning horizon over which an optimal sequence

of actions is sought (i.e. the depth of the decision tree). Is the length of the horizon
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fixed (e.g. 2 minutes) or dependent on current traffic conditions? Is the resolution

static (e.g. is the horizon divided into 5 seconds intervals) or is it dynamic (e.g.

dependent on projected arrival times)?

• the update frequency. How often can the optimization be done (i.e every 0.5

seconds or every 5 seconds)?

• the delay model. How is the performance (ci) of each evaluated action (ui) eval-

uated? How accurate is the model used in optimizing the signal timings? Is a

fast vertical queuing model used instead of a slow but possibly more accurate

simulation model?

The following sections elaborate on each of these features and how each traffic adaptive

system differs in how these features are filled in.

2.1 Optimization Method

The objective of the system is to operate such that the total cost over the entire planning

horizon is minimized. Thus, the task of the controller is to obtain a sequence of control

actions [u0,u1, . . .uT ], also referred to as a policy or control trajectory, such that the

expected cost is minimized. In the case of an infinite planning horizon, a discount

factor, γ < 1, is typically applied to future costs to obtain a finite estimate of the cost-

to-go from the current state i, denoted by f (i). The optimal cost-to-go value, denoted by

f ∗(i), is a function of the immediate cost of applying the control plus the expected cost-

to-go from the subsequent state, a relationship encapsulated in the following recursive

expression which is also known as Bellman’s Equation Dreyfus & Law (1977).

f ∗(i) = min
u∈U(i)

{

ci(u)+ γ ∑
j∈S

pi, j(u) f ∗( j)

}

(1)

As the decision space has a tree-like structure, the search for the optimal sequence of

decisions corresponds to building the tree. An exhaustive search of the entire decision

space results in a full tree being built. Since search space size grows exponentially

with problem size, it is not possible to explore all assignments except for the smallest

problems. The only way out is to not look at the whole search space. Efficiency in

searching the decision space is considered by the degree to which the entire tree will

not have to be built to find an optimal path. In Shelby (2004) several well-known

algorithms are assessed based on computational speed and on the quality of the results

(in terms of delay).

Dynamic programming and branch-and-bound (and combinations thereof) are the tech-

niques that are predominantly used in traffic adaptive systems.

2.1.1 Dynamic Programming

The applicability of the approach depends on the opportunities for state aggregation

within the decision tree. The strength of dynamic programming is that it can prevent

that optimal solutions to subproblems it has already solved are recomputed. In order

to do this, the solutions to already solved problems are saved. This approach is called
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memoization (not memorization, although this term also fits). It is however only pos-

sible to reuse a previous solution when states and thus the corresponding subproblems

can be considered equal. RHODES, PRODYN, OPAC and SPPORT all employ dy-

namic programming as their method of optimization.

2.1.2 Branch-and-Bound

Branch-and-bound is a general method for finding optimal solutions of various opti-

mization problems, especially in discrete and combinatorial optimization. It belongs

to the class of implicit enumeration methods. One way to do this is by proving that

certain areas of the space contain no solutions. The core of the approach is the simple

observation that (for a minimization task) if the lower bound for a sub-problem A from

the search tree is greater than the upper bound for any other (previously examined) sub-

problem B, then A may be safely discarded from the search. This is the bounding-part

of the branch-and-bound approach. Of the adaptive systems reviewed only ALLONS-D

and SPOT employ the branch-and-bound method in its pure form. RHODES employs

a hybrid system in which branch-and-bound techniques are applied within a dynamic

programming framework.

In order to obtain a tight upper bound an initial path must be established through the

search tree for which it is most likely to obtain a good solution. This involves that

initially parts of the search space that are unlikely to contain good solutions are ignored.

This is done by using heuristics. Heuristics are used to explore promising areas of the

search tree first. This can be done by using problem specific knowledge (often borrowed

from current practices in tuning traffic responsive and vehicle-actuated controllers) or

by reusing information gained from previous optimizations.

2.2 Action Space

The width of the tree to be searched is dependent on the number of decisions that can

be made at each point in time. In its simplest form the choice available is that between

extending the current phase or switching to the next phase. This is the approach taken

in OPAC, ALLONS-D, PRODYN and SPPORT. Although this approach significantly

reduces the number of options to consider, it does not allow arbitrary phase sequencing.

