
Delft University of Technology
Delft Center for Systems and Control

Technical report 07-005

Adaptive cruise control for a SMART car:
A comparison benchmark for MPC-PWA

control methods∗

D. Corona and B. De Schutter

If you want to cite this report, please use the following reference instead:
D. Corona and B. De Schutter, “Adaptive cruise control for a SMART car: A com-
parison benchmark for MPC-PWA control methods,” IEEE Transactions on Control
Systems Technology, vol. 16, no. 2, pp. 365–372, Mar. 2008. doi:10.1109/TCST.2007.
908212

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/07_005.html

https://doi.org/10.1109/TCST.2007.908212
https://doi.org/10.1109/TCST.2007.908212
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/07_005.html


1

Adaptive cruise control for a SMART car: A

comparison benchmark for MPC-PWA control

methods
Daniele Corona and Bart De Schutter

Abstract—The design of an adaptive cruise controller for a
SMART car, a type of small car, is proposed as a benchmark set-
up for several model predictive control methods for nonlinear and
piecewise affine systems. Each of these methods has already been
applied to specific case studies, different from method to method.
This paper has therefore the purpose of implementing and
comparing them over a common benchmark, allowing to assess
the main properties, characteristics and strong/weak points of
each method. In the simulations, a realistic model of the SMART,
including gear box and engine nonlinearities, is considered. A
description of the methods to be compared is presented, and the
comparison results are collected in a table. In particular, the
trade-offs between complexity and accuracy of the solution, as
well as computational aspects are highlighted.

I. INTRODUCTION

An adaptive cruise controller (ACC) typically aims to

increase road safety and passenger comfort. These issues

can be modeled by introducing a performance criterion and

constraints. This approach is very appealing for several rea-

sons. First, it allows to extend the range of specific design

requirements, for instance, fuel consumption and mechanical

stress of the vehicle, by simply introducing additional con-

straints. Secondly, the problem of designing the control law

may be naturally cast into a model predictive control (MPC)

framework [1], which will result in a constrained minimization

problem for which several efficient solvers may be used.

In this paper the design of an ACC for a SMART car is

considered as a benchmark problem for existing MPC methods

for piecewise affine (PWA) systems. The SMART car is a

compact road vehicle produced by the SMART company. In

this application the 37 kW gasoline model has been consid-

ered. The nonlinear and switching dynamics of the system, as

well as the presence of design constraints, make the task of

designing an ACC rather challenging, and traditional control

techniques may not be suitable. More specifically, the engine

torque and the air drag introduce nonlinearities, while the gear

box forces the designer to deal with hybrid behavior, which

eventually results in PWA models. Part of this paper is hence

dedicated to PWA systems, a subclass of hybrid systems, i.e.,

systems exhibiting both continuous (time-driven) and discrete
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(event-driven) behavior. In particular, a PWA system is com-

posed of a finite set of affine systems and a switching signal

that triggers, internally or externally forced, the active mode.

PWA models arise, among others, from processes that integrate

integer/logical behavior with continuous variables or from

quantized inputs [2], or from the linear spline approximation

of nonlinearities [3]. The discontinuities, implicitly hidden

in their discrete behavior, make the control design a non-

trivial task, the complexity of which is additionally increased

if constraints are considered. Recently, the control system and

computer science communities have been devoted significant

efforts to the analysis and control of PWA systems.

Several methods that aim to design the control law for this

class were proposed in the literature. Most of them are MPC-

based, i.e., the control law that minimizes a finite-horizon

performance, is determined based on measurements of the

current state of the system and using a model to predict the

future behavior, and applied in a receding horizon fashion [4]–

[6]. A particular representation of PWA systems that allows to

use the MPC scheme is the mixed logical dynamical (MLD)

model, for which the control law may be given in implicit [7]

or explicit form [8]. Variants that consider robustness [9], [10]

or stability properties [11], [12] were also considered. Methods

based on the construction of a piecewise Lyapunov function

have been developed in [13], [14].

