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Towards a practical application of model predictive control to suppress

shock waves on freeways

A. Hegyi, M. Burger, B. De Schutter, J. Hellendoorn, T.J.J. van den Boom

Abstract— We present the results of the application of model
predictive control (MPC) to a micro-simulation model with
a scenario where shock waves are present, and a micro-
simulation model functions as a substitute for the real-world
traffic system. Shock waves emerge in most cases from traffic
jams at bottlenecks, propagate upstream on the freeway, and
can remain existent for a long time and distance. This increases
travel time, is potentially unsafe, and increases noise and air
pollution.

Previously reported results using MPC to eliminate shock
waves, showed an improvement of 20% of the total time that
the vehicles spent in the network. However, they were based
on the assumption that the simulation model (representing the
real world) and the prediction model are the same, which may
have lead to overoptimistic results.

In this paper a micro-simulation model (Paramics 5.1 by
Quadstone) is used to represent the real world, which results
in a model mismatch between the simulation model and the
prediction model. We show by simulation that even in the case
of a model mismatch the controller is able to suppress or remove
shock waves.

Index Terms— model predictive control, dynamic speed lim-
its, freeway traffic control, shock waves

I. INTRODUCTION

A. Shock waves

In the field of freeway traffic control most of the attention

is paid to solving the fixed jams at on-ramps, whereas

upstream propagating shock waves (short jams) often emerge

from on-ramps and other types of bottlenecks, and resolving

such shock waves would greatly improve the freeway traffic

flow. Shock waves propagate upstream along the freeway

and can remain existent for a long time and distance. As a

consequence, every vehicle that enters the freeway upstream

of the jammed area will have to pass through the jammed

area, which increases the travel time, creates potentially

unsafe situations and increases noise and air pollution by

braking and accelerating vehicles. Shock waves typically

have a lower outflow than the capacity of the freeway at

the given location, which motivates the idea that traffic flow

can be improved by resolving shock waves.

To resolve shock waves one can use dynamic speed limits

in the following way. In some sections upstream of a shock

wave speed limits are imposed in order to reduce the inflow

to the jammed area. When the inflow of the jammed area is

reduced sufficiently, i.e., to a lower value than its outflow, the
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jam will eventually dissolve. In other words, the speed limits

create a low-density wave that propagates downstream. This

low-flow, low-density wave meets and compensates the high-

density shock wave. As a result, the shock wave is reduced

or eliminated.

Although the above approach to speed limit control is

valid, we will formulate the controller in terms of a control

goal instead of an explicit behavior of the controller. The

control goal will be minimization of the total time that

vehicles spend on the freeway (the Total Time Spent, or

TTS), with the implicit assumption that removing shock

waves reduces the TTS. We will see in the experiment results

that this control goal leads to the shock wave reduction

behavior as described above.

The purpose of this paper is to discuss issues and choices

that are related to the application of model predictive control

in a real-world environment (which is here represented by a

micro-simulation model).

B. State-of-the-art

In the literature, basically two views on the use of speed

limits can be found. The first emphasizes the homogenization

effect [1], [2], [3], [4], whereas the second is more focused on

flow limitation by speed limits to prevent traffic breakdown

or to solve jams [5], [6], [7].

The basic idea of homogenization is that speed limits

can reduce the speed differences, by which a stabler (and

safer) flow can be achieved. This approach can in theory

increase the time to breakdown [8], but cannot suppress

or resolve existing shock waves. According to field tests

homogenization results in a somewhat more stable and safer

traffic flow, but no significant improvement of traffic volume

was measured [3], [9], [10] (nor can be expected based

on theory). An extended overview of existing speed limit

systems that aim at reducing speed differentials is given by

Wilkie [11].

The flow limitation approach focuses more on preventing

or removing too high densities, and also allows speed limits

that are lower than the critical speed in order to limit the

inflow to the high-density area (a jam or nearly a jam).

