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Supervisory hybrid model predictive control

for voltage stability of power networks

R.R. Negenborn, A.G. Beccuti, T. Demiray, S. Leirens, G. Damm, B. De Schutter, M. Morari

Abstract— Emergency voltage control problems in electric
power networks have stimulated the interest for the imple-
mentation of online optimal control techniques. Briefly stated,
voltage instability stems from the attempt of load dynamics
to restore power consumption beyond the capability of the
transmission and generation system. Typically, this situation
occurs after the outage of one or more components in the
network, such that the system cannot satisfy the load demand
with the given inputs at a physically sustainable voltage profile.
For a particular network, a supervisory control strategy based
on model predictive control is proposed, which provides at
discrete time steps inputs and set-points to lower-layer primary
controllers based on the predicted behavior of a model featuring
hybrid dynamics of the loads and the generation system.

I. INTRODUCTION

Huge problems in the US and Canada [1], Italy, and The

Netherlands due to power outages have shown the crucial

role of a reliable operation of electricity distribution and

transmission networks. A reliable and efficient operation of

these networks is not only of paramount importance when

these electricity systems are pressed to their limits of its

performance, but also under regular operating conditions.

Due to the deregulation in the European electricity market,

the number and variety of actors increases. This number will

even further increase as also large-scale industrial suppliers

and small-scale individual households (via solar energy or

wind energy installations) will start to feed electricity into

the network [2]. With this increasing complexity faults and

disturbances causing voltage instabilities are likely to occur

more frequently.

In general, the behavior of power systems is characterized

by complex interactions between continuous dynamics and

discrete events, i.e., power systems exhibit hybrid behavior.

Components such as generators and loads drive the con-

tinuous dynamic behavior. They obey physical laws, and

are usually represented by coupled differential and algebraic

equations. Discrete events or discrete inputs cause discrete

behavior through, e.g., breaking down or connecting of a

transmission line, saturation effects in automatic voltage reg-

ulators and power system stabilizers, on or off switching of
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sylvain.leirens@supelec.fr. G. Damm is with the Laboratoire In-
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generators, connecting or disconnecting of loads, changing of

transformer ratio settings, and connecting or disconnecting of

capacitor banks; seasonal variations can also cause changes

in power production capabilities as well as consumption and

can modify the direction of power flows and thus cause

switching behavior. The networks moreover typically span

a wide range of time scales and large geographical areas.

To control such complex systems, hierarchical control in

which control takes place at different layers based on space

and/or time division is necessary [3]. The controllers at the

lowest layer act directly on the actuators of the physical

system, employing faster and more localized control. Higher-

layer controllers supervise controllers of lower layers by pro-

viding set-points or specifying constraints, employing slower

and more overall control. The task of a higher layer is to steer

the underlying layer in such a way that the performance of

the physical system is optimal in some sense. Traditionally in

hierarchical control, a layer either only provides continuous

or only discrete values to a different layer. In the approach we

propose, both continuous and discrete values are dealt with

in an integrated way, i.e., we consider a hybrid approach.

The particular control problem we are dealing with is

voltage stability after disturbances. After a disturbance, e.g.,

breaking of a transmission line, the generation and transmis-

sion network may not have sufficient capacity to provide the

loads with power; voltage instability may be the result. Con-

trol actions have to be chosen that minimize negative effects

of this voltage instability. Traditionally, offline static stability

studies are carried out in order to avert the occurrence of

voltage instability. The approach we propose is an application

of online control that takes into account both the inherent

temporal dynamics and that determines the most appropriate

control sequence required to reach an acceptable and secure

operating point. We consider a scheme used by a higher-layer

controller that controls a power network to determine both

discrete and continuous set-points for lower-layer controllers

in such a way that negative effects due to voltage instability

after disturbances are minimized. We hereby assume that a

lower layer that accepts set-points at discrete time steps is

already present.

This paper is organized as follows. In Section II we

introduce the power network and the lowest layer of control

that we consider. In Section III we introduce the voltage

control problem and the objectives. In Section IV we present

a control strategy for the higher layer based on model

predictive control. Section V contains simulation results

obtained on the considered power network.
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Fig. 1. Graphical representation of the IEEE 9-bus Anderson-Farmer
network.

II. POWER NETWORK SYSTEM

A. Physical network

The case study under consideration is the 9 bus Anderson-

Farmer network [4], depicted in Fig. 1, taken from the

Dynamical Systems Benchmark Library1, whereto the reader

is referred for an exhaustive description.

