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Stabilization of switched affine systems:

An application to the buck-boost converter

Daniele Corona, Jean Buisson, Bart De Schutter, Alessandro Giua

Abstract— In this paper we extend a technique developed
to design a feedback stabilizing control law for autonomous
switched systems all modes of which are unstable. More
specifically, we extend the switching table procedure to the
class of affine switched systems, the dynamics of which either
do not have an equilibrium point or, if they do, it is not
common. This method is then applied to the DC-DC buck-boost
converter. The design of the control law is based on dynamic
programming and it results in a partition of the state space
into switching look-up tables. A comparison with a Lyapunov
based technique is also discussed.

I. INTRODUCTION

Switched systems [19] form a particular class of hybrid

systems where the occurrence of a discrete event, con-

trolled or uncontrolled, triggers the change in the mode of

the system. As a consequence of the highly sophisticated

technology in electronics observed in the last decades,

countless physical plants, machines and devices integrate

discrete and continuous behavior and they can be modeled

in the switched system framework. An important class of

switched systems, called autonomous [19], is characterized

by the sole control action of the switching signal. One of

the milestone papers in the field is [2], where the author,

through a simple example, highlights some paradoxical

behaviors of this class.

Among the many application fields of switched systems

we consider power converters (Boost, Buck, multilevel

converters), that are widespread used in industry, and in

particular in variable speed DC motor drives, in com-

puter power supplies, in cell phones and in cameras. They

are electrical circuits controlled by switches (transistors,

diodes), used to adapt the energy supplied by a power

source to a load. Aiming at reducing switching losses and

EMI (Electromagnetic Interference) of power converters, a

lot of soft switching techniques are developed so that high

efficiency, small size and low weight can be achieved. In

nominal conditions, these circuits have been designed so

that the switching action does not provoke discontinuity.

Practically, these devices are controlled through a Pulse-

Width-Modulation (PWM) where the switching behavior

of the closed loop system is averaged with a nonlinear

model [18]. Continuous control approaches are then used,
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Fig. 1: Circuit scheme of the buck-boost converter.

among which passivity based control [18] and sliding mode

control [20].

Alternatively these devices are good candidate for hybrid

modeling and they can be modeled by switched systems

(without jumps). For a complete, general study on analysis

and design of switched system we refer to the recent

books [16], [19], where stability, robustness, controllability

and optimal control are studied. In the context of stability

analysis and control design a standard technique is to

investigate the conditions of existence of a common [17] or

multiple Lyapunov function [2], or to use geometric [13]

approaches. The stabilization of a switched system can

be transformed into a non-convex problem, for which

LMIs [8], [10] or iterative methods [14] may be used.

Properties of uniform stability for a switched system were

studied in [12].

A possible technique used to stabilize switched systems

is described in [5] and it is based on an optimal control

approach. As explained in [7], this method, the Switching

Table Procedure (STP), is viable when all dynamics admit a

common equilibrium point. Here we provide an extension

to the case where the system is affine and the dynamics

have no common equilibrium or no equilibrium.

II. THE BUCK-BOOST CONVERTER

In order to derive models for DC-DC converters, dif-

ferent energy based approaches, such as circuit theory,

bond graphs, Euler Lagrange, Hamiltonian approach can be

used. For switching systems, extensions have been proposed

for the Hamiltonian approach [9] or for the bond graph

approach [3]. In most of these systems, one physical switch

is controlled (e.g. a transistor), while the other one may be

not (e.g. a diode).

A simple circuit representation of the ideal buck-boost

converter is depicted in Figure 1. The continuous source E
has a negligible internal resistance and infinite power. No

energy is lost in the inductor L nor in the capacitor C. The

diode has no voltage drop in conducting mode and switches

exactly at zero voltage level. In a normal operating mode

of an ideal converter both the controlled and uncontrolled

switches occur simultaneously.
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Fig. 2: Partition of the state space for the different modes of the
converter.

The converter theoretically has four possible operating

modes. We label them with the variable ρ and we denote,

as in Figure 1, by v the voltage on the capacitor and by i
the inductor current. The four modes are: (I) switch closed,

diode blocked (ρ = 1), (II) switch open, diode conducting

(ρ = 2), (III) switch open, diode blocked (ρ = 3), (IV)

switch closed, diode conducting (ρ = 4).