By resolving these high-density areas higher flow can be

achieved compared to the homogenization approach. If the

breakdown cannot be prevented, the dynamic speed limits

can be used to limit the inflow of the jammed area to reduce

the density until the jam is resolved.

Several control methodologies are described in literature

to find a control law for speed control, such as multi-

layer control [12], sliding-mode control [6], [7], and optimal



control [13]. In [14] optimal control is approximated by a

neural network in a rolling horizon framework.

Other authors use (or simplify their control law to) a con-

trol logic where the switching between the speed limit values

is based on traffic volume, speed or density measurement [1],

[2], [3], [4], [7], [8]. In some cases the switching between

the speed limit values is also based on special circumstances,

such as light and weather conditions [1].

Some authors recognize the importance of anticipation in

the speed control scheme. A pseudo-anticipative scheme is

used in [7], [15] by an intelligent switching scheme based

on the density of the neighboring downstream segment. Real

predictions are used in [13], [14], and together with [15]

these are the only approaches that results in a significant

flow improvement.

The approach used in this paper is the flow limitation

approach. Using this approach in a model predictive control

(MPC) framework, earlier simulation studies [16] resulted in

an improvement of the average travel time of around 20%.

In these studies it was assumed that the prediction model is

exactly the same as the simulation model, which is unrealistic

and may lead to overoptimistic results.

The contribution of this paper is that the simulation model

(representing the real world) is now replaced by a micro-

simulation model. For practical reasons the experiments

cannot be performed in a real traffic system, and the micro-

simulation model is considered as a substitute of the real-

world. One of the consequences of the difference between

the models of the controller and the real-world substitute

is that the prediction model of the controller is not perfect

anymore. In this paper, the performance is evaluated under

this mismatch between the prediction model and the sim-

ulation model, which is considered a step towards the real

application of the MPC approach.

II. APPROACH

To solve the problem of finding the dynamic speed limit

signals that suppress the shock waves, the MPC framework is

used. Below we shortly explain this framework and the two

traffic flow models used in this paper, one for prediction and

one for simulating of the effects of the resulting speed limits.

We also explain the prediction model calibration approach.

A. Model predictive control

We use a model predictive control (MPC) scheme to solve

the problem of optimal coordination of dynamic speed limits,

which is schematically represented in Fig. 1.

In MPC, at each controller time step kc the optimal

control signal is computed (by numerical optimization) over

a prediction horizon Np for the given actual system (here:

traffic) state. A control horizon Nc is selected over which

the control variables are allowed to vary, and after the

control horizon has been passed (but before the prediction

horizon is reached) the control signal is typically taken to

be constant. Taking the control horizon smaller reduces the

number of optimization variables of the system, and typically

also improves the stability of the system1. From the resulting

optimal control signal only the first sample (with time index

kc+1) is applied to the process. In the next time step kc+1,

when the new system state is available, a new optimization is

performed (with a prediction period that is shifted one time

step ahead) and of the resulting control signal again only the

first sample is applied, and so on. This scheme, called rolling

horizon, allows for updating the state from measurements, or

even for updating the model in every iteration step.

Note that the controller sampling time Tc and the related

time index kc are not necessarily equal to the simulation

time step T and index k of the prediction model. In general,

we assume that the controller sampling time is an integer

multiple of the controller model time step:

Tc = MT, (1)

where M is a positive integer.

An essential feature of the MPC scheme is that it uses a

prediction, which makes it possible to perform temporarily

sub-optimally in order to gain more performance in the

future. In our case, we will see (what intuitively already

can be expected) that in order to suppress a shock wave,

traffic flow has to be limited, but when the shock wave

has dissolved, the traffic flow will be higher than without

resolving the shock wave.

In this scheme an objective function is used to describe

the (predicted) performance of the system given a control

signal. This objective function expresses the control goal

and typically formulates the cost of a (predicted) system

evolution associated with given control signal. In our case

we use the total time that vehicles spend in the network

(TTS) as the objective function that should be minimized.

