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Distributed Kalman Filtering for Multiagent Systems

Zs. Lendek R. Babuška B. De Schutter

Abstract— For naturally distributed systems, such as multi-
agent systems, the construction and tuning of a centralized
observer may be computationally expensive or even intractable.
An important class of distributed systems can be represented as
cascaded subsystems. For this class of systems, observers may
be designed separately for the subsystems. If the subsystems
are linear, the Kalman filter provides an efficient means to
estimate the states, so that it minimizes the mean squared
estimation error. Kalman-like filters may be used for the whole
system or the individual subsystems. In this paper, both a
theoretical comparison and simulation examples are presented.
The theoretical results show that the distributed observers,
except for special cases, do not minimize the overall error co-
variance, and so the distributed observer system is suboptimal.
However, in practice, the performance achieved by the cascaded
observers is comparable and in certain cases outperforms that
of the centralized one. Moreover, a distributed observer system
leads to increased modularity, reduced complexity, and lower
computational costs.

Index Terms— State estimation, Kalman filters, multi-agent
systems

I. INTRODUCTION

Many problems in decision making, control, and monitor-

ing require the estimation of states and possibly uncertain pa-

rameters, based on a dynamic system model and a sequence

of noisy measurements. For such a purpose, dynamic systems

are often modeled in the state-space framework, either in

deterministic or stochastic form.

For a system with a large number of states, or for naturally

distributed systems, the construction and tuning of a cen-

tralized observer may be computationally expensive or even

intractable. Decentralized state estimation has been studied in

the context of large-scale processes and distributed systems.

The architecture in general takes the form of a network of

sensor nodes, each with its own processing facility. Each

node shares information with other nodes and computes

a local state estimate. Computation and communication is

distributed over the network so that a global estimate can be

computed. Several topologies have been proposed, depending

on the particular application. In case of large scale processes

[1], [2], the network is in general in a hierarchical form,

with several intermediate and one final fusion node, i.e., node

where the estimates are combined. For distributed systems,

such as multiagent societies [3]–[5], several fusion nodes

exist, which process the data and send the information to

the rest of the nodes.
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An important class of distributed systems, such as hierar-

chical large-scale system, can be represented as cascaded

subsystems. In several cases, conclusions referring to the

overall system can be drawn based on the study of the

individual subsystems. For instance, for linear time-invariant

systems, the stability of the subsystems implies the stability

of the cascaded system [6].

If a system model can be decomposed into cascaded

subsystems, separate estimators may be designed for the

individual subsystems. The idea behind this type of estima-

tion is that many systems can be represented as cascaded,

observable subsystems, which are less complex than the

original system. This makes the tuning easier. Moreover,

different types of observers can be combined, depending on

the subsystems considered. Such a setting can be perceived

as a cooperative multi-agent system. Each agent has the

task of observing one of the subsystems, possibly using

different methods and relying on its own measurements and

the information gathered from other agents. In turn, each

agent communicates its own results to other agents. If all the

agents in a system use the same observer method, then such

an observer system can be designed and implemented in a

modular manner. However, currently, no results are available

on the performance analysis of the local observers versus a

centralized observer.

The most well-known and widely used probabilistic es-

timation methods are the Kalman filter and its extension

to nonlinear systems, the Extended Kalman Filter [7], [8].

While the Kalman filter has severe limitations and becomes

unstable for highly nonlinear processes, for a linear process,

it provides an efficient means to estimate the states so that

it minimizes the mean squared error. The filter supports the

estimation of past, present and future states, even if a precise

model of the system considered is unknown.

Since the publication of the Kalman’s seminal paper in

1960 [7], the Kalman filter has been the subject of ex-

tensive research and applications, particularly in the area

of autonomous robots, assisted navigation and sensor data

fusion [9]–[11]. A wide variety of Kalman filters have also

been developed from the Kalman’s original formulation: the

extended Kalman filter, the information filter and the family

of sigma-point Kalman filters [12].

In this paper, we design Kalman-type filters for cascaded

subsystems and study the performance of the cascaded filters.

We present a theoretical comparison of the centralized and

cascaded Kalman filter and also compare their performance

on several examples.

