
Delft University of Technology
Delft Center for Systems and Control

Technical report 06-041

Reinforcement learning for multi-agent
systems∗

R. Babuška, L. Buşoniu, and B. De Schutter

July 2006

Paper for a keynote presentation at the 11th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA 2006), Prague,

Czech Republic, Sept. 2006.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/06_041.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/06_041.html

Reinforcement Learning for Multi-Agent Systems

Robert Babuška Lucian Buşoniu Bart De Schutter

Delft Center for Systems and Control, Delft University of Technology

Mekelweg 2, 2628 CD Delft, The Netherlands

r.babuska@tudelft.nl, i.l.busoniu@tudelft.nl, b.deschutter@tudelft.nl

Abstract

Multi-agent systems are rapidly finding applications in

a variety of domains, including robotics, distributed con-

trol, telecommunications, etc. Although the individual

agents can be programmed in advance, many tasks require

that they learn behaviors online. A significant part of the

research on multi-agent learning concerns reinforcement

learning techniques. This paper gives a survey of multi-

agent reinforcement learning, starting with a review of the

different viewpoints on the learning goal, which is a cen-

tral issue in the field. Two generic goals are distinguished:

stability of the learning dynamics, and adaptation to the

other agents’ dynamic behavior. The focus on one of these

goals, or a combination of both, leads to a categoriza-

tion of the methods and approaches in the field. The chal-

lenges and benefits of multi-agent reinforcement learning

are outlined along with open issues and future research

directions.

1 Introduction

Multi-agent systems are rapidly finding applications in

a wide variety of domains such as data mining, distributed

control, collaborative decision support systems, robotic

teams, etc. Although the individual agents can be pro-

grammed to exhibit some basic behaviors, many tasks re-

quire that agents learn new behaviors online, such that the

performance of the agent or of the whole multi-agent sys-

tem gradually improves.

Reinforcement learning (RL) agents learn by interact-

ing with their environment, using only scalar rewards as

feedback [1]. The simplicity and generality of this setting

make it attractive also for multi-agent systems. However,

the main challenge in multiagent RL (MARL) is that each

learning agent must explicitly consider the other learning

(and therefore, nonstationary) agents, and coordinate its

behavior with theirs, such that a coherent joint behavior

results.

Over the last years, many algorithms addressing this

problem were proposed, fusing developments in the areas

of temporal-difference RL , game theory and more general

direct policy search techniques. MARL surveys typically

review the field from a game-theoretic perspective [2–5].

The aim of our survey is to take a broader perspective and

give an overall view of the field. We also address the dif-

ferent viewpoints on the learning goal in MARL , which

led to certain diversity in the set of MARL algorithms and

techniques. Finally, we identify open issues and further

research directions, and outline control-theoretic ways to

follow some of these directions.

This paper is organized as follows. Section 2 intro-

duces the necessary background. Section 3 addresses the

problem of a suitable multi-agent learning goal, and Sec-

tion 4 reviews a representative selection of the literature

on MARL , classifying algorithms by the type of task they

solve. Section 5 concludes the paper.

2 Background

In single-agent RL, the environment (process) is de-

scribed by a Markov decision process [1]. A definition

of an MDP is given first, followed by its extension to the

multi-agent case – the stochastic game.

2.1 The single-agent case

Definition 1 A Markov decision process (MDP) is a tuple

〈X,U, f, ρ〉 where: X is the discrete set of environment

states, U is the discrete set of agent actions, f : X ×U ×
X → [0, 1] is the state transition probability distribution,

and ρ : X × U ×X → R is the reward function.

As a result of action uk, the environment changes

state from xk to a next state xk+1 with probability

f(xk, uk, xk+1). The agent receives (possibly delayed)

feedback on its performance via the scalar reward signal

rk+1 ∈ R, rk+1 = ρ(xk, uk, xk+1). For deterministic

models, the state transition distribution is replaced by a

function f : X × U → X . This means the reward only

depends on the current state and action, ρ : X × U → R.

The agent chooses actions according to its policy that may

be either stochastic, h : X ×U → [0, 1], or deterministic,

h : X → U . A policy is called stationary if it does not

change over time.