In nominal behavior only modes (I) and (II) are involved.

The nominal working area of the space state is N ≡
{(i, v) ∈ R

2 : i ≥ 0, v ≤ E} depicted in Figure 2 in

the dark-shaded area (right-bottom area of the figure). The

four modes are represented by the nodes of the oriented

graph in Figure 3. The arcs indicate the discrete transitions

from one mode to another; the controlled switches are solid

lines, while the diode switches, depending on the state of

the system, are dashed.

In state (I) the battery transfers energy into the inductor

while, on the load side, the capacitor is feeding the load.

After some time the switch is opened and the system goes to

mode (II) where the energy stored in the inductor can now

flow towards the load and the capacitor. Then the controller

may close the switch again to mode (I) and so on. If the

duration in mode (II) is protracted all the magnetic energy

is transferred to the load and the buck-boost converter

switches to the discontinuous mode (III) [11]. This state is

reached when the condition i = 0, v < 0 is attained. In this

mode the current remains equals to zero and the capacitor

is feeding the load. From (III) it is possible to switch to

(I) by closing the switch. Finally let us observe that mode

(IV) is in fact critical, because it imposes two different

voltage levels in the same point (v on the anode and E
on the cathode of the diode in conducting mode). If for

some reason the voltage v overtakes E when the switch is

closed, a safe controller must immediately open the switch

leading to mode (II), in order to prevent harmful current

peaks across the diode. Mode (IV) is, to some extent, a

fault mode.

Let us denote by x = [i, v]T the state. The differ-

ential equations corresponding to each location of the

graph in Figure 3, are the following. In location (I)
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Fig. 3: Oriented graph of the switching behavior of the converter.
Solid lines: controlled switches, dashed lines: diode state-based
switches.
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Fig. 4: Oriented graph with only the 2 nominal operating modes.

ẋ =

[

0 0
0 − 1

RC

]

x +

[

E
L

0

]

, in location (II) ẋ =
[

0 1
L

− 1
C

− 1
RC

]

x, in location (III) ẋ =

[

0 0
0 − 1

RC

]

x.

In the ideal case, it is not possible to provide a model

for location (IV), as it violates the laws of the electrical

networks. Under such assumption it is allowed to remove

location (IV) from the model. The attention may thus be fo-

cused on a model that only contains three states and whose

dynamics are given above. Furthermore we also assume

that the controller of the switch is fast enough to prevent

the complete discharge of the inductor during the evolution

in location (II), allowing to disregard the third dynamics.

This framework is relevant when the working point of the

converter admits an invariant region1 completely included

in the nominal working area in Figure 2.

These considerations lead to restrict the model in Figure 3

to the one depicted in Figure 4 with dynamics [4]:

ẋ =

[

0 ρ−1
L

1−ρ
C

− 1
RC

]

x+

[

2−ρ
L

E
0

]

= Aρx+ Fρ, (1)

where ρ ∈ {1, 2} is the switching signal. The system is

described in terms of the state variables and a control signal

ρ(t), which switches among the possible modes in order to

stabilize to a specific operating point xp.

III. THE SWITCHING TABLE PROCEDURE

The method, based on the switching table procedure

(STP), used to obtain the control law is described in [7] and

[5], Chapter 7. It can be applied to the class of switched

autonomous systems, ẋ = Aρx, denoted by {Aρ}ρ∈S ,

where S is a set of s modes indexed by ρ. It consists in

1For each initial point taken in such region there exists a controlled
switching sequence that keeps the state within the invariant region.



determining a partition of the state space that indicates what

mode Aρ should be active for the current state value. The

partition can be obtained by solving

J(x0, ρ0) = min
ρ(t)

∫ +∞

0

xTQρ(t)xdt

s.t. ẋ(t) = Aρ(t)x(t)
(x(0), ρ(0)) = (x0, ρ0)

(2)

parameterized on the initial point (x0, ρ0), where Qρ are

appropriate weight matrices.

We now briefly sketch how the STP can be used for

stabilizing purposes. This will be done in three steps. A

complete description and proofs can be found in [6], [7].