In its most elaborate form the choice available is that between phases. This approach

allows the arbitrary sequencing of phases but comes at a cost in the width of the search

tree. This is the approach chosen by UTOPIA-SPOT. A compromise between these two

extremes is found in allowing phase skipping. When the skipping of phases is allowed

any phase sequence can be attained. This is the approach taken in the COP-system.

The downside of this approach is that when the initial phase sequence is chosen wrong

the gain in width is counteracted with an increase in tree depth. This is not strictly

necessary however. It is in principle possible to choose the next phase dynamically.

2.3 Planning Horizon

Traffic adaptive systems employ a traffic model to evaluate alternative traffic signal

timings over a planning horizon. The length of the planning horizon as well as how

the horizon is split up into successive intervals differs between each adaptive system.

Typically however the horizon has a fixed length (of typically 1 to 2 minutes) and is
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subdivided into fixed intervals. From their descriptions we can deduce that OPAC,

PRODYN, SPPORT, and ALLONS-D all use or have used 5-second time-steps.

If the horizon is chosen too short and the optimization algorithm is faced with the choice

whether to a) completely serve a phase discharging at a slow rate, or b) preempt that

phase in order to switch to a phase with a higher discharge rate, it would chose for the

latter as this brings about the biggest benefits in the short term. This is why many of the

adaptive systems that employ shorter horizons have introduced terminal costs in order

to penalize residual queues at the end of the horizon Newell (1998), Shelby (2004).

The ALLONS-D algorithm takes a different approach wherein the length of the horizon

depends on the current traffic situation. The ALLONS-D algorithms enlarges the hori-

zon until it finds a solution in which all projected arrivals are cleared. Although the idea

of a horizon that shrinks or grows dependent on the traffic situation sounds attractive,

it might not turn out this way in the case of the ALLONS-D algorithm. In saturated

conditions - with many projected arrivals - the length of the horizon might become so

large that the optimization method used by ALLONS-D might be unable to come up

with an answer in time.

The approach where both the length of the planning horizon and the length of the time

intervals in which it is subdivided are variable is not applied by any of the algorithms

reviewed.

2.4 Update Frequency

Traffic adaptive systems rely on predicted arrivals. As the distance over which these

arrivals are predicted increases the reliability of these predictions often decreases. This

is why a rolling horizon is often applied. The concept of a rolling horizon originated in

operations research and is used to determine a short term policy based on a longer term

analysis. All adaptive systems reviewed that depend on arrival predictions employ the

concept of a rolling horizon. These algorithms implement only the first (few) action(s)

of the control plan after which a new optimization is performed.

The amount of time that passes between each subsequent optimization (the roll - or -

commitment period) is, for all adaptive systems reviewed, equal to the length of the

intervals which subdivide the planning horizon. For most adaptive systems reviewed

the length of the interval is typically equal to 5 seconds. Waiting 5 seconds between

each optimization can however have a significant impact on delay.

Consider, for example, the case where a queue dissipates earlier than predicted. With

a 5 second commitment period, an adaptive system may take up to 5 seconds to realize

the error, resulting in the waste of green time. With a 1-second decision resolution,

controllers could quickly terminate phases as queues clear out, reallocating this time or

capacity to phases that do have traffic to serve.

Note that, as all adaptive systems choose their commitment period equal to the length of

the interval in which the planning horizon is subdivided, switching from a 5 second to a

1-second decision resolution increases the number of time-steps in the planning horizon

by a multiple of 5. This imposes too much of an increase in computational effort for

many algorithms to solve in real-time. Thus, the typical trade-off is to also decrease the

duration of the planning horizon.
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2.5 Delay Model

All adaptive systems reviewed consider individual vehicles in determining the control

delay brought about by a chosen control plan. In that respect all adaptive models can

be considered to use a meso- to microscopic model. However, because the delay model

is applied many times when exploring the search tree, all models have to make some

sacrifices with respect to the level of detail on the employed model.

Known, commercially available, microscopic simulation models like Paramics, VIS-

SIM, and AIMSUN are unfit for use in real-time optimization. This is why simple

event-based and cellular automaton models are predominantly used within adaptive sys-

tems. At first these models employed vertical queuing models, but many adaptive sys-

tems have since switched to using horizontal queuing models so that queue spillbacks

to upstream intersections can explicitly be considered in the optimization.