The agent’s goal is to maximize, at each time step k,

the discounted return:

Rk =
∑∞

j=0
γjrk+j+1, (1)

where γ ∈ (0, 1) is the discount factor. The action-

value function (Q-function), Qh
i : X × U → R, is

the expected return of a state-action pair under a given

policy: Qh
i (x, u) = E {Rk |xk = x, uk = u, h}. The

agent can maximize its return by first computing the op-

timal Q-function, defined as Q∗(x, u) = maxh Q
h(x, u),

and then choosing actions by the greedy policy h∗(x) =
argmaxu Q

∗(x, u), which is optimal.

The Q-learning algorithm iteratively approximates Q∗

by interaction with the environment, using observed re-

wards rk+1 and pairs of subsequent states xk, xk+1 [6]:

Qk+1(xk, uk) = Qk(xk, uk)+

α
[

rk+1 + γmax
u′

Qk(xk+1, u
′)−Qk(xk, uk)

]

, (2)

where α ∈ (0, 1] is the learning rate. In [6] it is proved

that the sequence Qk converges to Q∗ under certain con-

ditions, including that the agent keeps trying all actions

in all states with nonzero probability. This means that the

agent must sometimes explore, i.e., perform other actions

than dictated by the current greedy policy.

Example 1 Path optimization through Q-learning. Con-

sider the following simple instance of a path-optimization

problem. A single agent has to find by trial and error a

shortest path from its starting position to some fixed goal

(Figure 1). The agent receives a reward of −0.1 at each in-

termediate time step, and 10 upon reaching the goal. Then

the trial terminates and the agent is reset to its initial posi-

tion. The negative reward encodes ‘energy consumption’,

and leads to the minimum-distance solution.

+

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

Learning trial

S
te

p
s

to
 c

o
m

p
le

te
 t

ri
al

Figure 1. Left: a single-agent path-
optimization problem: a robotic agent (cir-

cle) has to find the shortest path to the goal
(cross), while avoiding obstacles (gray ar-
eas). Right: a typical convergence plot.

The state x is the agent’s position, discretized on a 5×5
grid. The available actions u are the moves one cell further

in one of the four compass directions, or standing still.

The minimum-time path is learned with Q-learning,

using γ = 0.98 and a constant learning rate α = 0.2.

The agent explores by choosing at each step, with expo-

nentially decaying probability, a random action instead of

the greedy one. An eligibility trace with a decay factor

λ = 0.5 is used to speed up the convergence [1]. Q-

learning converges to an optimal policy in 7 trials. Note

that convergence is not monotonous, mainly due to explo-

ration: e.g., trial 6 takes longer than trial 5. �

2.2 The multi-agent case

The underlying model in the multi-agent case is the

stochastic game [7].

Definition 2 A stochastic game (SG) is a tuple

〈A,X, {Ui}i∈A , f, {ρi}i∈A〉 where: A = {1, . . . , n} is

the set of n agents, X is the discrete set of environment

states, {Ui}i∈A are the discrete sets of actions available

to the agents, yielding the joint action set U = ×i∈AUi,

f : X×U ×X → [0, 1] is the state transition probability

distribution, and ρi : X × U × X → R, i ∈ A are the

reward probability functions of the agents.

Note that the state transitions, agent rewards ri,k+1, and

thus also the agent returns Ri,k, depend on the joint action

uk = [u1,k, . . . , un,k]
T,uk ∈ U , ui,k ∈ Ui. The policies

hi : X×Ui → [0, 1] form together the joint policy h. The

Q-function of each agent depends on the joint action and

is conditioned on the joint policy, Qh

i : X ×U → R.

If X = ∅, the SG reduces to a matrix game. A ma-

trix game, when played repeatedly by the same agents, is

called a repeated game. If ρ1 ≡ · · · ≡ ρn, the SG is fully

cooperative. If n = 2 and ρ1 ≡ −ρ2, the SG is fully

competitive.

In a matrix game, the policy loses the state argument

and transforms into a strategy h : U → [0, 1]. Similarly,

a policy conditioned on a given state x yields a strategy.

The best response of agent i to a set of opponent strategies

is a strategy that achieves the maximum expected reward

given the opponents’ strategies. A Nash equilibrium is a

set of strategies such that each is a best-response to the

others.

3 Multi-agent learning goal

In fully cooperative SG s, the common return can be

jointly maximized. In other cases, however, specifying a

good MARL goal is difficult, because the agents’ returns

are correlated and cannot be maximized independently.

In this section, we review the learning goals put for-

ward in the literature. These goals incorporate stability of

the learning process on the one hand, and adaptation to the

dynamic behavior of the other agents on the other hand.