B. Components of the network

The considered network consists of 4 generators G1,

G2, G3 and G4 (shown with their nominal apparent power

ratings) feeding the static loads at buses 5 through 9, where

G1 and G4 and the loads connected to buses 5 and 9 are

the aggregate representations for neighboring generators and

loads. The synchronous machines are connected to the grid

via lossless step-up transformers featuring a fixed turns ratio;

a capacitor bank at node 7 provides additional reactive power

to the system. The following list contains more details:

• Generators: Generators G2 and G3 represent single

physical machines, whereas G1 and G4 denote the

aggregate generators comprising several physical units.

Therefore, G2 and G3 are described by a detailed sixth-

order model [5] including the mechanical equations

and the electrical transient and sub-transient dynamics,

whereas G1 and G4 are described by second-order

mechanical dynamics [5].

• Loads: The employed static loads comprise voltage

dependent and constant impedance types [6]. The loads

are described with following classical formulation in

terms of active and reactive power

Ph = shP0hv
α
h (1a)

Qh = shQ0hv
α
h , (1b)

where h ∈ {5, 6, 7, 8, 9}, vh is the voltage of bus h, P0h

(Q0h) is the active (reactive) power steady-state value at

node h, and sh ∈ {0, 0.02, . . . , 0.98, 1} per unit (p.u.)

represents the discrete load shedding factor applied to

a load to relieve the strain of the power demand on the

1URL: http://psdyn.ece.wisc.edu/IEEEbenchmarks/

system. Voltage dependent loads correspond to α = 1
and constant impedance loads to α = 2.

• Capacitor bank: The capacitor bank locally stabilizes

bus voltages by injecting additional reactive power into

the grid. It is represented as a (negative) purely reactive

load of type (1b) with α = 2 and thus describes a

switched shunt capacitor.

• Transmission lines: The transmission lines between the

buses and components transfer the power from one

location to another. The lines are represented by the

π model for transmission lines [5].

C. Primary control layer

In the network there is a primary, lower-layer, control

layer that locally regulates power flows and voltage levels

at the bus terminals of generators. Fig. 2 shows a schematic

representation of the local controllers’ principle of operation.

Feedback variables and corrective actions are depicted for

each component [5]. The primary control layer consists of

the following:

• Turbine governors: All generators feature a turbine

governor (TG) controlling the mechanical power Pm

acting on the shaft of the machine in order to satisfy

the active power demand of the network and maintain

the desired frequency ωref = 60 Hz. The TGs act on a

time scale of tens of seconds.

• Automatic voltage regulators: All generators feature an

automatic voltage regulator (AVR) maintaining the level

of the excitation field Efd in the rotor windings at the

value required to keep the bus (stator) voltage close

to the desired set-point. Saturation is included in the

AVR to account for the maximum allowable current in

the excitation system, i.e., Efd has an upper limit value

Emax and a lower limit value Emin. Once a machine has

reached its saturation limit it cannot produce additional

reactive power and can therefore no longer participate

in sustaining the voltages in the network [5]. The AVR

voltage reference ri of generator i, i ∈ {1, 2, 3, 4}, can

be set in the range 0.9−1.1 p.u. with steps of 0.01 p.u.

The AVRs act on a time scale of seconds.
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• Power system stabilizers: Generators G2 and G3 feature

a power system stabilizer (PSS) eliminating the pres-

ence of unwanted rotor oscillations by measuring the

rotational speed ω and adding a corrective factor vref,PSS

to the bus terminals’ voltage reference vref. Generators

G1 and G4 feature no power system stabilizer since the

faster dynamics related to the rotor oscillations are not

present in the related model equations. The PSSs act on

a time scale of tenths of seconds.

D. Controls available to a higher control layer

Given the description of the network and the primary

control layer, there is a number of controls available to a

higher control layer in the form of set-point and reference

settings. In particular the following can be adjusted:

• the voltage references for the AVRs;

• the mechanical power set-point for the TGs;

• the reference frequency for the TGs and PSSs;

• the amount of load to shed;

• the amount of capacitor banks to connect to the grid.

Depending on the particular control problem a higher-layer

controller will adjust the values of these controls. In particu-

lar for the problem at hand the amount of load shed (defined

by the variables sh) and the set-points of the AVRs (defined

by the variables ri) will be taken as the available controls.