Despite the presence of several methods, an applicative

comparison test bed that highlights their main features is,

to our best knowledge, missing. The goal of this paper is

to propose a benchmark set-up for the MPC on a PWA

system, applied to the design of an ACC for a SMART. We

implement and compare some of these methods, thus allowing

to assess their main properties, characteristics and strong/weak

points, for the common ACC case study. In addition, we

also include a state of the art version of the ACC used in

the automotive industry (based on an adaptive proportional-

integral (PI) actuator) in our comparison study.

The paper is organized as follows: we first describe a

detailed model of the system, taken from measurements on a

real vehicle, and the specific control problem and constraints.

Then we provide a short description of eight different control

methods, based on PI and MPC in different flavors, namely

PWA, nonlinear, on-line and off-line, differing on the level

of approximation of the prediction model with respect to the

simulation model. The target is to assess and to compare the

features of the different control design methods, highlighting

the major advantages or disadvantages of the methods. To this
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Fig. 1. (a) ACC set-up and (b) nonlinear friction (solid), PWA approximation (dashed) and affine approximation (dash-dotted).

purpose we establish a comparison table that highlights key

aspects of the control design schemes, the complexity of the

mathematical problem, and the quality of the solution.

II. MODEL AND PROBLEM DESCRIPTION

A. Model

The aim of an ACC is to ensure a minimal separation

between the vehicles and speed adaptation. In a basic ACC

application two cars are driving one after the other (see Figure

1.a). In general platoons of cars can also be considered, see for

instance [15], in a multi-agent framework, but here we restrict

ourselves to the study of the basic experimental condition of

only two vehicles, allowing better insight into the physics of

the global system with a reduced number of variables. We

assume that the front vehicle communicates its speed and

position to the rear vehicle, which has to track them as good as

possible. So, for the control design purpose, only the dynamics

of the rear vehicle can be considered.

An accurate model of the system considers the air drag

proportional to the square of the speed and a constant road-

tire static friction, proportional to the weight of the vehicle.

The dynamics of the rear vehicle are thus described by:

ms̈(t) + (cṡ2(t) + µmg)sgn(ṡ(t)) = b(j, ṡ)u(t) (1)

where s(t) is the position at time t and b(j, ṡ)u(t) is the

traction force, proportional to the normalized throttle/brake

position u(t), considered as an input. The mass m of the

SMART is equal to 800 kg, the wheel radius R is 0.28 m, the

viscous friction coefficient c equals 0.5 kg/m, the Coulomb

friction coefficient µ equals 0.01, g is the acceleration due

to gravity (9.8 m/s2), the minimal rotational speed wmin

equals 105 rad/s, and the maximal rotational speed wmax

is 630 rad/s. The value of the function sgn(ṡ(t)) is equal to

1, 0 or −1 when its argument is positive, zero, or negative

respectively. The traction force depends on the current gear

j = {1, . . . , 6} and on the ground speed ṡ(t). Additionally,

we provide the function b(j, ṡ) in Figure 2, obtained from

the transmission ratio of the engine torque curve [16] in the

engine rotational velocity range w ∈ [wmin, wmax]: b(j, ṡ) =
Te(w)p(j)

R
, ṡ =

wR

p(j)
, where Te(w) is the engine torque, R

is the average radius of the wheels, p(j) represents the gear

ratios. Here, we have omitted the dependence on time t of s,

w and j. The values of p(j), including also the efficiency of
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Fig. 2. Traction force transmitted to the wheel at maximum throttle
input for different gears.

TABLE I
Transmission rates, maximum traction forces, and ground velocity

switching conditions in a SMART.

Gear Transmission Traction force Min. vel. Max. vel.
j rate p(j) b(j) (N ) (m/s) (m/s)

I 14.203 4057 3.94 9.46
II 10.310 2945 5.43 13.04
III 7.407 2116 7.56 18.15
IV 5.625 1607 9.96 23.90
V 4.083 1166 13.70 32.93
VI 2.933 838 19.10 45.84

the transmission from engine to wheel, are provided in Table I.