Stability essentially means the convergence to stationary

policies, whereas adaptation ensures that performance is

maintained or improved.

Convergence to equilibria is a basic stability require-

ment, postulated already in the early MARL literature

[8, 9]. Nash equilibria are most frequently used. How-

ever, concerns have been voiced regarding their useful-

ness [2], because of the unclear link to performance in

dynamic tasks and their inherent conservatism.

Bowling and Veloso [7] add rationality as an adapta-

tion criterion. Rationality means that the agent’s policy

converges to a best response when other agents remain

stationary. An alternative to rationality is the concept no-

regret, which prevents the learner from ‘being exploited’

by the other agents [10].

Targeted optimality / compatibility / safety [11] replace

convergence with adaptation requirements, in the form

of average reward bounds for three classes of oppo-

nents: those deemed interesting (targeted), those using the

learner’s algorithm, and remaining opponents.

Table 1 summarizes the desirable properties of MARL

algorithms, as discussed above and in the literature. The

focus on stability, adaptation, or a mix of the two, leads

to a categorization of MARL algorithms into opponent-

independent, opponent-tracking, and opponent-aware, as

discussed in the next section.

Table 1. Stability and adaptation in multi-
agent learning.

Stability property Adaptation property Ref.

convergence rationality [7, 12]

convergence no-regret [10]

opponent-independent opponent-aware [5, 13]

prediction rationality [4]

—

{

targeted optimality

compatibility, safety
[2, 11]

4 Multi-agent reinforcement learning

algorithms

The MARL algorithms are organized here by the type

of task they address: fully cooperative, fully competitive,

and mixed tasks.

4.1 Fully cooperative tasks

In a fully cooperative SG , the reward functions are

identical: ρ1 ≡ . . . ≡ ρn and the learning goal is to

maximize the common discounted return. If the agents

are considered together as a centralized controller, the

task reduces to a Markov decision process whose action

space is the joint action space of the SG . The goal can be

achieved by learning the optimal joint-action values with

Q-learning:

Qk+1(xk,uk) = Qk(xk,uk)+

α
[

rk+1 + γmax
u′

Qk(xk+1,u
′)−Qk(xk,uk)

]

, (3)

and using the greedy policy. However, if the agents are in-

dependent decision makers, a coordination problem arises

even if all the agents use the same learning algorithm. The

greedy action selection mechanism breaks ties randomly,

which means that in the absence of additional mecha-

nisms, different agents may break a tie in different ways.

The resulting joint action may be suboptimal.

Example 2 Coordination in action selection. Consider

the situation illustrated in Figure 2: two mobile agents

need to avoid an obstacle while maintaining formation.

obstacle

S2

R2

2
L2R1

S1

L1

1

Q L2 S2 R2

L1 10 -5 0

S1 -5 -10 -5

R1 -10 -5 10

Figure 2. Two mobile agents approaching

an obstacle need to coordinate their action
selection mechanism.

For the given state (positions of the agents), the Q-

function can be projected into the space of the joint agent

actions. An example of such a table is given in the right

part of Figure 2. The rows correspond to actions of

agent 1, the columns to actions of agent 2. If both agents

go left, or both go right, the obstacle is avoided while

maintaining the formation: Q(L1, L2) = Q(R1, R2) =
10. If agent 1 goes left, and agent 2 goes right, the for-

mation is broken: Q(L1, R2) = 0. In all other cases,

collisions occur and the Q-values are negative.

Note the tie between the two optimal joint actions:

(L1, L2) and (R1, R2). Without a coordination mecha-

nism, agent 1 might assume that agent 2 will take action

R2, and therefore it takes action R1. Similarly, agent 2

might assume that agent 1 will take L1, and consequently

takes L2. The resulting joint action (R1, L2) is largely

suboptimal, as the agents collide. �

The following approaches to solving the coordination

issue can be distinguished in the literature: coordination-

free methods, direct and indirect coordination methods.

4.1.1 Coordination-free methods

The Team Q-learning algorithm [13] assumes that the op-

timal joint actions are unique (which will rarely be the

case) and use (3) directly.

The Distributed Q-learning algorithm [14] solves the

cooperative task without assuming coordination, however

it is only valid in the deterministic setting (with α = 1).