III. EMERGENCY VOLTAGE CONTROL

A major source of power outages is voltage instability

[7]. Voltage instability in general stems from the attempt

of load dynamics to restore power consumption beyond

the capability of the combined transmission and generation

system. Typically, the capability is exceeded following the

outage of one or more components in the network, such

that the system cannot satisfy the load demand with the

given inputs at a physically sustainable voltage profile in

the network.

The control problem involves the case of emergency

voltage regulation, in which the power system is initially in

steady-state operation and subsequently subjected to a fault,

modeled as the partial or total outage of a line. Due to the

reduced transmission capacity of the network the requested

load demand together with the given system configuration

place the grid under an excessive amount of strain, so that

corrective actions are required to avoid that the induced

transients drive the system to collapse or cause unwanted

and hazardous sustained oscillations. More specifically, the

control objectives are:

1) Maintain the voltages between 0.9 and 1.1 p.u., i.e.,

sufficiently close to nominal values to ensure a safe

operation of the system by keeping it sufficiently dis-

tant from low voltages, which may lead to a collapse.

2) Effectively achieve a steady-state point of operation,

while minimizing switching of the control inputs so

that a constant and appropriate set of input values is

ultimately applied to the power grid.

For this second objective, in particular the option of shedding

load is to be avoided unless absolutely necessary in order to

fulfill the primary objective, as load shedding is the most

disruptive countermeasure available.

IV. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) [8], [9] has been tra-

ditionally employed in the process industry and has shown

promising performance also for a variety of other control

problems [10]. The control action is obtained at each time

step by minimizing an objective function over a finite horizon

subject to the equations of the employed prediction model

and the operational constraints, e.g., on inputs. The control

problem is solved in a receding horizon fashion. The major

advantage of MPC is its straight-forward design procedure.

Given a model of the system, hard constraints can be

incorporated directly as inequalities and one only needs to

set up an objective function reflecting the control aim; soft

constraints can also be accounted for in the objective by

using penalties for violations.

A. Derivation of the prediction model

The performance of a predictive controller relies for a large

part on the accuracy of the prediction model of the system.

The prediction model has to describe well how the inputs

affect the system behavior. Ideally a perfect model of the

system would be used; however, such a perfect model can

be very complex, thus making the optimization procedure

in the controller slow. Instead, an approximation is used. If

this approximation fits in a suitable form, relatively efficient

optimization techniques can be used to determine the controls

(e.g., linear or mixed-integer linear programming).

In order for the higher-layer controller that we are design-

ing to meet its control objectives, it has to be able to predict

how set-point changes influence the dynamics of the network.

Therefore, the controller uses a model that includes both a

representation of the physical network and a representation

of the primary control layer.

The network, including the primary control layer, is ex-

pressed [5] as a system of differential-algebraic equations

(DAE)

ẋ = f(x, u, v) (2a)

0 = g(x, u, v) (2b)

where the state variables x are the generator dynamic

variables, u denotes the system inputs, and the algebraic

output variables v are the bus voltage magnitudes. The dif-

ferential equations (2a) describe the synchronous machines

and related primary controllers; the algebraic equations (2b)

describe the classic load flow equations. See for the tech-

nical details on the power system models used the location

specified in footnote 1.

Determining the evolution of the network given an initial

state and input trajectory over the horizon thus requires the

solution of this DAE. Solving DAEs in general is a complex

task, in particular when dynamics of different time scales

are present, as is the case for the power systems. Variable

step size methods, e.g., DASSL [11], are suitable for these

cases, since they automatically choose a larger step size



when no fast dynamics are present, and a smaller step size

when they are [12]. However, using these methods inside the

optimization procedure of the MPC controller could be very

time-consuming and could thus result in very slow control.

Therefore, such a DAE model is not directly suitable as

prediction model.