Initially we consider only a finite number N of switches,

assuming that at least one dynamics of {Aρ}ρ∈S is stable.

Then we show how the procedure can be extended to the

case of N = ∞. Finally, we relax the assumption on the

stability of at least one dynamics and show how the STP

can serve to design a stabilizing control law.

Step 1 In the first step we show that the optimal control

law for the optimization problem (2) takes the form of a

state feedback. When k out of N switches are available the

current hybrid system state (x, ρ) indicates, via a look-up

table Cρ
k , whether a switch from the current dynamics Aρk

to Aρk−1
, should occur. The look-up table Cρ

k is a partition

of the state space into different regions Rρ, where ρ ∈ S is

the mode to switch to if x ∈ Rρ. For autonomous systems

and quadratic cost these partitions are homogeneous, i.e., if

a strategy is valid for a specific x̄, then it is also valid for

any point λx̄, λ ∈ R
+, allowing to restrict the interest to a

unitary semi-sphere Σn.

The tables are constructed recursively, on the increasing

number k of remaining switches, using the information

already computed when k − 1 switches are available. The

procedure is iterated until k = N . Briefly, assume that

k switches are remaining and the current hybrid state is

(y, ρ), with y ∈ Σn. The residual cost consists of two

terms: one due to the evolution in the current location ρ.

The other is the cost from the hybrid state (z(t), σ), where:

(i) z(t) = eAρty is the point reached in time t in mode ρ
and (ii) σ ∈ S is the mode where the system switches to

at time t+. For each (z(t), σ), this cost has been already

computed at the previous stage k − 1.

The residual cost function is minimized over the couple

(t, σ), using continuous optimization over t ≥ 0 and

enumeration over the single discrete variable σ ∈ S . The

optimal arguments t∗(y, ρ), σ∗(y, ρ) allow to build the table

Cρ
k . A complete description of this algorithm is given in [5].

The procedure is initialized by computing the residual cost

with 0 switches as:

J∗
0 (y, ρ) ,

{

yTZρy if Aρ is stable

+∞ else,
(3)

where Zρ solves the equation AT
ρ Zρ + ZρAρ = −Qρ.

Step 2 If the system is allowed to switch indefinitely there

exists a sufficiently big N̄ such that for all N > N̄ + 1 it

holds [6] Cρ
N ≡ Cρ

N̄+1
.

The proof lies on the fact that for every initial hybrid state

(y, ρ) the value of the cost converges with the increasing

number of switches. As a consequence it holds that, for all

ρ ∈ S , Cρ
∞ , limN→∞ Cρ

N ≡ Cρ

N̄+1
.

Furthermore, if the switched system automaton graph is

totally connected, i.e., for all ρ, σ ∈ S , with ρ 6= σ, there

exists an oriented arc of the automaton graph from node ρ
to node σ, it holds for all ρ, σ ∈ S , Cρ

∞ ≡ Cσ
∞ ≡ C∞,

meaning a unique table for all modes.

To construct the table C∞ the value of N̄ is needed. We

leave to further investigation a method to compute N̄ in

advance; so far the approach consists in constructing tables

until a convergence criterion2 is met.

Step 3 We show how the STP can be used to obtain an

optimal stabilizing switching signal in the case when all

dynamics of {Aρ}ρ∈S are unstable. To this purpose we add

to {Aρ}ρ∈S a stable dummy dynamics As+1, that serves to

give a finite value to the function J∗
0 (y, ρ), obtaining an

augmented system, {Aρ}ρ∈S̃
with |S̃| = |S|+ 1.

If the partition C̃∞, solution of the same optimal control

problem for the augmented system, does not contain the

label relative to As+1, then the table C̃∞ is also a solution

for {Aρ}ρ∈S . A particular care must be taken in the choice

of the weight matrix for the dummy dynamics.

Theorem 3.1 ([7]): Consider a switched system

{Aρ}ρ∈S , and an optimal control problem with N = ∞
and weight matrices Qρ > 0, ρ ∈ S . Define an augmented

{Aρ}ρ∈S̃
and a corresponding optimal control problem,

with Qs+1 = qQ, q ∈ R
+, Q > 0. We have that:

1) If the switched system {Aρ}ρ∈S is globally exponen-

tially stabilizable [15], then there exists a q ∈ R
+

such that the table C∞ does not contain the label

associated to As+1.