Each agent i maintains an explicit policy hi(x), and a lo-

cal Q-function Qi(x, ui), depending only on its own ac-

tion. Both are updated only in the direction that increases

Qi:

Qi,k+1(xk, ui,k) =max
{

Qi,k(xk, ui,k),

rk+1 + γmax
ui

Qi,k(xk+1, ui)
} (4)

hi,k+1(xk) =











ui,k if maxui
Qi,k+1(xk, ui)

6= maxui
Qi,k(xk, ui)

hi,k(xk) otherwise

(5)

Under the conditions that Qi,0 ≡ 0 and the common re-

ward function is positive, the policies of the agents prov-

ably converge to the optimal joint policy h
∗.

4.1.2 Direct coordination methods

A more general approach to solving the coordination

problem is to make sure that ties are broken by all agents

in the same way. This clearly requires that the action

choices are somehow coordinated or negotiated:

– Social conventions [15] and roles [16] restrict the

action choices of the agents.

– Coordination graphs explicitly represent where

coordination between agents is required, thus pre-

venting the agents from engaging in unnecessary

coordination activities [17].

– Communication is used to negotiate action choices,

either alone or in combination with the above tech-

niques, see, e.g., [18, 19].

4.1.3 Indirect coordination methods

In this class of approaches, action selection is biased to-

ward actions that promise to yield better values, and thus

steer the agents toward coordination. Joint Action Learn-

ers (JAL) [20] employ empirically learned models of the

other agents’ behavior. The Frequency Maximum Q-value

(FMQ) heuristic [21] is based on the frequency with which

actions yielded good values in the past. In Optimal Adap-

tive Learning (OAL), the bias is towards recently chosen

optimal joint actions [22]. Using an additional mecha-

nism to guarantee that these actions are eventually se-

lected, OAL provably converges to optimal joint policies

(at the cost of increased complexity).

Example 3 Multi-agent coordination. In this multi-agent

coordination problem, two agents live in a grid world sim-

ilar to that of Example 1. However, here they have to reach

the goal cell simultaneously. This is represented by a re-

ward of 10 upon simultaneously reaching the goal.

Coordination is needed around the goal (the agents

need to move to it simultaneously), and near the passage

in the middle of the grid-world (a collision would occur

there if both agents took their own time-optimal paths, so

one of them has to wait for the other one to pass first).

The algorithm used is team Q-learning with the ad-

dition of a simple social convention: an ordering of the

joint actions which is known to both agents. The dis-

count factor is γ = 0.98 and the learning rate at step

k is αk = 1
1+k/500 . The agents explore by choosing

at each step, with exponentially decaying probabilities, a

random action instead of the greedy one. The agents con-

verge to an optimal joint policy in 23 trials. Compared

to the single-agent case in Figure 1, the agents initially

take much longer to discover the goal (approximately 950

steps vs. 160 steps), and the convergence is much slower

21

+

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Learning trial

S
te

p
s

to
 c

o
m

p
le

te
 t

ri
al

Figure 3. Left: a multi-agent coordination
problem: two robotic agent (circles) have to
reach the goal (cross) simultaneously, while

avoiding obstacles (gray areas) and mini-
mizing the distance traveled. Right: a typi-
cal convergence plot.

(21 trials vs. 7 trials). This is because of the relatively

large state-action space: (5 · 5)2 states times 52 joint ac-

tions = 15265 state-action pairs, as opposed to 125 in the

single-agent case. �

4.2 Fully competitive tasks

In a fully competitive SG (for two agents, ρ1 ≡ −ρ2),

the minimax principle can be applied: maximize one’s

benefit under the assumption that the opponent will al-

ways act so as to minimize it. The resulting algorithm

is minimax-Q [13], given here for agent 1:

h1,k(xk, ·) = argm1(Qk, xk) (6)

Qk+1(xk, u1,k, u2,k) = Qk(xk, u1,k, u2,k)+

α
[

rk+1 + γm1(Qk, xk+1)−Qk(xk, u1,k, u2,k)
] (7)

where m1 is the minimax return of agent 1:

m1(Q, x) = max
h̃1(x,·)

min
u2

∑

u1

h̃1(x, u1)Q(x, u1, u2) (8)

The Q-table is not subscripted by the agent index,

because the equations use the implicit assumption that

Q2 = −Q1 = −Q. The coordination problem does not

arise here, because even if the minimax optimization has

multiple solutions, any of them will achieve at least the

minimax return regardless of what the opponent is doing.