Since the maximal engine torque (Te,max = 80Nm) may be

considered constant [16] in the range w ∈ [200, 480], we also

give the values b(j) in this specific range.

Braking will be simulated by applying a negative throttle.

Due to friction behavior in motion inversion [17], model (1)

is valid as long as the ground speed ṡ is different from zero.

Hence, we impose ṡ to be above a nonzero minimum velocity.

A state space representation of system (1) is:

ẋ = f(x) +B(j, x)u, (2)

with x ,

[

s
ṡ

]

, f(x) =

[

x2

− c
m
x2
2 − µg

]

, B(j, x) =

[

0

− b(j,x2)
m

]

.

This model is nonlinear because of the friction and traction

forces, and hybrid because of the discrete dependences of b. In

the MPC approach we intend to use this model as simulation

tool, while using simpler models to make predictions.
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TABLE II
Values of the parameters specifying the constraints.

Parameter Description Numerical value

x1,min Min. position 0 m
x1,max Max. position 3000 m
x2,min Min. velocity 2.0 m/s
x2,max Max. velocity 40.0 m/s
dsafe Sec. pos. overshoot 10.0 m
aacc Comfort acceleration 2.5 m/s2

adec Comfort deceleration 2.0 m/s2

umax Max. throttle/brake 1

B. Constraints

Safety, comfort and economy or environmental issues, as

well as limitations on the model, result in defining constraints

on the behavior of the system. In particular we consider

limitations on the state x = [s, ṡ]T, i.e., position, velocity,

acceleration, and on the control input u. More precisely, we

impose that for all t ≥ 0, we should have x2,min ≤ x2(t) ≤
x2,max, x1(t) ≤ η1(t) + dsafe, and adec ≤ s̈(t) ≤ aacc.
These constraints express, respectively, the operational range

of the speed, the tracking of the leading vehicle trajectory

η = [η1, η2]
T within a given tolerance dsafe (see Figure 1.a),

and bounds on acceleration for comfort or security specifica-

tions. We shall consider as well an additional non-operational

constraint on the position: x1,min ≤ x1(t) ≤ x1,max, which

is necessary in the MLD approach of the problem. This

constraint is not restrictive, as in an MPC receding horizon

approach we can always reset the origin of the position

measurements, and let x1,max be the maximal distance that the

vehicle can cover when driving at its maximal speed x2,max

during the entire prediction horizon.

Moreover, we consider limitations on control input: |u(t)| ≤
umax, and finally two constraints on the gear shift: 1 ≤
j(t) ≤ 6 and |j(t+ dt)− j(t)| ≤ 1, where dt is a finite

small time-interval. The last condition forbids jumps of gears

with more than one position as these usually provoke non-

optimal fuel consumption in up-shifting and mechanical stress

in down-shifting. Numerical values are listed in Table II.

Although some of these constraints may be violated without

causing major damages, i.e., collision or engine breakdown,

we decided to consider all of them as hard.

Since we are in an MPC framework, we will immediately

provide the expression of the constraints in discrete time.

Hence, for all k:

xmin ≤ x(k) ≤ xmax

x1(k) ≤ η1(k) + dsafe
adecT ≤ x2(k + 1)− x2(k) ≤ aaccT

−umax ≤ u(k) ≤ umax

1 ≤ j(k) ≤ 6
−1 ≤ j(k + 1)− j(k) ≤ 1,

(3)

where k is the discrete counter and T is the sampling time.

C. Optimal control problem

The control signal u(k) is designed by solving a constrained

finite-horizon optimal control problem, in an MPC receding

horizon fashion. In this framework the prediction or acquisi-

tion of Np samples ahead of the front vehicle trajectory is used

to compute the optimal control law u(k). The MPC approach

is largely used to design the control action of constrained

systems and in particular PWA systems (see, e.g., [7], [9],

[12]). The control action is obtained by solving

min
ũ(Np),̃(Np)

J(θ(k), ũ(Np), ̃(Np)) ,

Np
∑

i=1

||Qxε(k + i)||1 + ||Q∆u∆u(k + i− 1)||1+

||Q∆j∆j(k + i− 1)||1,

(4)

subject to the particular prediction model that will be de-

scribed in the sequel and the constraints derived from phys-

ical specifications (see Section II-B). We are interested in

minimizing the number of gear switchings ∆j, the variation

of the control input ∆u, and the deviation from a given

reference trajectory communicated by the leading vehicle.