For more information on MPC we refer the interested

reader to [17], [18], [19] and the references therein.

1It improves the stability in the sense that with fewer optimization
variables the optimization result will be less likely to fluctuate between
equally good but different solutions.

traffic demand

control input:

speed limits

expected demand

traffic system

rolling horizon

controller

optimization

traffic state:

speed, flow,

density

prediction

vctrl,m,i

(Np, Nc)

(each kc)

J

Fig. 1. Schematic view of the model predictive control (MPC) structure.



B. Prediction model

The MPC procedure includes a prediction of the network

evolution as a function of the current state and a given

control input. For this prediction we use an extended version

of the (destination-independent version) of the macroscopic

traffic flow model METANET [20], [21]. The extensions are

introduced to model shock waves and freeway origins better

and to include the effects of dynamic speed limits explicitly.

Note that the since MPC approach is generic, also other

traffic models (that include the effect of the speed limit)

could be used.

For the sake of brevity, we describe only those parts of the

model that are relevant for interpreting and understanding the

simulation results of our benchmark network (as described in

Section III). In [20], [21] the complete METANET model is

given (including lane drops, nodes, and merging and weaving

processes).

1) Basic METANET model: Freeway networks are mod-

eled by the composition of links and nodes. Links consist of

several segments that have identical properties. Consider a

freeway link m that is subdivided into Nm segments, each

with a length Lm and λm lanes, and a discrete time step

with length T (h). Traffic dynamics is described in terms

of the aggregated variables average speed vm,i(k) (km/h),

average flow qm,i(k) (veh/h), and average density ρm,i(k)
(veh/km/lane), where i is the segment index.

The METANET model equations are given by the funda-

mental relationship between speed, density and flow,

qm,i(k) = ρm,i(k)vm,i(k)λm , (2)

the law of conservation of vehicles,

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm
(qm,i−1(k)− qm,i(k)) ,

(3)

and a heuristic relationship for the speed dynamics,

vm,i(k + 1) = vm,i(k) +
T

τ
(V (ρm,i(k))− vm,i(k))

+
T

Lm
vm,i(k) (vm,i−1(k)− vm,i(k))

−
ηT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
, (4)

V (ρm,i(k)) = vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

, (5)

where vfree,m is the free-flow speed in segment m, ρcrit,m
is the critical density (the density at or above which traffic

becomes unstable), and τ , η, am, κ, are model fitting

parameters without direct physical meaning.

Origins are modeled with a simple queue model. The

length of the queue wo(k) equals the previous queue length

plus the demand do(k), minus the outflow qo(k):

wo(k + 1) = wo(k) + T
(

do(k)− qo(k)
)

.

The outflow of on-ramp o depends on the traffic conditions

on the freeway and the capacity of the origin. The flow qo(k)

travel direction
freeway link m

. . .. . .segment 1 segment i
︸ ︷︷ ︸

Lm

segment Nm

qm,i(k) →

ρm,i(k)

vm,i(k)

Fig. 2. In the METANET model, a freeway link is divided into segments.
The main variables in the model are the average outflow of a segment
qm,i(k), the average speed vm,i(k), the average density ρm,i(k), and the
segment length Lm.

is the minimum of the demand and the maximal flow that

can enter the freeway given the mainstream conditions,

qo(k) = min

[

do(k) +
wo(k)

T
,Qo

ρmax − ρµ,1(k)

ρmax − ρcrit,µ

]

, (6)

where Qo is the on-ramp capacity (veh/h) under free-flow

conditions, ρmax is the maximum density, and µ the index

of the link to which the on-ramp is connected.