Thus, minimax-Q is truly opponent-independent. How-

ever, if the learner has a model of the opponent’s policy

(i.e., is opponent-aware), it might actually do better than

the minimax return (8).

4.3 Mixed tasks

In the general case, the reward functions of the agents

may differ. This is certainly true for self-interested agents,

but even cooperating agents may encounter situations

where their immediate interests are in conflict, e.g., when

they need to compete for some resource. Mixed, dynamic

tasks, represented by the unrestricted SG , exhibit all the

MARL challenges: delayed reward, nonstationary oppo-

nents, and conflicting goals.

Single-agent RL can be directly applied to the multi-

agent case [23]. However, the nonstationarity of the

MARL problem invalidates most of the single-agent RL

theoretical results. Therefore, single-agent RL will only

work when agents do not severely interfere with one an-

other. Despite its limitations, this approach found applica-

tions, mainly because of its simplicity [24,25]. In applica-

tions, information about other agents is typically encoded

in the learner’s input, thus indirectly enabling it to make

decisions on the basis of their behavior.

Game-theoretic concepts of equilibria can be used to

facilitate convergence. Algorithms in this category typi-

cally require that the agents know the task model (i.e., the

reward function), and assume observable actions (some of

them, even observable strategies).

In the sequel, we distinguish opponent-independent

methods (targeting convergence), opponent-tracking

methods (targeting rationality, i.e., the adaptation to

opponents’ strategies) and opponent-aware methods

(targeting both convergence and rationality).

4.3.1 Opponent-independent methods

These methods are based on Q-learning, where policies

and state values are computed with game-theoretic solvers

for the matrix games arising in the states of the SG [5, 9].

Denoting by {Q·,k(xk, ·)} the matrix game arising at time

k and given by all the agents’ Q-values for state xk:

hi,k(x, ·) = solvei {Q·,k(xk, ·)} (9)

Qi,k+1(xk,uk) = Qi,k(xk,uk) + α
[

ri,k+1+

γ · evali {Q·,k(xk, ·)} −Qi,k(xk,uk)
] (10)

solvei returns the i’th agent’s part of some type of equi-

librium (a strategy), and evali gives the agent’s expected

return at this equilibrium. When multiple equilibria exist

in a particular state of an SG , the equilibrium selection

problem arises: the agents need to consistently pick their

part of the same equilibrium (this problem is similar to the

one discussed in Section 4.1).

The learning goal is the convergence to a set of policies

that contain the equilibrium strategies in every state. The

updates use the Q-tables of all the agents. So, each agent

needs to model the Q-tables of the other agents. It can do

that by applying (10). This requires two assumptions: that

all agents use the same algorithm, and that all actions and

rewards are observable.

Particular instances of solve and eval for Nash Q-

learning [8] are:

evali {Q·,k(xk, ·)} = Vi(xk,NE {Q·,k(xk, ·)}) (11)

solvei {Q·,k(xk, ·)} = NEi {Q·,k(xk, ·)} (12)

where NE computes a Nash equilibrium, NEi is

agent i’s strategy component of this equilibrium, and

Vi(xk,NE {Q·,k(xk, ·)}) is the expected return of agent

i from xk under this equilibrium. Correlated Q-

learning (CE-Q) [9] and asymmetric Q-learning [26]

work in a similar fashion, by using correlated or Stack-

elberg (leader-follower) equilibria, respectively. For

asymmetric-Q, the follower does not need to model the

leader’s Q-table; however, the leader must know how the

follower chooses its actions.

Equilibria can also be combined with the Value And

Policy Search (VAPS) gradient method [27], leading to

multi-agent VAPS [28].

4.3.2 Opponent-tracking methods

These algorithms adapt to learned models of nonstation-

ary opponent policies without explicitly considering con-

vergence. Actions of other agents have to be observable.

The Non-Stationary Converging Policies (NSCP) algo-

rithm computes a best-response to the models and uses

it in estimating value functions [29], whereas Hyper-Q in-

corporates the models in the state vector, and learns on

their basis [30].

4.3.3 Opponent-aware methods

These methods typically do consider convergence as well

as adaptation to other agents. Win-or-Learn-Fast Pol-

icy Hill-Climbing (WoLF-PHC) combines the basic Q-

learning update rule (2) with a gradient-based policy up-

date:

hi,k+1(xk, ui) = hi,k(xk, ui)+






δi,k if ui = argmax
ũi

Qi,k+1(xk, ũi)

−
δi,k

|Ui|−1 otherwise
(13)

The gradient step δi,k is larger when the agent is losing

than when it is winning. The win criterion is based either

on a comparison of an average policy with the current one,

in the original version of WoLF-PHC, or on the second-

order difference of policy elements, in PD-WoLF [31].