3 A New Hybrid Algorithm

At the basis of our new hybrid algorithm we use a modified version of the dynamic

programming approach as defined by Sen & Head (1997). In the analysis performed

in Shelby (2004) of the various traffic control algorithms this algorithm proved to be

one of the best performing algorithms. The algorithm uses a dynamic programming

approach in which each stage represents a phase as opposed to a approach in which

each stage represents an interval of time. The exact number of stages used in the DP is

a by-product of the computations. For the delay model we use a modified version of the

delay model as defined in Porche (1998). This delay-model considers the weighted time

delay for each vehicle as opposed to other approaches which use the number of vehicles

in the queue multiplied by the interval of time in which the vehicles were queued. In the

following a ’signal group’ denotes the signals that are specific for a traffic stream that

has its own queue, whereas the term ’phase’ is used to denote the set of signal groups

which can be served at the same time. The term ’stage’ is exclusively used to denote a

stage in the algorithm; it is thus not used as a synonym for ’phase’.

3.1 The Optimization Method

Notation. We introduce the following notation

j ≡ Index for stages of the DP.

t ≡ Variable denoting the total number of allocated time-steps.

T ≡ Total number of discrete time-steps. Each period of length ∆ is in-

dexed by t ∈ [0,T ].
P ≡ Set of phases. The cardinality of this set will be denoted by |P|.
ρ ≡ Index for phases in P.

Ω ≡ Set of signal groups. The cardinality of this set will be denoted by |Ω|.
ω ≡ Index for signal groups in Ω.



Look-ahead Traffic Adaptive Control of a Single Intersection 7

f ω
saturation ≡ The saturation flow for a signal group.

γω ≡ The minimum green time for a signal group

κω ≡ The maximum green time for a signal group

rω ≡ The effective all-red interval for a signal group (integer number of

time-steps)

r(ω j−1,ω j) ≡ The effective all-red interval for a signal group (integer number of

time-steps) when switching from signal group ωi to ω j

U j(t) ≡ Set of feasible control decisions, given t.

u j(t) ≡ Control variable denoting the amount of time allocated to stage j

u∗j(t) ≡ Optimal value for the control variable

c j(t,u j) ≡ Cost of control u j when applied at time t in stage j

f j ≡ Value function (cumulative value of prior optimal costs) at time t in

stage j

Aω(a,b) ≡ A function of scalars (a,b) denoting the arrivals in the time interval

[a,b〉 and requesting signal group ω . If a = b, we put Aφ (a,b) = 0.

L j,t,ω ≡ Queued arrivals at time t in stage j resulting from applying control

variable u j(t)
L∗j,t,ω ≡ Queued arrivals at time t in stage j resulting from applying the optimal

control variable u∗j(t)

i ≡ Index for vehicles arriving at the intersection for signal group ω .

lω
i ≡ Predicted arrival time of vehicle i.

In general the values control variable u j(t) can assume is bounded by a minimum and

maximum. These can be calculated from the minimum and maximum green times per

signal group and the red time needed for vehicles so safely clear the intersection:

umin
j = max{r(ω j−1,ω j)+ γω

j |ω j−1 ∈ ρ j−1∧ω j ∈ ρ j}

umax
j = min{κω

j |ω j ∈ ρ j}

Given a value for the state variable t j, the control variable u j can assume values from

the following discrete set:

U j =

{

{0} if t j < umin
j

{0,umin
j , . . . ,umax

j } otherwise.

We shall assume that the performance index has the following form

c1(t1,u1)◦ c2(t2,u2) . . .◦ . . .

where the operator ◦ can be the +-operator when minimizing delay or number of stops

or the max-operator when minimizing queue length

The forward recursion of the DP-algorithm is presented in algorithm 1. To initialize,

the value function f0(0)← 0. The DP algorithm starts with stage j = 0, and proceeds

recursively to j = 1,2, . . .. At each stage, the method calculates the best control decision



8 TRAIL Research School, Delft, November 2006

Algorithm 1 Forward recursion

1: j← 0

2: f j(0)← 0

3: while ¬ stop do

4: for t j ∈ T do

5: f ∗j (t)← ∞
6: for ∀u j ∈U j(t) do

7: f j(t j)← c j(t j,u j)◦ f j−1(t j−u j)
8: if f j(t j)< f ∗j (t j) then

9: f ∗j (t j)← f j(t j)
10: u∗j(t j)← u j

11: L∗j,t,ω(t j)← L j,t,ω

12: end if

13: end for

14: end for

15: j← j+1

16: end while

u∗j(t) for each possible value of the state variable t. This process is summarized in

algorithm 1.