2) Extensions: Since the original METANET model does

not explicitly describe the effect of speed limits, we have

proposed an equation for the desired speed (5) in order to

incorporate speed limits:

V
(

ρm,i(k)
)

= min

(

(1 + α)vctrl,m,i(k),

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am]
)

, (7)

where vctrl,m,i(k) is the speed limit imposed on segment i,

link m, at time k, and the factor (1+α) expresses the (non-

)compliance, i.e., the factor that the desired speed is higher

or lower than the displayed speed limit.

A second extension is introduced to express the different

nature of a mainstream origin link o compared to an on-ramp

(the queue at a mainstream origin is in fact an abstraction

of the sections upstream of the origin of the part of the

freeway network that we are considering). If o is the origin

of mainstream link µ, then we have

qo(k) = min

[

do(k) +
wo(k)

T
, qlim,µ,1(k)

]

, (8)

where qlim,µ,1(k) is the maximal inflow determined by the

limiting speed in the first segment of link µ:

qlim,µ,1(k) =


























γ λµ vlim,µ,1(k) ρcrit,µ

[

−aµ ln

(

vlim,µ,1(k)

vfree,m

)]
1

aµ

if vlim,µ,1(k) < V (ρcrit,µ)

γ qcap,µ if vlim,µ,1(k) ≥ V (ρcrit,µ),

where vlim,µ,1(k) = min(vctrl,µ,1(k), vµ,1(k)) is the speed

that limits the flow, qcap,µ = λµV (ρcrit,µ)ρcrit,µ is the

capacity flow, and γ is a tuning parameter.



A third extension is introduced to be able to express the

different anticipation behavior of the drivers at the head and

the tail of a traffic jam (i.e., a shock wave). The parameter η

in (4) is replaced by the density-dependent parameter ηm,i(k)
according to:

ηm,i(k) =

{

ηhigh if ρm,i+1(k) ≥ ρm,i(k)

ηlow if ρm,i+1(k) < ρm,i(k).

A motivation of these extensions can be found in [16]

and [22].

C. Simulation model

To represent the real-world, a simulation model is used,

namely the microscopic traffic flow simulator Paramics v5.1,

by Quadstone [23]. This model is used to generate calibration

data for the prediction model, and to evaluate the speed limit

control strategy.

Although the user is free to place detectors at any location

in this model, in this paper all the detectors are located

at the downstream end of the corresponding segment. In

this paper, the detectors provide the time mean speed, the

density (which is calculated based on individual vehicle

speed measurements), and flow.

D. Calibration

In order to match the behavior of the prediction model

with the simulation model the parameters of the prediction

model have to be calibrated.

In a real-world control situation the prediction model

would be calibrated by using real traffic data. Here the real

world is represented by the simulation model, so Paramics

is used to generate data for the calibration. Since the goal is

to calibrate METANET such that it reproduces shock waves

and the reaction to the speed limits, the calibration data set

(or scenario) should be rich enough, i.e., should be defined

such that it contains shock waves, traffic in free flow, the

transitions between the two, and a variety of speed limits.

The selection of the calibration performance measure is

based on the intended application of the prediction model:

the prediction of the TTS for a given control signal. The TTS

is in general calculated based on the number of vehicles (or

densities) in the network over the predicted period. Since the

TTS calculated over a given time horizon for a given network

in fact only reflects the average traffic density, many different

traffic state trajectories (speeds and densities) may lead to

the same TTS. Therefore, the TTS is not very powerful to

make a distinction between better or worse parameter sets

in the sense that a well-calibrated model is expected to be

able to reproduce shock wave propagation and the effects of

dynamic speed limits.

For these reasons and the fact that in reality the density is

usually not measured, the calibration performance measure

was based on the differences of the predicted speed v̂i(kc)
and flow q̂i(kc) relative to the speed vi(kc) and flow qi(kc)
in the calibration data set.

Note that the calibration data and the controller model

use different time steps, similarly to the difference in the

controller sampling time and the prediction model sampling

time, as described in Section II-A. For the sake of simplicity,

we assume here that the time step counter in the calibration

data equals the controller time step counter kc. For the

comparison of the predicted speed and flow with the speed

and flow calibration data, the predictions are averaged over

M time steps:

v̂m,i(kc) =
1

M

(kc+1)M−1
∑

k=kcM

vm,i(k), (9)

and q̂i(kc) is defined similarly.