Instead of taking the continuous-time DAE as prediction

model, we consider a discrete-time linearized model derived

from this DAE. At each discrete sampling instant kTs the

continuous-time linearization of (2a) and (2b) around x0 =
x(k), u0 = u(k − 1), can be written as

ẋ = Acx+Bcu+ Fc

v = Ccx+Dcu+Gc,

where

Ac = ∂f
∂x

+ ∂f
∂v

(−∂g
∂v

)−1( ∂g
∂x

), Bc = ∂f
∂u

+ ∂f
∂v

(−∂g
∂v

)−1 ∂g
∂u

Cc = (−∂g
∂v

)−1 ∂g
∂x

, Dc = (−∂g
∂v

)−1 ∂g
∂u

Fc = −
∂f

∂v
(−

∂g

∂v
)−1(

∂g

∂x
x0 +

∂g

∂u
u0 +

∂g

∂v
v0 − g(x0, u0, v0))

− (
∂f

∂x
x0 +

∂f

∂u
u0 +

∂f

∂v
v0 − f(x0, u0, v0))

Gc = −(−
∂g

∂v
)−1(

∂g

∂x
x0 +

∂g

∂u
u0 +

∂g

∂v
v0 − g(x0, u0, v0))

when ∂g
∂v

is invertible, which is typically the case for power

networks. The required Jacobians can either be derived

analytically [13] or computed numerically. For the sake of

simplicity we use the latter approach.

We assume small variations of the variables around which

the model is linearized. If the variations are not small, mode

changes have to be considered in the model, e.g., by using

piecewise affine or similar models [13].

The continuous-time linearization is discretized with the

sampling interval Ts, to obtain the following control model

in the affine expressions of x(k), u(k) and v(k)

x(k + 1) = Ax(k) +Bu(k) + F

v(k) = Cx(k) +Du(k) +G
(3)

wherein k denotes the discrete time step, and where

A = eAcTs B =
∫ Ts

0
eAcτdτBc F =

∫ Ts

0
eAcτdτFc

C = Cc D = Dc G = Gc.

The simulation sampling time Ts is not necessarily equal

to the controller sampling time, although in the following we

will take these equal. The value of Ts has to be chosen such

that the discrete-time approximation adequately reflects the

dynamics of the continuous-time linearized model.

The obtained discrete-time approximation is employed as a

prediction model in the optimal control problem formulation.

In this regard, the optimal control formulation must be

augmented with the appropriate hard constraints on the inputs

u(k) = [r(k)T s(k)T ]T , with r(k) = [r1(k), . . . , r4(k)]
T and

s(k) = [s5(k), . . . , s9(k)]
T ), which are physically bounded.

For r(k) the admissible range is simply taken to be the

continuous relaxation of the discrete physical values, since

adjusting AVR set-points is not invasive. However, load

shedding is more invasive and since it is an extremely

expensive control action such an approximation might not

be adequate. Therefore, for s(k) the control constraints are

taken as the actual discrete physically feasible values, at the

cost of introducing a set of integer variables in the model;

the employed control model is therefore by necessity hybrid

in nature.

B. Optimal control problem

To account for the control objectives mentioned in Section

III with their related order of importance a cost function

is formulated similarly as in [14]. To maintain the voltages

v1, . . . , v9 between 0.9 and 1.1, let the auxiliary variables tj ,

j = 1, . . . , 9 defined by






0.9− vj(k) ≤ tj(k)
−1.1 + vj(k) ≤ tj(k)
0 ≤ tj(k)

(4)

denote upper bounds on the amount of violation of the

voltage conditions. These upper bounds will be minimized.

This formulation leads to nine variables at each sampling

instant k, grouped in the vector t(k) = [t1(k), . . . , t9(k)]
T .

To minimize the switching between control actions, define

the variation of the manipulated variables as

∆u(k) = u(k)− u(k − 1) = [∆rT (k),∆sT (k)]T

and the diagonal penalty matrices

Qt = diag(qt1, . . . , qt9), Q∆u = diag(q∆u1, . . . , q∆u9)

with all penalty weights in R
+ and where the entries in Qt

and Q∆u are correlated to the corresponding ordering in t(k)
and ∆u(k). Consider now the expression for the stage cost,

penalizing the worst voltage violation and input change,

S(k) = ‖Qt t(k)‖∞ + ‖Q∆u ∆u(k)‖∞

and the formulation of the cost function

J(x(k), u(k − 1), U(k)) =
N−1
∑

ℓ=0

S(k + ℓ|k) (5)

which penalizes the predicted evolution S(k + ℓ|k) of S(k)
at step k + ℓ using information available at step k over the

interval [k, k +N ].
The control action at each time instant k is obtained by

minimizing the objective function (5) over the sequence of

control inputs U(k) = [uT (k), . . . , uT (k+N − 1)]T subject

to the aforementioned input constraints and to inequalities

(4) for the selected prediction model (3). Moreover, to reduce

computational complexity, the load shedding control for the

first prediction step only is computed, after which it is

taken constant throughout the prediction horizon. The first

step of the optimal sequence u∗(k) thus obtained is then

applied to the physical network after having rounded the

AVR references to the nearest feasible value. The procedure

is then repeated at the successive sampling instant k + 1.