The structure of the paper is as follows. Section 2 presents

the proposed cascaded observer setting, Section 3 reviews the



Kalman Filter methodology. The distributed Kalman filters

are presented in Section 4, with three illustrative examples

in Section 5. Section 6 concludes the paper.

II. CASCADED SUBSYSTEMS

Consider the following observable linear MIMO system:

x(k) = Ax(k − 1) +Bu(k − 1)

y(k) = Cx(k)
(1)

and assume that this system can be partitioned into sub-

systems. For the ease of notation, only two subsystems are

considered, x = [x1T x2
T
]T and y = [y1T y2

T
]T :

x1(k) = A11x1(k − 1) +B1u(k − 1)

y1(k) = C11x1(k)
(2)

and

x2(k) = A22x2(k − 1) +B2u(k − 1) +A21x1(k − 1)

y2(k) = C22x2(k) + C21x1(k)
(3)

so that (2) is observable. Note that, since both systems (1)

and (2) are observable, this also means that the subsystem

(3) is observable for given x1(k) and x1(k − 1). In fact, for

subsystem (3), x1(k − 1) is an input.

In general, such a partition of the model does not neces-

sarily exist. The necessary and sufficient condition for the

existence of a partition is that the A and C matrices can be

transformed into block lower-triangular forms. If the partition

exists, it might not be unique. Consider, for instance, the

system

x1(k) = x1(k − 1) + x3(k − 1) y1(k) = x1(k)

x2(k) = x2(k − 1) + x3(k − 1) y2(k) = x2(k)

x3(k) = u(k − 1)

This system is observable, and there are two possible ways

to partition it: by using as the first subsystem

x1(k) = x1(k − 1) + x3(k − 1) y1(k) = x1(k)

x3(k) = u(k − 1)

or, by using as the first subsystem

x2(k) = x2(k − 1) + x3(k − 1) y2(k) = x2(k)

x3(k) = u(k − 1)

Both subsystems are observable.

Given the above partitioning, observers may be designed

for the two subsystems separately, with the second observer

using the results of the first observer. Such a structure is

depicted in Figure 1.

y1

u
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O2

x1^

x2^

O1

Fig. 1. Cascaded observers.

Currently, a general analysis of the joint performance

(convergence, convergence rate, optimality) of the two ob-

servers and a centralized observer designed for the system

(1) does not exist. In the remainder of the paper we study the

conditions under which Kalman-type filters can be designed

for the two subsystems so that the performance of the

cascaded filters is the same as that of a single Kalman filter

for system (1).

III. KALMAN FILTER

The Kalman filter addresses the problem of estimating the

state x ∈ R
n of a linear discrete-time process:

x(k) = Ax(k − 1) +Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)
(4)

with x0 (initial state) and P0 (initial covariance of the states)

known or previously estimated.

The inputs w(k) and v(k) are random variables, repre-

senting the process and measurement noise, respectively.

These noises are assumed to be independent, white and

with normal probability distributions w(k) ∼ N (0, Q) and

v(k) ∼ N (0, R). In general, the process noise covariance

and measurement noise covariance matrices (Q and R),

the state transition matrix A and the measurement matrix

C can change at every time step; however, here, they are

assumed constant to simplify the notation. The objective is

to recursively estimate or filter the state xk based on the

available measurements.

The Kalman filter works in two steps: prediction:

x̂(k|k − 1) = Ax(k − 1) +Bu(k − 1)

P (k|k − 1) = AP (k − 1)AT +Q
(5)

and update or correction:

x̂(k) =x̂(k|k − 1) +K(k)(y(k)− Cx̂(k|k − 1))

P (k) =(I −K(k)C)P (k|k − 1)(I −K(k)C)T+

K(k)RKT (k)

(6)

where x̂(k) (P (k)) refers to the estimate of the states

(covariance) obtained by using all the measurements up to

k. The Kalman gain K(k) is computed at each step k so that

it minimizes the error covariance P (k). This is obtained by

minimizing the trace of P (k) at every step, as given by (7).

Then, assuming that at step k − 1 the error covariance

matrix is P (k − 1), the covariance and the Kalman gain at

step k is expressed by (8).