2) If there exists a q ∈ R
+ such that the table C∞,

computed by solving an optimal control problem on

{Aρ}ρ∈S̃
, does not contain the label associated to

As+1, then the switched system {Aρ}ρ∈S is asymp-

totically stabilizable. �

The above theorem provides a constructive way to design

an asymptotic stabilizing switching law for a switched

system {Aρ}ρ∈S . The method can be summarized in four

points:

1) Associate to the switched system an optimal control

problem with N = ∞;

2) Define an augmented system {Aρ}ρ∈S̃
with a stable

dynamics and weight Qs+1 = qQ, where q ≫ 0 and

Q > 0;

3) Construct the table C̃∞ solving an optimal control

problem on {Aρ}ρ∈S̃
;

4) If this table does not contain the label associated to

the stable mode As+1, then C∞ ≡ C̃∞.

We do not provide an a priori rule to establish whether

the switched system is stabilizable and an analytical way

to compute an appropriate value of q. Knowing whether

the system is stabilizable remains in the general case

2Typically a threshold on the improvements in the value of cost function.



undecidable [1]. The numerical complexity of this algorithm

is extensively discussed in [6].

IV. EXTENSION OF THE STP PROCEDURE

In this section an extension of the STP as described pre-

viously is considered. In particular we study the possibility

of using the STP as a design tool to regulate a switched

affine system to a desired point of the state space xp ∈ R
n.

We can define the following problem:

Problem 1: Given a switched affine system of the form

ẋ = Ãρx+ F̃ρ, (4)

ρ ∈ S , with totally connected automaton graph, design the

switching signal ρ(t) so that the state x is steered to a

desired value xp. �

In the particular case when xp is a stable equilibrium

point of one of the modes of the system (4), let us say ρ̄,

Problem 1 has a straightforward solution: execute any finite

switching sequence with final element ρ̄. Once in location ρ̄
the system will autonomously reach the stable equilibrium

point and no further control action is needed. This scenario

is however very particular, because it requires that the

specific point xp solves the strong condition Ãρxp+F̃ρ = 0
for at least one ρ ∈ S .

We study now the case of designing a feedback control

law for the switching signal ρ(t) that regulates the state to

a generic desired value xp, assuming that this point is not

an equilibrium for any mode of the system.

In order to apply the STP to this framework we associate

to the system above an LQ criterion to minimize. As

explained above we consider a set of positive definite weight

matrices Q̃ρ for each mode, that penalizes the offset from

the target xp. That is

J(x0, ρ0) = min
ρ(t)

∫ +∞

0

(x− xp)
TQ̃ρ(t)(x− xp)dt

s.t. ẋ(t) = Ãρ(t)x(t) + F̃ρ(t)

(x(0), ρ(0)) = (x0, ρ0).

(5)

It is convenient to perform a shift of the state space

centered in xp, thus ỹ ∈ R
n with ỹ = x − xp. In this

new set of coordinates the affine switched system becomes
˙̃y = Ãρỹ + Fρ, where F = Aρxp + F̃ρ and problem (5)

becomes

J(ỹ0, ρ0) = min
ρ(t)

∫ +∞

0

ỹTQ̃ρ(t)ỹdt

s.t. ˙̃y(t) = Ãρ(t)ỹ(t) + Fρ(t)

(ỹ(0), ρ(0)) = (ỹ0, ρ0).

(6)

The next step is to reformulate the switched affine system
˙̃y = Ãρỹ + Fρ as a switched system {Aρ}ρ∈S . To this

purpose we consider an augmented space variable y ∈ R
n+1

obtained by extending the original state space vector with

an additional variable yn+1 and governed by the dynamics

ẏ = Aρy, where Aρ =

[

Ãρ Fρ

0 0

]

and weight matrix

Qρ =

[

Q̃ρ 0
0 0

]

. The dummy variable yn+1 remains

constant for any initial state, thus, y(t) = [ỹ(t), yn+1(0)]
T.