Since we have a linear objective function with linear

equality and inequality constraints, and since the decision

variables are both continuous and discrete, the control law is

the result of a mixed-integer linear programming problem,



for which there exist good commercial and free solvers (such

as, e.g., CPLEX, Xpress-MP, GLPK, lp solve, etc. [15],

[16]).

V. SIMULATION RESULTS

A. Scenarios

We study two scenarios. Scenario 1 starts out from the

system in steady state. At 0.7 seconds the line connecting G4,

representing the largest generation capacity in the considered

grid, to bus 9 changes (possibly due to a partial fault) so that

its impedance increases to 150%. Fig. 3 shows the resulting

open-loop evolution of the most important bus voltages. If

no action is taken, voltages initially tend to progressively

drift from the nominal region of operation until a series of

sustained oscillations arises.

Scenario 2 involves a similar situation, only now the

impedance increases to 400%, e.g., due to a forest fire.

Fig. 5 shows the open-loop evolution if the higher-layer

controller does not provide updated set-points to the lower-

layer primary controllers. As can be seen the voltages quickly

reach a series of fast oscillations.

B. Controller setup

For our network the penalty matrices are chosen such

that a weight of 200 is placed on the violation of each

soft constraint; the inputs are weighted with the penalty

coefficients 1 and 20 respectively for r(k) and s(k). The

prediction horizon is N = 8. At each sampling instant, the

linearization point is chosen by taking the current state x(k)
and the input applied at the preceding time instant u(k− 1).
The sampling interval is taken to be Ts = 0.25 seconds.

C. Results

Fig. 4 depicts for scenario 1 the evolution of the system

when the proposed higher-layer MPC scheme is inserted

in feedback. As shown the controller prevents the voltages

from exceeding the upper and lower bounds by acting on

the reference settings of all the AVRs. No load shedding

is necessary. The system subsequently enters an acceptable

steady-state condition with a constant input profile.

Fig. 6 depicts for scenario 2 the evolution of the system

with the MPC controller installed. Although the fault is

significantly larger, the control prevents the voltages from

crossing their limits, by providing set-points for the AVRs

and shedding a minimal amount of load at node 7. After

about 20 seconds the system enters a new steady-state with

constant input profile.

D. Discussion

The proposed controller works well for the studied cases,

in which a rather high sampling rate of Ts = 0.25 seconds

was taken; indeed, this rate might have to be decreased in

a more realistic setting, since the system is composed of

large high-power components that may not allow for such a

high actuation frequency. For the type of faults considered

the simulations indicate that the predictions made with the

linearized model are sufficiently accurate and that possible
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Fig. 4. Simulation results for scenario 1 in closed-loop control with the
proposed MPC supervisor.

faults introduced due to saturation of the real system which

are not modeled in the linearized system can be neglected.

In fact, with a smaller fault, the sampling rate may be

decreased, resulting in less frequent set-point updates to the

lower control layer. With a smaller fault, the magnitude and

frequency of oscillations occurring reduce in size.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have considered layered control of voltage

instability in a particular power network. In this particular
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network a single higher-layer controller provides set-points

to lower-layer controllers at discrete time steps such that

the negative effects of voltage instabilities in the underlying

physical system are minimized. The higher-layer controller

uses a model predictive control strategy to determine its

actions. It uses a model based on a discrete-time linearized

model of the continuous-time nonlinear dynamics given by

a system of differential-algebraic equations (DAE). Simula-

tions illustrate the potential of this supervisory approach.

Future research will focus on investigating the region of

validity of the linearized model and if necessary replacing

this with piecewise affine models; performing simulations

on a network in which the neighboring loads and generators

are not aggregated, whereas the supervisory controller uses

an aggregated model; comparing the proposed approach

with an approach that uses variable time steps to make the

predictions, instead of the fixed time steps used currently;

assessing the real-time technical viability of the method;

and, investigating decentralized control schemes where the

local controllers of several subnetworks negotiate among

themselves on how they should determine their actions to

obtain system-wide optimal performance.
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