Here, ε(k) , x(k) − η(k) is the tracking error, ũ(Np) ,

[u(k), . . . , u(k + Np − 1)]T the sequence of control inputs,

̃(Np) , [j(k), . . . , j(k +Np − 1)]T the gear shift sequence,

Qx, Q∆u and Q∆j are weight matrices of appropriate di-

mension, θ(k) is a set of parameters containing the initial

conditions and the prediction of the reference trajectory for

the next Np sample steps. In this application we have θ(k) ,
[x(k)T, u(k − 1), j(k − 1), η(k + 1)T, . . . , η(k +Np)

T]T.

Additionally, an appropriately tuned shorter control horizon

Nc < Np may also be considered when we set ∆u(k + i) =
0, i = Nc, . . . , Np − 1. This has the general advantage of

reducing the number of variables and of providing a smoother

solution. Nevertheless, here we only consider Np = Nc. The

choice of the 1-norm in (4) offers a valid trade-off between

the complexity of the optimization problem and the quality

of the solution. It allows the use of (mixed-integer) linear

programming [18]–[20].

We consider a reference trajectory η(k) in which the front

vehicle is driving at the constant velocity of 15m/s and its

position is obtained by integration of this velocity. This choice

permits to study the behavior of the controllers in a smooth

driving scenario (extra-urban road with speed limits and a

low traffic density) and therefore to compare the features of

the different design methods when facing a nominal scenario.

More stressful scenarios, i.e., involving complex maneuvers

such as abrupt braking or acceleration, may not influence

significantly the comparison of the different MPC methods,

but they are of major interest for future studies that deal more

specifically with the technical design of the controller and

especially with the definitions of its safety margins.

In order to solve the problem above, i.e., to design an

appropriate control law, we may use a prediction model

that gives an approximation of the physical system. In an

MPC set-up the measured output x(k), possibly affected by

disturbances Ω(k), is plugged into the controller, which also

receives the prediction of the reference η(k). According to

these values, the controller computes the next optimal control

input, which is then fed into the real system, or in our case,

the full nonlinear simulation model. At the next sampling step,

new measurements are obtained and the whole procedure is

repeated (i.e., we use a moving or receding horizon approach).
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III. DESIGN METHODS

In the following we propose eight different methods to deal

with the nonlinearity raising from the friction force, the engine

torque, and the gears. The prediction models and control

approaches, extensively described in the sequel, are:

• Nonlinear MPC: NMPC,

• On-line PWA MPC: MLD-on,

• Off-line PWA MPC: MLD-off,

• Gears and linear approximation: GLA,

• Gears and tangent approximation: GTA

• Basic tangent approximation: BTA,

• Basic gain-scheduling approximation: BGS,

• Optimized proportional-integral (PI) controller.

In the first case we consider the exact expression of the

friction and implement a nonlinear mixed-integer MPC; in the

second case we provide a PWA approximation using least

squares splines by the introduction of one breakpoint and

then implement a mixed-integer MPC based on the equivalent

MLD model. For this particular case an on-line and an off-line

solution is calculated. Another possibility is to approximate

the friction as V (ṡ) = cṡ2 + f ≃ c1ṡ+ f1, (c1, f1 are chosen

using least squares), or to linearize it around the operating

point with its tangent. We also take into account methods

that are based on very simple prediction models. In these

cases we use a linear differential equation where the gear

shift action is not considered and the traction force Bj is

averaged for every gear and velocity. The nonlinearity due to

the air drag is first treated with a tangent around the operating

point (in Section III-F), and next gain-scheduled for an off-

line method (in Section III-G). The expected advantage over

the first five methods is to obtain a rough good solution at a

very low computational cost, which in many applications may

be considered acceptable.