The rationale is that the agent should escape fast from los-

ing situations, while adapting cautiously when it is win-

ning, in order to encourage convergence.

The Extended Optimal Response (EXORL) heuristic

applies a similar idea in two-agent tasks: the policy up-

date is biased in a way that minimizes the other agent’s

incentive to deviate from its current policy [32].

Environment-Independent Reinforcement Acceleration

(EIRA) pushes policies onto, and pops policies from, a

policy stack in such a way that long-term reinforcement

improvements are guaranteed [33]. EIRA does not make

any assumptions on the environment and on the other

agents. In this sense, it is very general. However, it may

not be able to take advantage of the task’s structure.

Remarks

Much research in this area focuses on repeated games. In

such a case, one of the essential properties of RL , the

delayed reward, is lost. However, the learning problem

is still nonstationary due to the dynamic behavior of the

agents that play the repeated game. Methods in this cat-

egory can also be classified into opponent-tracking meth-

ods, which aim at adapting to learned models of the oppo-

nents’ behavior [11] and opponent-aware methods, which

target convergence as well [7, 34]. Note that opponent-

tracking methods do not necessarily converge to station-

ary strategies.

Static, repeated games represent a limited set of appli-

cations, among which are negotiation, auctions, and bar-

tering. These algorithms provide valuable theoretical re-

sults, which, however, do not necessarily carry over to the

dynamical SG case.

5 Conclusions and future perspectives

We have reviewed the challenges of multi-agent re-

inforcement learning and the methods to address them.

More general open problems and an outlook are given

next.

First, the stage-wise application of game-theoretic

techniques may not be the most suitable approach, given

that the environment and the behavior of learning agents

are generally dynamic processes. So far, game-theory-

based analysis has only been applied to the learning dy-

namics [3, 35]. We expect that tools developed in the area

of automatic control will play an important role in the ana-

lysis and synthesis of the learning process as a whole (i.e.,

environment and learning dynamics). In addition, this

framework can incorporate prior knowledge on bounds for

imperfect observations, such as noise-corrupted variables.

Second, the issue of a suitable learning goal requires

additional research. Stability of the learning process is

desirable, because the behavior of stable agents is more

amenable to analysis and meaningful performance guar-

antees. Adaptation to the other agents is desirable be-

cause their dynamics are generally unpredictable. There-

fore, a good multi-agent learning goal must include both

components. This means that MARL algorithms should

not be purely opponent-independent nor purely opponent-

tracking. The control-theoretic concept of robustness can

help integrate stability and adaptation into a unified goal.

If a learning algorithm is robustly stable with respect to

nonstationarity in the other agents, it will converge while

allowing for bounded changes in the behavior of these

agents.

From a practical viewpoint, a realistic learning goal

should include bounds on the transient performance, in

addition to the usual asymptotic requirements. Exam-

ple of such bounds include maximum time constraints for

reaching a desired performance level, or a lower bound

on instantaneous performance levels. The authors of [10]

and [11] already made first steps in this direction.

Third, scalability is an important concern for MARL .

Most algorithms require explicit tabular representations of

the Q-function and possibly of the policy. Due to this, the

computational requirements of the algorithms scale expo-

nentially with the number of state and action variables,

and therefore with the number of agents. This also has

negative consequences for the learning time and conver-

gence speed. Consider, for instance, extending the grid

world of Example 3) to 10 × 10 cells and the number of

agents from two to three. The size of the Q-table that each

agent needs to store then becomes (10 · 10)3 · 53 = 125
million entries. A similar problem arises when state or ac-

tion variables are continuous. In this case, tabular storage

of Q-values is impossible.

In our view, significant progress in the field of multi-

agent learning can be achieved by a more intensive cross-

fertilization between the fields of machine learning, game

theory and control theory.

Acknowledgement
This research is financially supported by Senter, Min-

istry of Economic Affairs of the Netherlands, within the

BSIK project “Interactive Collaborative Information Sys-

tems” (grant no. BSIK03024).

References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction, MIT Press, Cambridge, US, 1998.