The optimization procedure is stopped when it can be determined that there is nothing

to be gained by adding an extra phase to the signal plan. This is the case when the

values of the value function f j is equal to that of the previous |P|−1 phases.

Algorithm 2 Stopping criterion

1: if ( j ≥ |P|)∧ (∀ρ ∈ {1, . . . , |P|−1}( f j−ρ(T ) = f j(T ))) then

2: return TRUE

3: else

4: return FALSE

5: end if

The procedure to retrieve the optimal trajectory is provided in algorithm 3.

Algorithm 3 Retrieval of optimal policy

1: t∗j ← T

2: for j = j to 0 do

3: if j > 1 then

4: t∗j−1← t∗j −u∗j(t
∗
j ))

5: end if

6: end for

3.2 The Delay Model

In general for stage j, we assume that the quantities L j−1,t j−1,ω are available for all

values of t j−1. We now discuss how we calculate the cost and the queues that result
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when a control action is applied for any given value of t j. The resulting queues L j,t,ω

are recorded as permanent queues L∗j,t,ω if a new u∗j is identified.

The vehicles affected for the chosen control u j can be determined as follows

L j,t,ω = L j−1,t j−1,ω ∪A(t j−1, t j)

Each of the vehicles in L j,t,ω can contribute to delay when the signal is red, green,

or yellow. A vehicle stopped at a red light contributes an amount of delay equal to

the duration of the red light. In addition, delay can be accumulated by vehicles at

a green light. For instance, for long (standing) queues, only a small portion in the

front of the queue will clear the intersection when the light turns green. Even for the

vehicles that are close enough to the intersection to pass through, there will still be

some delay incurred. The latter type of delay accounts for the minimum amount of

time required for the vehicle immediately in front to respond and move through the

intersection. This minimum time required for each car to depart will be referred to as

the headway constraint. It is calculated using the saturation flow for a signal group.

The maximum number of vehicles that can leave an intersection during time period,

is dependent on the saturation flow and the length of the interval of green light. The

saturation flow is signal group specific.

Notation. We introduce the following variables

oω
i ≡ Time at which the ith vehicle waiting at signal group ω is able to enter

the intersection

kω ≡ The number of vehicles waiting at signal group ω that are able to enter

the intersection given a green time for

which are initialized as follows:

oω
i = t− (u− rω)+

i

∑
0

hω , where hω =
1

f ω
saturation

kω = f ω
saturation · ((u− rω))

Four indicator variables are subsequently calculated that can be used to determine

whether a vehicle is:

• queud up at the start of the green light:

qω
i =

{

true, lω
i ≤ t− (u− rω)

false, else

• able to depart during the green period:

dω
i =

{

true, i≤ kω((u− rω))

false, else

• partially constrained by the headway of vehicles in front:

cω
i =

{

true, lω
i ≤ oω

i

false, else
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• constrained by the headway of vehicles in front of it and prohibited from leaving

during the green period:

pω
i =

{

1, t ≤ oω
i

0, else

Delay is subsequently calculated as follows when a vehicle can be determined to

1. wait at a red light

f ω
i = min{u, t− lω

i }

2. be queued at a light that turns green but that cannot leave during the green period

due to vehicles ahead of it (qω
i ∧¬dω

i ),

f ω
i = (u− rω)+min{rω

, t− (u− rω)− lω
i )}

3. be queued at a light that turns green and can leave but only after waiting for the

vehicles ahead of it to depart (qω
i ∧dω

i ),

f ω
i = (i−1)∗h+min{rω

, t− (u− rω)− lω
i )}

4. arrive during a green period and cannot leave due to vehicles ahead of it (¬qω
i ∧

pω
i ), and

f ω
i = t− lω

i

5. arrive during a green period and can leave but only after waiting for the vehicles

ahead of it to depart (¬qω
i ∧ cω

i ∧¬pω
i ).

f ω
i = oω

i − lω
i

The cost of the control action is determined by summing the cost for all vehicles

c = ∑
∀ω∈Ω

∑
∀lω

i ∈Lω

f ω
i

The queues that remain L j,t,ω after the application of the control u j is easily determined

by removing vehicles that were able to depart during the control-interval:

Lω = Lω \{lω
i |d

ω
i = 1}

The strategy is as follows.