IV. DISTRIBUTED KALMAN FILTERS

Consider the linear system (4), corrupted with zero-mean

Gaussian noise and assume that the system can be written

in the form (9), i.e., as two cascaded subsystems. Our goal

is to design separate observers for the two subsystems,

so that the cascaded observers have the same performance

(error covariance) as the Kalman filter designed for the joint

system. Note that for the system to be cascaded without

losing available information (e.g., cross-covariances of states



∂(tr(P (k)))

∂K(k)
= −2CP (k|k − 1) + 2(CP (k|k − 1)CT +R)KT (k) = 0

=⇒ K(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1

(7)

P (k) = (I −K(k)C)(AP (k − 1)AT +Q)(I −K(k)C)T +K(k)RKT (k)

K(k) = (AP (k − 1)AT +Q)CT (C(AP (k − 1)AT +Q)CT +R)−1
(8)

(
x1(k)
x2(k)

)
=

(
A11 0
A21 A22

)(
x1(k − 1)
x2(k − 1)

)
+

(
B1

B2

)
u(k − 1) +

(
w1(k − 1)
w2(k − 1)

)

(
y1(k)
y2(k)

)
=

(
C11 0
C21 C22

)(
x1(k)
x2(k)

)
+

(
v1(k)
v2(k)

) (9)

belonging to different subsystems), the covariance matrices

should also be block-diagonal, i.e., Q =

(
Q1 0
0 Q2

)
and

R =

(
R1 0
0 R2

)
. While this condition appears restrictive,

in practice one rarely knows the true cross-covariances and it

is often assumed that the covariance matrix is diagonal [13],

[14].

Since our goal is to design separate observers for the

two subsystems, but still minimize the estimation error

covariance of the joint filter, we use separate Kalman filters

for each subsystem. The first subsystem can be expressed as:

x1(k) = A11x1(k − 1) +B1u(k − 1) + w1(k − 1)

y1(k) = C11x1(k) + v1(k)
(10)

which is a linear system, with w1(k) ∼ N (0, Q1) and

v1(k) ∼ N (0, R1) and the deterministic input u. In order

to minimize the error covariance for the first subsystem,

the Kalman filter presented in Section III is used. Then,

for the first subsystem (with the deterministic input u), the

covariance and the gain at each time step can be written as

(11), The second subsystem can be expressed as:

x2(k) =A22x2(k − 1) +B2u(k − 1)+

A21x1(k − 1) + w2(k − 1)

y2(k) =C22x2(k) + C21x1(k) + v2(k)

(12)

with w2(k) ∼ N (0, Q2) and v2(k) ∼ N (0, R2), the

deterministic input u and the stochastic variable x1. In a

multi-agent setting, agents may communicate only the state

estimate, and not the covariance. In such a case, x1 can also

be considered a deterministic input. Thus, two cases can be

distinguished.

Case 1: Use x1 as another deterministic input besides u

for the second subsystem. This will be the case in a multi-

agent system, if the agent entirely trusts the estimate of

another agent, considers it correct and does not take into

account possible errors, or that only a distribution of the

estimate is available. In this case, the Kalman filter can

be used also for this subsystem, and the expression for the

covariance and the gain are given by (13). However, in this

case, the computed error covariance is not equal to the true

error covariance for the second subsystem.

Case 2: If the covariance of the estimates is also avail-

able, then x1 can be considered as a stochastic input,

with estimated covariance P1(k), for the second subsystem.

For this case, a Kalman-type gain can be computed by

minimizing the trace of the error covariance for the second

subsystem, assuming that x1 is a stochastic variable with

a known covariance matrix P1 (14). The covariance for x2

is calculated as (15), where P2(k) is the true covariance

obtained for the states of the second subsystem.

In both cases, the observer gain and the covariance matrix

for the whole system are expressed as:

K =

(
K1 0
0 K2

)
P =

(
P1 0
0 P2

)
(16)

However, only in the second case (if x1 is considered a

stochastic input), the covariance matrix for the joint system

equals the true covariance obtained by the observers.

Proposition 1: The cascaded setting achieves the same

error covariance as the centralized Kalman filter if and only

if the subsystems are independent, i.e., in (9), A21 = 0,

C21 = 0, R12 = 0 and Q12 = 0.