[2] Y. Shoham, R. Powers, and T. Grenager, “Multi-Agent

Reinforcement Learning: A Critical Survey”, Technical

report, Computer Science Dept., Stanford University, Cal-

ifornia, US, 16 May 2003.

[3] K. Tuyls and A. Nowé, “Evolutionary Game Theory and

Multi-Agent Reinforcement Learning”, The Knowledge

Engineering Review, vol. 20, no. 1, pp. 63–90, 2005.

[4] G. Chalkiadakis, “Multiagent Reinforcement Learning:

Stochastic Games with Multiple Learning Players”, Tech-

nical report, Dept. of Computer Science, University of

Toronto, Canada, 25 March 2003.

[5] M. Bowling, Multiagent Learning in the Presence of

Agents with Limitations, PhD thesis, Computer Science

Dept., Carnegie Mellon University, Pittsburgh, US, May

2003.

[6] C. J. C. H. Watkins and P. Dayan, “Technical Note: Q-

Learning”, Machine Learning, vol. 8, pp. 279–292, 1992.

[7] M. Bowling and M. Veloso, “Multiagent Learning Using a

Variable Learning Rate”, Artificial Intelligence, vol. 136,

no. 2, pp. 215–250, 2002.

[8] J. Hu and M. P. Wellman, “Nash Q-Learning for General-

Sum Stochastic Games”, Journal of Machine Learning Re-

search, vol. 4, pp. 1039–1069, 2003.

[9] A. Greenwald and K. Hall, “Correlated-Q Learning”,

in Proc. Twentieth International Conference on Machine

Learning (ICML-03), 21–24 August 2003, pp. 242–249,

Washington, US.

[10] M. Bowling, “Convergence and No-Regret in Multiagent

Learning”, in Advances in Neural Information Processing

Systems 17 (NIPS-04), 13–18 December 2004, pp. 209–

216, Vancouver, Canada.

[11] R. Powers and Y. Shoham, “New Criteria and a New Algo-

rithm for Learning in Multi-Agent Systems”, in Advances

in Neural Information Processing Systems 17 (NIPS-04),

2004, pp. 1089–1096, Vancouver, Canada.

[12] V. Conitzer and T. Sandholm, “AWESOME: A General

Multiagent Learning Algorithm that Converges in Self-

Play and Learns a Best Response Against Stationary Op-

ponents”, in Proc. Twentieth International Conference on

Machine Learning (ICML-03), 21–24 August 2003, pp.

83–90, Washington, US.

[13] M. L. Littman, “Value-function Reinforcement Learning

in Markov Games”, Journal of Cognitive Systems Re-

search, vol. 2, pp. 55–66, 2001.

[14] M. Lauer and M. Riedmiller, “An Algorithm for Distribu-

ted Reinforcement Learning in Cooperative Multi-Agent

Systems”, in Proc. Seventeenth International Conference

on Machine Learning (ICML-00), 29 June – 2 July 2000,

pp. 535–542, Stanford University, US.

[15] C. Boutilier, “Planning, Learning and Coordination in

Multiagent Decision Processes”, in Proc. Sixth Confer-

ence on Theoretical Aspects of Rationality and Knowl-

edge (TARK-96), 17–20 March 1996, pp. 195–210, De

Zeeuwse Stromen, The Netherlands.

[16] M. T. J. Spaan, N. Vlassis, and F. C. A. Groen, “High level

coordination of agents based on multiagent Markov deci-

sion processes with roles”, in Workshop on Cooperative

Robotics, 2002 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS-02), 1 October 2002,

pp. 66–73, Lausanne, Switzerland.

[17] C. Guestrin, M. G. Lagoudakis, and R. Parr, “Coordinated

Reinforcement Learning”, in Proc. Nineteenth Interna-

tional Conference on Machine Learning (ICML-02), 8–12

July 2002, pp. 227–234, Sydney, Australia.

[18] N. Vlassis, “A Concise Introduction to Multiagent Sys-

tems and Distributed AI”, Technical report, University

of Amsterdam, The Netherlands, September 2003, URL:

http://www.science.uva.nl/ vlassis/cimasdai/cimasdai.pdf.

[19] F. Fischer, M. Rovatsos, and G. Weiss, “Hierarchical Re-

inforcement Learning in Communication-Mediated Multi-

agent Coordination”, in Proc. 3rd International Joint Con-

ference on Autonomous Agents and Multiagent Systems

(AAMAS-04), 19–23 August 2004, pp. 1334–1335, New

York, US.