If yn+1(0) = 1 the problem

J(y, ρ0) = min
ρ(t)

∫ +∞

0

yTQρ(t)ydt

s.t. ẏ = Aρ(t)y

(y(0), ρ(0)) = ([ỹT0 , 1]
T, ρ0)

(7)

is equivalent to (6).

The matrices Aρ of the switched system {Aρ}ρ∈S are all

unstable, because ỹ = 0 is not an equilibrium point for any

of the modes. The objective of the switching control law

for the new switched system is to steer the vector field y
towards yeq = [0, . . . , 0, 1]T. In this case in fact the original

system has reached the target xp.

Consider now an augmented switched system {Aρ}ρ∈S̃

of {Aρ}ρ∈S as described in Section III, step 3, with

As+1 =

[

Ãs+1 0
0 0

]

and Qs+1 =

[

Q̃s+1 0
0 0

]

, and

the following assumption:

Assumption 4.1: The matrix Ãs+1 is Hurwitz and the

matrix Q̃s+1 is positive definite. �

We can now prove the following proposition:

Proposition 4.2: Under Assumption 4.1 above Theo-

rem 3.1 holds despite the fact that matrix Qs+1 is not strictly

positive definite and dynamics As+1 is not strictly stable.

Proof: This is an immediate consequence of the fact

that for every possible initial state y0, the cost function

J(y0, s + 1) =
∫ +∞

0
yTQs+1ydt, for the mode s + 1 is

finite. In fact, by construction and assumption, the first n
components of y are integrable, and the component n + 1
is constant but it has a null weight. �

This result allows one to use the STP to stabilize an all-

unstable-modes switched affine system to a desired specific

point of the state space. This is done by minimizing a

quadratic criterion that penalizes the distance of the current

state from the desired target point. Note however that, as

stated in Theorem 3.1, the STP is guaranteed to find a state

feedback switching signal in the particular case that the

switched system is globally stabilizable. As an application

of this new result we consider the case study of the buck-

boost converter.

V. NUMERICAL EXPERIMENTS

Consider the buck-boost converter in Figure 1. The

numerical values of the physical system are normalized,

hence we chose E = 1, L = 1, C = 1 and R = 1. The

initial step of the implementation is to adapt the physical

system in Section II to the method in Sections III and IV.

First we select the set-point xp = [2,−1]T and we

define a dummy couple A3, F3, that steers the state to

the set point xp. A choice [4] of this dynamics can be

obtained by solving on ρ (see (1)) Aρxp+Fρ = 0, yielding

A3 =

[

0 0.5
−0.5 −1

]

and F3 =

[

0.5
0

]

. In this case the

obtained dynamics has also a physical interpretation: in the

neighborhood of its equilibrium point xp it approximates the

sliding surface of the system with infinite switching rate.



TABLE I: Critical tuning parameters of STP applied to the buck-
boost converter.

Number of switches N = 25
Number of samples Ns = 2000

Time horizon τmax = 500
Number of points (zenith) Nϕ = 15

Weight of stable mode q = 1000
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Fig. 5: Table C∞ obtained for buck-boost converter and parame-
ters in Table I. The left side (green) imposes a closed switch (A1),
the right side (blue) open (A2).

Then we transform the affine equations (1) into the form

ẏ = Aρy, by the introduction of an additional state variable.

This leads us to work in R
3, and more precisely along the

affine plane y3 = 1. This transformation allows to preserve

important properties of the STP.

The weight matrices for modes one and two are chosen

as the identity. The dummy dynamics (Section III, step 3)

is penalized with a factor of q = 103.

We observed for N = 25 the convergence of the switch-

ing tables. The discretization of the R
3 unitary semi-sphere

is obtained in polar coordinates by sampling the zenith angle

ϕ with Nϕ = 15 and the azimuth angle with Nϑ = 60
samples3, for a total number of 574 points. In Table I we

provide the parameters of the STP we have used.

The obtained partition C∞ is computed in R
3, but the

meaningful part is the intersection with the affine plane

y3 = 1, projecting the R
3 solution along the affine plane,

with an imaginary light point in the origin, as illustrated

by Figure 6. We chose this particular distribution of points

because we want to have a higher degree of precision

around the origin, which corresponds to the working point.