Proof: Assume that the joint form of the cascaded

Kalman filters is equivalent to that of the centralized Kalman

filter. If this assumption holds, then it is also possible to

decompose the error system and the Kalman gain obtained

for the joint system. Let

P (k|k − 1) =

(
P11 P12

P21 P22

)
(17)

Then, CP (k|k − 1)CT + R can be expressed as (18). The

conditions for the observer to be partitioned without losing

optimality, are given by (19). Moreover, P (k|k − 1) is

expressed as (20), and it is also required that P21 = PT
12

= 0
(due to the form of the covariance matrix obtained in (16)).

Under these conditions, the requirements expressed by (19)

will only be fulfilled if the two subsystems are independent,

i.e., A21 = 0, C21 = 0, R12 = 0 and Q12 = 0. Only in this



P1(k) = (I −K1(k)C11)(A11P1(k − 1)AT

11
+Q1)(I −K1(k)C11)

T +K1(k)R1K
T

1
(k)

K1(k) = (A11P1(k − 1)AT

11
+Q1)C

T

11
(C11(A11P1(k − 1)AT

11
+Q1)C

T

11
+R1)

−1
(11)

P2(k) = (I −K2(k)C22)(A22P2(k − 1)AT

22
+Q2)(I −K2(k)C22)

T +K2(k)R2K
T

2
(k)

K2(k) = (A22P2(k − 1)AT

22
+Q2)C

T

22
(C22(A22P2(k − 1)AT

22
+Q2)C

T

22
+R2)

−1
(13)

0 = −2C22(A22P2(k − 1)AT

22
+A21P1(k − 1)AT

21
+Q2) + 2(C22(A22P2(k − 1)AT

22
+

A21P1(k − 1)AT

21
+Q22)C

T

22
+R2)K2(k)

T + 2C21P1(k − 1)CT

21
KT

2
(k)

K2(k) = (C22(A22P2(k − 1)AT

22
+A21P1(k − 1)AT

21
+Q2))

T · ((C22(A22P2(k − 1)AT

22
+

A21P1(k − 1)AT

21
+Q22)C

T

22
+R2 + C21P1(k − 1)CT

21
)−1)T

(14)

P2(k) = (I −K2(k)C22)(A22P2(k − 1)AT

22
+A21P1(k − 1)AT

21
+Q2)(I −K2(k)C22)

T+

K2(k)R2K
T

2
(k) +K2(k)C21P1(k − 1)(K2(k)C21)

T
(15)

CP (k|k − 1)CT +R =

=

(
C11P11C

T
11

+R11 C11P11C
T
21

+ C11P12C
T
22

+R12

C21P11C
T
11

+ C22P21C
T
11

+R21 C21(P11C
T
21

+ P12C
T
22
) + C22(P21C

T
21

+ P22C
T
22
) +R22

)
(18)

P11C
T

11
= K1(k)(C11P11C

T

11
+R11)

P21C
T

21
+ P22C

T

22
= K2(k)(C21(P11C

T

21
+ P12C

T

22
) + C22(P21C

T

21
+ P22C

T

22
) +R22)

P11C
T

21
+ P12C

T

22
= K1(k)(C11P11C

T

21
+ C11P12C

T

22
+R12)

P21C
T

11
= K2(k)(C11P11C

T

21
+ C11P12C

T

22
+R12)

T

(19)

P (k|k − 1) =

(
P11 P12

PT
12

P22

)

=




A11P11(k − 1)AT
11

+Q11 A11P11(k − 1)AT
21

+A11P12(k − 1)AT
22

+Q12(
A11P11(k − 1)AT

21
+

+A11P12(k − 1)AT
22

+Q12)
T

) (
A21(P11(k − 1)AT

21
+ P12(k − 1)AT

22
)

+A22(P21(k − 1)AT
21

+ P22(k − 1)AT
22
) +Q22

)



(20)

case, the cross-covariances P12(k|k−1) and P12(k) and their

transpose will also be zero.

Since the distributed filters obtain the same performance as

the centralized Kalman filter if and only if the subsystems

are independent, in general, the distributed observers will

not minimize the joint covariance. However, in practice, the

performance of the centralized and distributed observers is

comparable, as demonstrated in the following section.

V. EXAMPLES

In the previous sections, the basic form of the Kalman

filter and the proposed distributed version were given. Here,

three examples are presented to compare the performance of

the distributed and centralized observers, both in open-loop

and closed-loop control.