At step kc the performance measure that quantifies the

error of the prediction over a horizon of Np steps is given

by:

Jkc
(θ) =

[

1

Np

Nlinks
∑

m=1

Nm
∑

i=1

kc+Np
∑

j=kc

(

(v̂m,i(j)− vm,i(j))
2

vnorm

+
(q̂m,i(j)− qm,i(j))

2

qnorm

)]1/2

(10)

where θ is the vector of variables to be calibrated, Nlinks

is the number of links in the network and vnorm and qnorm
normalizing factors equaling the average speed and flow in

the data set.

To evaluate this measure for a data set with a longer

time period kc = 1, . . . ,K (K > Np) the Np-step ahead

performance of (10) is evaluated each kc, with the initial

traffic state reinitialized for each prediction according to

the state in the calibration data. The overall performance is

expressed as

J(θ) =

K
∑

kc=1

Jkc
(θ), (11)

which is the objective function minimized in the calibration

procedure.

III. BENCHMARK SET-UP

A. Lay-out and scenario

The above approach was tested with a benchmark network

and scenario. The network consists of a 2-lane freeway of

14 km length, with two on-ramps, one located 1 km from the

upstream end and one 1 km from the downstream end. Fig. 3

shows the lay-out of the network. The upstream on-ramp

was included to be able to load the link with a flow close

to capacity and the downstream on-ramp was included to

create shock waves emerging from the on-ramp. The stretch

70 906070

segment 1 segment 20

high-density
shock wave

traffic flow direction

Fig. 3. The layout of the benchmark network. A 2-lane freeway with two
on-ramps.
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Fig. 4. The benchmark scenario contains two shock waves in a period of two hours, indicated by the dark lines in the speed diagram. The traffic flow
direction is from segment 1 toward segment 20. Both shock waves originate from the downstream on-ramp.

considered for the dynamic speed limit control application

is the stretch of 10 km length in the middle between the

two on-ramps, and consists of 20 segments of 500 m. Since

the simulation network consists of only one link, we drop

the link index m from now on, for the sake of simplicity.

The demand scenario was chosen such that two shock waves

occur in a period of two hours. The evolution of the traffic

in Paramics for this scenario is shown in Fig. 4. In each of

these plots one of the main traffic variables is shown (speed,

density and flow). The vertical axis shows the segment

numbers and the travel direction is from segment 1 to 20.

It is clear that the outflow of the shock wave (region A in

the flow diagram on the right) is lower (darker) than the

inflow to it (region B). So, there is a capacity drop associated

with the shock wave. After the first shock wave has exited

the link and passed the upstream on-ramp (not shown here)

the flow from the on-ramp increased the inflow to the link

and caused a forward propagating high-flow wave (through

C, light color) that triggered the second shock wave at the

downstream on-ramp.

B. Calibration

The calibration data set was generated based on the same

scenario, but for the second hour (and the second shock

wave) several speed limit patterns were applied, as shown

in Fig. 5. The calibration of the METANET parameters was

performed according to Section II-D, with the boundary con-

ditions given by the speed and outflow of segment 1 and the

density of segment 20 in the calibration data set. These states

serve as the upstream speed v0(k) and upstream flow q0(k)
and the downstream density ρNm+1(k) in (4) and (8). All

parameters of the METANET model are calibrated, using the

Matlab implementation of sequential quadratic programming

(the fmincon function). The parameters resulting from the

calibration were used for the MPC.

The controller sampling time Tc = 1 minute and the

prediction model time step T = 10 s thus M = 6, and

Np = 15 which were used in (10) and (11).