Before proceeding further with the descriptions of the

models some additional comments are required for the first

five methods regarding the use of gear shift. In all these

cases the problem remains, to an extent, hybrid. Moreover,

in all methods we approximate the function b(j, x2) in (2) as

follows. We first consider it constant with the velocity and we

take, for each gear, its maximum value, as depicted in Figure 2.

This yields the six values in Table I, namely, {b(1), . . . , b(6)}.

Then, we define (β0, β1) , arg min
β0,β1

6
∑

j=1

(

b(j)−(β0+jβ1)
)2
.

This allows us to express

b(j) ≈ bj , β0 + jβ1 (5)

as an affine function of the gear j, with j ∈ {1, . . . , 6}. In

Figure 3 we depict the approximation of the traction force

described above. In order to encode the gear in a binary way,

which is necessary to implement an MLD model, at least three

binary variables δi ∈ {0, 1}, with i = 1, 2, 3, are needed. The

encoding can be done by setting j = 1+
∑3

i=1 2
i−1δi, so that

to each value of the gear there corresponds one and only one

logic combination of δ1, δ2, δ3, as listed in Table III. Plugging

the expression for j into (5) we obtain

bju = (β0 + β1)u+ β1δ1u+ 2β1δ2u+ 4β1δ3u. (6)

TABLE III
Encoding of gear j via three binary variables δi.

Gear j δ1 δ2 δ3
I 0 0 0
II 1 0 0
III 0 1 0
IV 1 1 0
V 0 0 1
VI 1 0 1
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The gear switching condition is governed by the value of

the current velocity. Hence, we have

vL(j) ≤ ṡ ≤ vH(j), (7)

where j is the current gear position j ∈ {1, . . . , 6} and the

values of vL(j), vH(j) are given in Table I. Note that the

switching condition is not uniquely defined, thus different

gears are admitted for a specific value of the speed. The

exact modeling of such scenario is possible, but it requires

the introduction of several extra binary variables, making the

computational aspect of the problem more complex. A simple

strategy is to approximate the inequality (7) by

v0 + v1j ≤ ṡ ≤ v0 + v1(j + 1), (8)

which preserves linearity and a one-to-one relation between

velocity and current gear. Within this condition the approxi-

mation depends only on the choice of the two values v0 and

v1. The values of v0 and v1 are obtained as

(v0, v1) , arg min
v0,v1

(

γL

6
∑

j=1

(

vL(j)− (v0 + jv1)
)2
+

γH

6
∑

j=1

(

vH(j)− (v0 + (j + 1)v1)
)2
)

,

subject to v0+v1 ≥ x2,min. The choice of the weights γL, γH
was preferred towards the higher velocities (γL = 1, γH =
100), where the engine works with higher efficiency. We depict

this approximation in Figure 4.

A. Method 1: Nonlinear MPC (NMPC)

In this method the prediction model is the discrete-time

representation of the simulation model (2). For the integration
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we use a first-order Euler approximation1, leading to

x(k + 1) = x(k) + f(x(k))T +BjTu(k), (9)

where T = 1 s is the chosen sampling time and (Bj)2 ≃
(β0 + β1) + β1δ1 + 2β1δ2 + 4β1δ3, as in (6).

Using this model, problem (4) is transformed into a mixed-

integer nonlinear optimization problem (MINLP), of the form

J∗(θ(k)) = min
ỹ

f(ỹ) s.t. g(ỹ) ≤ Eθθ(k), (10)

where ỹ includes the control variables and some additional

dummy variables. The function g and the constant matrix Eθ,

represent the feasible area of the optimization problem. In

particular they express the constraints on the physical system

over the control horizon and on some logic variables appearing

in the vector ỹ. This problem, to be solved on-line at each step

k, can be solved using branch-and-bound algorithms [21], [22].

Note that its complexity is caused by the presence of non-

convex constraints and of integer variables.