A. Distributed Kalman Filter in Open-Loop

Example 1: Consider the following, randomly generated

discrete-time system:

x(k) = Ax(k − 1) +Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)

with

A =




0.1 0 0
0.5 0.6 −0.9
−1.1 2.0 −0.3




B =



1
0
0


 C =

(
1 0 0
0 1 0

)

w(k) ∼ N (0, Q) Q =



0.68 0.22 0.08
0.22 0.28 0.11
0.08 0.11 0.22




v(k) ∼ N (0, R) R =

(
0.17 0.06
0.06 0.12

) (21)



It can be easily seen that the deterministic part of the

system can be cascaded. Two cases are distinguished:

a) Discard the cross-covariance between the subsystems:

since the cascaded filters do not take into account the

cross-covariance between the subsystems, in order to

ensure the exact same conditions, consider for both

the Kalman filter and the cascaded filters the following

approximate noise covariances:

Q̄ =



0.68 0 0
0 0.28 0.11
0 0.11 0.22


 R̄ =

(
0.17 0
0 0.12

)
(22)

The input signal is presented in Figure 2. Using the

centralized Kalman filter, after 300 steps, we obtain:

P =




0.1361 0.0002 −0.0034
0.0002 0.1062 0.0339
−0.0034 0.0339 0.7498




K =




0.8003 0.0014
0.0010 0.8853
−0.0198 0.2824




while for the cascaded subsystems:

Pc =



0.1361 0 0

0 0.1030 0.0430
0 −0.0430 0.5245




Kc =



0.8003 0

0 0.8811
0 0.3689




if x1 is considered to be a deterministic input (Case 1)

and

Pc =



0.1361 0 0

0 0.1062 0.0342
0 0.0342 0.7511




Kc =



0.8003 0

0 0.8850
0 0.2852




if x1 is considered to be a stochastic input (Case 2).

30025020015010050
−5

0

5

10

u

0

Discrete time steps

Fig. 2. Input used for the distributed filters in open-loop for example 1.

Histograms of the residuals obtained for x3 (the state

which is not measured) with the centralized Kalman

filter, and for both cases of the distributed filters are

presented in Figure 3. The statistics of the distributions

of the residuals for all states and observers are given

in Table I. It can be seen that the performance of

the cascaded observers is comparable with that of the

centralized observer.

TABLE I

STATISTICS OF THE RESIDUALS WHEN THE CENTRALIZED AND

DISTRIBUTED OBSERVERS USE THE SAME COVARIANCE MATRIX.

State Method Mean Standard deviation

x1 centralized −0.0015 0.1806

cascaded −0.0014 0.1806

x2 centralized −0.0004 0.0798

cascaded deterministic −0.0004 0.0807

cascaded stochastic −0.0002 0.0797

x3 centralized 0.0041 0.2487

cascaded deterministic −0.0033 0.2397

cascaded stochastic −0.0032 0.2423
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(a) Residuals for x3 with the centralized
Kalman filter.
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Kalman filter and stochastic input (case 2).

Fig. 3. Results when the centralized and cascaded filters use the same
covariance matrix, for example 1.

b) Use true covariance: the Kalman filter uses the true

noise covariances (21), while the cascaded filters ne-



glect the cross-covariance between the subsystems and

consider only (22). The same input is used as that in

the previous case. In terms of the standard deviation,

the centralized filter performs slightly better than the

cascaded one.

The histogram of the residuals obtained for x3 is

presented in Figure 4. The statistics of the distributions

of the residuals for all states and observers are given in

Table II.

TABLE II

STATISTICS OF RESIDUALS WITH THE CASCADED KALMAN FILTER

DISCARDING THE CROSS-COVARIANCE.

State Method Mean Standard deviation

x1 centralized −0.0119 0.2235

cascaded −0.0119 0.2237

x2 centralized −0.0012 0.1405

deterministic −0.0028 0.1360

stochastic −0.0020 0.1359

x3 centralized −0.0067 0.2065

deterministic −0.0063 0.2156

stochastic −0.0067 0.2125

For this case, the final covariance matrix and the

Kalman gain obtained after 300 steps by the centralized

Kalman filter are

P =



0.1360 0.0477 0.0155
0.0477 0.1029 0.0354
0.0155 0.0354 0.5241




K =




0.8014 −0.0031
−0.0269 0.8713
−0.0154 0.3026




while those obtained by the cascaded observers are the

same as in the previous case.