• Given t j calculate based on the existing queues L j−1,t j−1,ω and pending arrivals

A(t j−1, t j) the performance index c j,t j,u j
. The queues that remain L j,t,ω after the

application of the control u j are calculated as a side-effect

• The queues L j,t,ω are recorded as permanent queues L∗j,t,ω if a new u∗j is identified.
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4 Analysis

In order to test the performance of the developed algorithm we used the traffic manage-

ment test-bed described in van Katwijk et al. (2005). This test-bed enabled us to in-

terface the adaptive control algorithm of section 3 with the Paramics simulation model

developed by Quadstone Ltd.

4.1 Scenario

The simulations were performed for a 4-arm intersection with a separate, single, ap-

proach lane for each turn. There are 12 signal groups in total (one for each turn).

Depending on the simulation the intersection operated under either 4- or 8-phase traffic

control. The phases are shown in ??. For simplicity, the right turns are omitted and

assumed to proceed with the through movements.

The total demand for the intersection is set to 4400 vehicles per hour, which is dis-

tributed over the signal groups in proportion to the saturation flow rate of each signal

group. Maximum green times for each phase were subsequently determined according

to Webster’s method.

6

5

1

2 3

4

8

7

Figure 1: The phases used in the optimization of the intersection

4.2 Results

The results have been obtained from a number of one-hour simulations each with a

different random seed. The figures show the average delay per vehicle as it evolves

over a one hour period. As each simulation starts with an empty network some time is

needed before vehicles start to arrive at the intersection and the intersection becomes

fully stressed. This is the so called warm-up period of a simulation. We can be sure the

warm-up period has ended when the plot of the average vehicle delay stabilizes into a

line that is more-or-less horizontal.

In figure 1 the average delay of a vehicle is shown when the intersection is operating

under a) traffic actuated control and b) look-ahead traffic adaptive control. The average

delay encountered by a vehicle in the traffic-actuated controlled case can (in figure

2(a)) be seen to stabilize at about 25 seconds per vehicle whereas the average delay

encountered by a vehicle in the traffic-adaptive controlled case can (in figure 2(b)) be
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seen to stabilize at about 18 seconds per vehicle. This proves that there is certainly

something to be gained by planning for future arrivals.
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Figure 2: Performance for an intersection with 4 phases

In figure 2(b) the average delay encountered by a vehicle was plotted for a 4-phase

traffic adaptive controller. When the number of phases is extended to 8 (i.e. the number

of signal group configurations supported by a typical 2-ring NEMA traffic actuated

controller) the average delay can (in figure 3(a)) be seen to have reduced even further

to about 16 seconds per vehicle. When computational complexity demands a longer

update-interval (e.g. 5 seconds) the average delay per vehicle can (in figure 3(b)) be

seen to rise again to about 18 seconds per vehicle. This clearly shows the impact of

the trade-off made regarding the choice of the action space, planning horizon, update

frequency and delay model. The better the optimization method employed is, the less

comprises have to be made.
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Figure 3: Performance for an intersection with 8-phase traffic-adaptive control

5 Conclusions and Further Work

The previous has shown that there are many different ways to configure a traffic adaptive

system. Although the core of each of the traffic adaptive systems reviewed is based on

the idea of finding a short term policy on the basis of a long term analysis, they differ
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with respect to the search algorithm applied, the length and resolution of the planning

horizon, the update frequency and the delay model used.

Unfortunately computational boundaries still prevent the configuration of a traffic adap-

tive system in which no compromises have to be made in order to end up with a work-

able system that is a) able to come up with good signal timings and b) is able to deliver

them on time.

As the base performance of an adaptive system is at least as good as that of an actuated

controller there are considerable advantages to the deployment of an adaptive system.

However, in order to gain the full advantage of traffic adaptive control, the system

should be carefully tuned. Computationally complexity, geometry of an intersection,

and demand patterns should be carefully considered. This is why it is so difficult to

judge the merits of an algorithm based on the benchmark studies. More often than not

comparisons are made between algorithms that have been tuned recently and those that

have not been tuned for some time. We are currently trying to find a site which allows

us to make a fair comparison.
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