[20] C. Claus and C. Boutilier, “The Dynamics of Reinforce-

ment Learning in Cooperative Multiagent Systems”, in

Proc. 15th National Conference on Artificial Intelligence

and 10th Conference on Innovative Applications of Arti-

ficial Intelligence (AAAI/IAAI-98), 26–30 July 1998, pp.

746–752, Madison, US.

[21] S. Kapetanakis and D. Kudenko, “Reinforcement Learn-

ing of Coordination in Cooperative Multi-Agent Systems”,

in Proc. 18th National Conference on Artificial Intelli-

gence and 14th Conference on Innovative Applications of

Artificial Intelligence (AAAI/IAAI-02), 28 July – 1 Au-

gust 2002, pp. 326–331, Menlo Park, US.

[22] X. Wang and T. Sandholm, “Reinforcement Learning

to Play an Optimal Nash Equilibrium in Team Markov

Games”, in Advances in Neural Information Processing

Systems 15 (NIPS-02), 9–14 December 2002, pp. 1571–

1578, Vancouver, Canada.

[23] S. Sen, M. Sekaran, and J. Hale, “Learning to Coordinate

without Sharing Information”, in Proc. 12th National Con-

ference on Artificial Intelligence (AAAI-94), 31 July – 4

August 1994, pp. 426–431, Seattle, US.

[24] M. J. Matarić, “Learning in Multi-Robot Systems”, in

G. Weiß and S. Sen, editors, Adaptation and Learning

in Multi–Agent Systems, pp. 152–163. Springer Verlag,

1996.

[25] R. H. Crites and A. G. Barto, “Improving Elevator Perfor-

mance Using Reinforcement Learning”, in Advances in

Neural Information Processing Systems, volume 8, 1996,

pp. 1017–1023.

[26] V. Könönen, “Asymmetric Multiagent Reinforcement

Learning”, in Proc. IEEE/WIC International Conference

on Intelligent Agent Technology (IAT-03), 13–17 October

2003, pp. 336–342, Halifax, Canada.

[27] L. Baird and A. Moore, “Gradient Descent for General

Reinforcement Learning”, in Advances in Neural Infor-

mation Processing Systems 11 (NIPS-98), 30 November –

5 December 1998, pp. 968–974, Denver, US.

[28] V. Könönen, “Gradient Based Method for Symmetric

and Asymmetric Multiagent Reinforcement Learning”, in

Proc. 4th International Conference on Intelligent Data En-

gineering and Automated Learning (IDEAL-03), 21–23

March 2003, pp. 68–75, Hong Kong, China.

[29] M. Weinberg and J. S. Rosenschein, “Best-Response Mul-

tiagent Learning in Non-Stationary Environments”, in

Proc. 3rd International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS-04), 19-23 Au-

gust 2004, pp. 506–513, New York, US.

[30] G. Tesauro, “Extending Q-Learning to General Adaptive

Multi-Agent Systems”, in Advances in Neural Information

Processing Systems 16 (NIPS-03), 8–13 December 2003,

Vancouver and Whistler, Canada.

[31] B. Banerjee and J. Peng, “Adaptive Policy Gradient in

Multiagent Learning”, in Proc. 2nd International Joint

Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS-03), 14–18 July 2003, pp. 686–692, Mel-

bourne, Australia.

[32] N. Suematsu and A. Hayashi, “A multiagent reinforcement

learning algorithm using extended optimal response”, in

Proc. 1st International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS-02), 15–19 July

2002, pp. 370–377, Bologna, Italy.

[33] J. Schmidhuber, “A General Method for Multi-Agent Re-

inforcement Learning in Unrestricted Environments”, in

Working Notes AAAI Symposium on Adaptation, Co-

evolution and Learning in Multiagent Systems, 25–27

March 1996, pp. 84–87, Stanford University, US.

[34] S. Singh, M. Kearns, and Y. Mansour, “Nash Convergence

of Gradient Dynamics in General-Sum Games”, in Proc.

16th Conference on Uncertainty in Artificial Intelligence

(UAI-00), 30 June – 3 July 2000, pp. 541–548, San Fran-

cisco, US.

[35] J. M. Vidal, “Learning in Multiagent Systems: An Intro-

duction from a Game-Theoretic Perspective”, in Adaptive

Agents: Lecture Notes in Artificial Intelligence, volume

2636, pp. 202–215. Springer Verlag, August 2003.