Note that only the labels (colors in this case) associated to

dynamics A1 and A2 appear.

In Figure 5 we depict the table C∞ restricted to the

subspace y3 = 1, to be used during the simulation. When

the state y = [y1, y2]
T is in the green area, then the mode

ρ = 1, (closed switch in Figure 1) is active. On the contrary,

when y = [y1, y2]
T is in the blue area, then the mode ρ = 2

(open switch) is active.

VI. SIMULATION RESULTS

The synthesis of the control law was obtained, with

the tuning parameters of the algorithm listed in Table I.

3For the semi-sphere, the range of the zenith angle is π/2, 4 times less
than the range of the azimuth angle, which is 2π.

Affine plane

y1, y2

Unitary semi-sphere

y3

Fig. 6: Side view of the projection on the affine plane y3 = 1 of
the table C∞ obtained on the unitary semi-sphere.

The computations were carried out with Matlab 7, on a 2

GHz Pentium, requiring a total off-line computation time

of about 8.95 × 104 seconds. The resulting control law,

represented in Figure 5, is affected by numerical error

along the switching surface. This is often observed in those

examples where the solution for the switching sequence

collapses into a sliding surface. Note that it is possible to

smoothen the solution by means of 2-dimensional filtering

algorithms. We decided not to follow this way because it

results into a suboptimal solution. It is intuitive that the sub-

optimality of the numerical solution decreases with higher

granularity of the state space discretization, but the proof is

not straightforward and is of interest for future research.

The on-line controller decides the best strategy by choos-

ing the information contained in the closest neighbor point

to the current state value. Other policies, for example based

on averaging the indication contained in a surrounding of

points are also possible.

The table C∞ was tested on 8 different initial points,

listed in Table II. The corresponding trajectories are plotted

in Figure 7.a. The optimal strategy is to remain in the initial

location until the switching surface is hit. From there on

a chattering behavior is activated and the state is steered

towards the equilibrium point along the sliding surface.

Theoretically this occurs at an infinite frequency. In practice

the switching occurs at the same sampling time of the

on-line simulator. Remark that the required on-line time

is merely reduced to table browsing. It is also possible

to impose a minimum permanence time in each location,

provided that the delay is smaller than the discharge period

of the inductor, as discussed in Section II.

Another possible control law can be designed with a

Lyapunov based method [4]. In this approach, based on

physical considerations, a unique Lyapunov function, which

is directly derived from the model, is proposed. It allows

to stabilize a physical switched affine system around a non

common equilibrium point using different strategies such

as maximum descent or minimum switching. The obtained

control law is reported in Figure 7.b, where in addition the

trajectories from the 8 different initial points are plotted.

In Table II we report the performances for the trajectories

obtained by using the two methods. It can be seen that both

laws are stabilizing and it is relevant to observe that in

addition the STP provides minimization of a performance.

VII. CONCLUSIONS

A case study, the buck-boost converter, was considered

as an example to extend the switching table procedure,
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Fig. 7: Trajectories from different initial points resulting from (a) STP solution, (b) solution based on common Lyapunov function.

TABLE II: Comparison of the solution obtained with the STP and
with Lyapunov-based method for different initial points (Figure 7).

Label (Fig. 7) Point Cost (STP) Cost (Lyap)

A [4, 0]T 16.2 19.8

B [4, 4]T 34.1 38.3

C [0, 4]T 6.0 6.1

D [−4, 4]T 25.4 25.8

E [−4, 0]T 24.2 24.6

F [−4,−4]T 28.3 28.7

G [0,−4]T 6.6 7.6

H [4,−4]T 20.9 31.4

presented in [5]. We have shown how to regulate to a

generic point a switched system composed of dynamics

with different or no equilibrium. The procedure is based

on dynamic programming and principle of convergence for

infinite time horizon methodologies. We have shown how

the STP can be applied to regulate the system state to a

desired target point. A limitation of the method is its long,

although offline, computation time. Further investigation

could involve improvements that allow to speed up the

calculations and the tuning of the parameters. Despite these

difficulties, the obtained solution proved to be efficient for

the considered application.
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