The statistics of the residuals confirm that the cascaded

filters are suboptimal. However, the difference between the

residuals is minimal, even if x1 obtained from the first

subsystem is considered as a deterministic input, and the

computed covariance is not the correct one.

B. Distributed Kalman Filter in Closed-Loop

In this section, two examples are presented to compare

the performance of the distributed and centralized observers,

in closed-loop control. For this purpose, a state-feedback

control is designed based on the system model. However, not

all the states are measured, and the control input is computed

based on the estimated states. Such a setting is depicted in

Figure 5.

Example 2: Consider the following, randomly generated

discrete-time system:

x(k) = Ax(k − 1) +Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)
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(a) Residuals for x3 with centralized Kalman
filter.
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filter and deterministic input.
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Fig. 4. Results with discarded cross-covariances, for example 1.
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Fig. 5. Cascaded observers in closed-loop.

A =




1.05 0 0
0.05 1.17 0.07

−0.076 0.14 0.77




B =



0.1
0
0


 C =

(
1 0 0
0 1 0

)

w(k) ∼ N (0, Q) Q =



0.0097 0.0026 0.0032
0.0026 0.0066 0.0002
0.0032 0.0002 0.0128






v(k) ∼ N (0, R) R =

(
0.0035 0.0078
0.0078 0.0118

)

for which a state feedback control with constant gain L =
[7.4000 51.4363 8.5107] has been computed by pole place-

ment.

The deterministic part of the system is decomposed. The

cascaded filters do not take into account the noise covariances

between the subsystems. Now the control is applied for four

different cases:

1) the states are known, and the controller is applied

directly;

2) the first two states are measured, and the control

input is computed based on the estimate given by a

centralized Kalman filter;

3) the first two states are measured, and the control input

is computed based on the estimate given by a cascaded

Kalman-type filter, with the second subsystem consid-

ering the estimates of the first subsystem as stochastic

inputs;

4) the same as 3), but with the second subsystem using

the estimates of the first subsystem as deterministic

inputs.

The results obtained can be seen in Figure 6. The esti-

mation error for all states, is very small, and the estimates

converge at approximately the same speed.

Example 3: Consider the following, randomly generated

discrete-time system:

x(k) = Ax(k − 1) +Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)

A =




1.05 0 0
−0.17 0.91 0.23
−0.02 0.18 0.94




B =



0.1
0
0


 C =

(
1 0 0
0 1 0

)

for which a state feedback control with constant gain L =
[6.5000 − 6.7391 − 8.2180] has been computed. The state

and measurement noise have the same covariance matrices

as in the previous example. Note that this system with

this control law, when applied the centralized Kalman filter,

becomes unstable.

The estimates of the states using the distributed observers

can be seen in Figure 7. In this case, the system does not

become unstable.

VI. CONCLUSIONS

In many real-life applications, a complex process model

can be decomposed into cascaded subsystems, and observers

can be designed for these individual subsystems. This parti-

tioning of a process and observer leads to increased modu-

larity and reduced complexity of the problem, with reduced

computational costs and more straightforward tuning.

For such cascaded systems, distributed, Kalman-like filters

can be designed. The observers are optimal for the indi-

vidual subsystems, and the error system will converge to

a zero-mean Gaussian. However, the overall filter will not

necessarily be optimal. The theoretical results show that the

distributed Kalman filters can be jointly optimal, if and only

if the subsystems are decoupled (i.e., the second subsystem

does not depend on the states of the first one).

Based on the examples, however, the performance of the

centralized Kalman filter and cascaded filters are comparable.

Moreover, our simulations show that for certain cases, in

closed-loop the cascaded observers perform better than the

Kalman filter.

In our future research, we will investigate the conditions

under which such a distribution of the process and the esti-

mation is possible for other types of observers while main-

taining the performance (convergence, convergence speed) of

a centralized one.
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Fig. 6. State estimates in closed-loop with different observers (state feedback without observer, Kalman, stochastic cascaded, deterministic cascaded) for
example 2.
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Fig. 7. State estimates in closed-loop with different observers (state feedback without observer, stochastic cascaded, deterministic cascaded) for example
3. The system using the centralized Kalman filter is unstable in this case.