B. Method 2: Piecewise affine MPC (MLD-on)

A least squares approximation (Figure 1.b) of the nonlinear

friction curve f(x) leads to a PWA prediction model:

x(k + 1) =

{

A1x(k) + F1 +Bju(k) if x2(k) < α

A2x(k) + F2 +Bju(k) if x2(k) ≥ α,
(11)

where the matrices A1, A2, F1, F2 are derived using the data

shown in Figure 1.b2. To deal with this PWA system we exploit

the mixed logical dynamical (MLD) transformation (see [7]

and [18, Section 4.3]). This results in the following mixed-

integer linear program (MILP):

J∗(θ(k)) = min
ỹ

c′ỹ s.t. Eỹ ≤ G+ Eθθ(k), (12)

where ỹ includes the control variables and some additional

dummy variables required to convert the ℓ1 objective function

into a linear one. The linear constraints in (12) include

the operational constraints discussed previously, and some

additional constraints introduced by the MLD transformation.

1In this particular application the error introduced by this approximation
versus the exact integration is negligible even for a long simulation time.

2For the sake of simplicity we only consider one breakpoint, leading to
a PWA composed of two operating modes. A finer approximation is also
possible, by setting more than one breakpoint on the nonlinear curve.

C. Method 3: Piecewise affine MPC (MLD-off)

This method is actually a variant of the one described

in Section III-B, but it is solved off-line, leading to a

multi-parametric mixed-integer linear program (mp-MILP).

In simple words, problem (12) is solved explicitly in the

parameters (there are several algorithms, see for instance [8],

[19]). The optimal solution J∗(θ) and its argument y∗(θ) are

parametrized over θ. Under the conditions given in [8], The-

orem 1.16, the functions J∗(θ) and y∗(θ) are PWA functions

of θ. These coefficients and the corresponding partition of

the parameter space can be pre-calculated and stored off-line.

This strategy avoids solving optimization problems on-line,

and the on-line calculations then reduce to the mere search

in a look-up table. Although theoretically equivalent to the

previous problem, the experiments described in Section IV

show that the mp-MILP might introduce numerical difficulties

that affect the equivalence of the solution.

D. Method 4: Gears and linear approximation (GLA)

As in the previous section we approximate f(x) with an

affine function, leading to the prediction model

x(k + 1) = Aℓx(k) + Fℓ +Bju(k). (13)

One possible choice is to obtain matrices Aℓ, Fℓ by min-

imizing the quadratic error between the parabola and the

line, as shown in Figure 1.b. The presence of the gear shift

keeps this problem mixed-integer, but it differs from the PWA

problem because there is one binary variable less. This is

quite advantageous if the prediction horizon is short. The

transformation into an on-line MILP is obtained by setting

(Bj)2u(k) ≃ (β0+β1)u+β1δ1u+2β1δ2u+4β1δ3u and con-

sidering the additional constraints that convert it into the MLD

form. The structure of the MILP is similar to problem (12).

E. Method 5: Gears and tangent approximation (GTA)

Another possible way to linearize the friction nonlinearity

is to use as a prediction model the affine system tangent to the

current operating point [23]. This idea is actually very efficient

for smooth nonlinear systems with a relatively small sampling

time. As in the previous section we approximate f(x) with

an affine function, with a slope equal to the derivative of the

friction curve around the current velocity. This gives

x(k + 1) = Aτ (x(k))x(k) + Fτ (x(k)) +Bju(k). (14)

The transformation into an on-line MILP is obtained by

setting (Bj)2u(k) ≃ (β0 + β1)u+ β1δ1u+ 2β1δ2u+ 4β1δ3u
and considering the additional constraints that convert it into

the MLD form. The structure of the MILP is similar to

problem (12).

F. Method 6: Basic tangent approximation (BTA)

This prediction model neglects the presence of the gear shift.