C. Boundary conditions for MPC

During each MPC iteration the prediction model needs

a prediction of the boundary conditions. We assumed that

the future boundary conditions are equal to the boundary

conditions defined by the uncontrolled shock wave scenario.

At first glance this may seem unrealistic because in practice

the future upstream and downstream boundary conditions

are unknown. However, if the network for which the current

traffic state is observed is taken sufficiently larger than the

controlled network, then the future demands at the bound-

aries of the controlled network can be deduced from the

actual traffic state only. Furthermore, the predicted boundary

conditions given by the shock wave scenario will typically

differ from the simulated boundary conditions because of

the effect of the speed limits (i.e., the improved flow and

the eliminated shock waves create different patterns at the

network boundaries). In practice one could also use historical

data.

D. Performance criterion

The performance criterion for the MPC was the TTS

defined by

JTTS(kc) = T

M(kc+Np)
∑

j=Mkc

Nm
∑

i=1

ρi(j)λL.

E. Speed limits

Although all segments are speed controllable, the choice

was made to control only the speed limits of the last 7 km

(segments 6–20) and to assign the same speed limit per two

adjacent segments (segments 6 and 7 get the same speed

limit, 8 and 9 also, etc.), in order to reduce the computation

time of the controller. Furthermore, the speed limits were

constrained to the interval

40 km/h ≤ vi(k) ≤ 120.

The controller sampling time Tc was 1 minute, the control

and prediction horizons were respectively Nc = 8 (equaling
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Fig. 5. The speed limits in the calibration scenario and their effects on
the traffic scenario.

8 minutes) and Np = 15 (15 minutes) which are somewhat

larger than the horizons reported in [16] to be on the safe

side.

IV. RESULTS

A. Calibration

For the METANET model all parameters were optimized

according to (11) by numerical optimization and this resulted

in the following parameters: τ = 25.4 s, a = 3.133, ηhigh =
217.3 km2/h, ηlow = 98.9 km2/h, κ = 69.5 veh/km/lane,

γ =2.99, ρcrit,m = 28.2 veh/km/lane, vmin = 15.97 km/h,

vfree,m = 114.8 km/h, α = 0.054.

The corresponding value of the performance function was

J(θ) = 21.91 and the average relative error in the TTS

resulting from these parameter settings was about 10%.

In qualitative terms, this parameter setting was able to

reproduce the shock waves in most cases. For some initial

conditions (in the beginning, when the jam was short) the

density was not high enough to trigger a shock wave in

METANET, but this occurred only for three out of 105 start

indices kc in (11).

B. MPC simulation

Several runs were performed with the MPC controller and

the result of one of the runs is shown in Fig. 7 and the

corresponding speed limits are shown in Fig. 6. The results of

the other runs were similar, but not exactly the same because

of the random components in the simulation model and in the

numerical optimization in the controller. Here we describe

the interpretation of these figures in qualitative terms.

After the first shock wave just has entered the link, the

speed limits switch on (the region to the left of E in Fig. 6)

and create a forward-propagating low-density low-flow wave

(the dark line to the left of D in the density and flow plots

in Fig. 7). This low-flow wave reduces the inflow to the

high-density shock wave sufficiently to eliminate it. At the

same time, the speed limits cause an increase in density in

the region E, which needs some time to flow out and to

disappear. Eventually, all high density regions are eliminated

(at approximately kc =35). At the downstream end of the

link (in the region above D) it can be seen that resolving
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Fig. 6. The speed limit values that resulted from MPC.

the shock wave causes a higher flow (a lighter area in the

flow diagram) and that this results in higher densities near

the on-ramp (segment 20), but does not create new shock

waves. It can also be seen that the outflow in the first hour

of the controlled case is higher (lighter in the flow diagram)

than in the uncontrolled case.

The controller attempts to eliminate the second shock wave

in a similar way: the speed limits cause a low-flow wave that

meets the high-density jam in the area to the left from F (as

shown the flow diagram, i.e., the rightmost plot in Fig. 7).

This eliminates the shock wave, however it also results in a

high-density area (above G in the density diagram) that does

not resolve. From this area another shock wave emerges that

exits the link at kc =120.

It can be concluded that both shock waves were resolved,

but with different scenarios for the increased-density area’s

caused by the speed limits. There may be several reasons for

these differences:

• It is unknown what the best possible result is that

can be achieved within a given scenario. It may be

possible that the current result cannot be improved any

further. Currently there are no systematic methods to

determine under which conditions the shock waves can

be successfully resolved.

• The two shock waves had a different shape, the second

one was somewhat longer, and it may have required

a longer stretch of controlled segments to eliminate it

without creating a new shock wave.

• The model mismatch may have played a role in the

inability to stabilize traffic in the second case.

In quantitative terms the average outflow improved from

3483.5 veh/h to 3766.5 veh/h, which is an improvement of

8%.

Comparing the TTS based on the number of vehicles

or densities in the link (as is done usually) is not a good

measure here, because the controller did not only increase the

outflow but also the inflow, because the shock waves did not

block the inflow anymore. Therefore, we apply an equivalent

formulation of the TTS, where the TTS is expressed as a
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Fig. 7. The results of the MPC-based speed limits. The first shock wave is completely resolved, and the second is also resolved but at the cost of a larger
high-density region from which eventually another shock wave emerges.

function of the inflows and outflows:

J̃TTS = TcN(0)K + T 2
c

K−1
∑

k=0

(K − k)
(

qdemand(k)− qout(k)
)

where N(0) is the initial number of vehicles in the network,

qdemand(k) is the traffic demand (veh/h) at segment 1 at time

t = kTc, qout(k) is the outflow (veh/h) at segment 20 at time

t = kTc, and K is the last sample step index of the scenario2.

To make the uncontrolled and the controlled scenarios

comparable, we assume that the demand for both scenarios is

equal, and that it is also equal to the inflow in the controlled

case. The interpretation of this assumption is that there were

vehicles that could not enter in the uncontrolled case (by the

blocking shock wave) but could enter in the controlled case.

All these vehicles contribute in both cases to the TTS until

they exit the link. So, this TTS calculation also accounts for

the waiting time of these vehicles. This results in a TTS of

1413.2 veh.h for the uncontrolled case, 961.6 veh.h for the

controlled case, which is an improvement of nearly 32%.

V. CONCLUSION

In this paper is we discussed issues and choices that play

a role when applying model predictive control in a real-

world environment (which is here represented by a micro-

simulation model).

We have reported the results of applying model predic-

tive control with METANET as the prediction model to a

microscopic traffic flow model as simulation model. In the

simulations a scenario of two hours was used with two shock

waves propagating over a stretch of freeway of 10 km length.

The controller eliminated the shock wave in both cases,

but in the second case after some time another shock wave

emerged from the increased-density area caused by the speed

limits. Despite the imperfect resolution of the second shock

wave, the TTS improvement was nearly 32% and the flow

improvement 8%. Further research is necessary to investigate

the reasons for the different behavior in the two cases.

2This expression for the TTS can be derived from J̃TTS =
Tc

∑K−1

k=0
N(k) and N(k) = N(k−1)+Tc(qdemand(k−1)−qout(k−

1)).

One of the reasons that may have degraded the perfor-

mance of the controller is the model mismatch between the

prediction model and the simulation model. Although the

calibrated prediction model was able to reproduce the shock

wave occurring in the calibration data in most cases, it also

has failed occasionally. To correctly interpret the results of

a simulation there is a need to better assess the achievable

improvement, based on the observed shock wave and traffic

scenario properties.

Future investigations will address these issues, together

with the evaluation of the controller for a wider range of

scenarios. Furthermore, the same approach will be applied

for a real freeway, using the real layout and real traffic

data; and the possibilities of a robust MPC approach will

be investigated, to deal explicitly with the model mismatch.
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