In other words we do not assume the traction force, expressed

by the coefficient Bj as dependent from the current gear or

the current velocity. Hence, the prediction model is

x(k + 1) = Aτ (x(k))x(k) + Fτ (x(k)) +Bu(k), (15)
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where the coefficient B is obtained as an average of the

coefficients listed in Table I. The rough approximation has the

clear advantage of leading to an on-line linear optimization

problem of the form

J∗(θ(k)) = min
ỹ

c′ỹ s.t. Eỹ ≤ G+ Eθθ(k), (16)

the complexity of which is polynomial (fast), unlike previous

problems, which are typically NP-hard. The value of the gear

shift in this case is chosen according to the value of the current

velocity and (8).

G. Method 7: Basic gain-scheduling approximation (BGS)

The previous method also suggests an off-line version,

in a gain scheduling fashion. The nonlinear curve depicted

in Figure 1.b, is approximated into, say, M = 6 linear

models m1, m2, m3, m4, m5, m6 in point to point secant

approximation. For each affine model mi we solve an off-line

mp-LP [24], [25] problem of the form (16). More precisely we

construct M = 6 look-up tables, each valid for a given range

of velocity. In the simulation the controller selects the table

according to the current value of the speed. As in the previous

method the gear is chosen based on the velocity range.

H. Method 8: Proportional-integral action (PI)

As additional method we implement a proportional-integral

(PI) controller. This is the technique mostly used in prac-

tice [26]. The controller first computes a desired acceleration

ad(k) = kIε1(k) + kPε2(k), (17)

where kP and kI are the proportional and integral coefficients

and ε(k) = x(k)−η(k) is the tracking error at step k. Then the

actuators regulate the throttle, the gear and the braking action

in order to better achieve the desired value of the acceleration.

In industrial versions of the device as used for ACC

the coefficients kP, kI depend on the current value of the

state x(k) (position and velocity) and of the tracking error

signal ε(k), according to a specifically designed bell-shaped

curves [26]. The parameters of these curves (offset and peak

values and standard deviation) are tuned empirically to obtain

high comfort in acceleration and high security in braking for a

variety of scenarios. In this study we have tuned the mentioned

parameters so that the controller minimizes the performance

index described in Section II-C for the given tracking scenario.

IV. NUMERICAL RESULTS

All methods were implemented in Matlab 7 on an

INTEL Pentium 4, 3GHz processor. All optimizations,

LP and MILP, were performed with Cplex under TOMLAB

v5.1; the multi-parametric problems (methods MLD-off and

BGS) are solved with the multi-parametric toolbox

MPT v2.6 [20]. The MINLP (mixed-integer nonlinear pro-

gram) of method NMPC (Section III-A) is solved with

the Branch-and-Bound algorithm of TOMLAB v5.1, toolbox

MINLP v1.5, and the optimal coefficients for method PI are

obtained via the nonlinear programming function fmincon

of the Matlab optimization toolbox.

A. General experimental set-up

The experiments, carried out in computer simulation, al-

lowed us to establish the comparison issues among the differ-

ent methods described previously. Additionally, they exhibit

a positive and encouraging motivation to perform a real-life

emulation. It should however be remarked that, for a possible

embedded solution in a real SMART, several technical issues

should be regarded, like the sensor system, the resources of the

on-board electronics, the real-life disturbances and the actua-

tors delays. The cost of the device is also a relevant discrim-

ination parameter. Note that modern technology (differential

GPS, laser sensors and extended Kalman filters [27]) provides

fast and highly accurate measurements, with a maximal error

of 1 m in positioning and 0.1 m/s in velocity.

The general data common to all experiments are as follows:

we have taken Qx =

[

1 0
0 0.1

]

, Q∆u = 0.1, Q∆j = 0.01,

Np = Nc = 2, T = 1 s, a simulation time of 75 s, throttle

initial position equal to 0, initial gear I, and initial state [0, 5]T.

The choice of the weight matrices strongly penalizes the

gap between reference and vehicle position compared to the

other variables. In these experiments the reference (the leading

vehicle) is moving with a constant speed of 15 m/s, (54

km/h). The controller measures its current state, receives the

reference state, and predicts3 the reference in the subsequent

Np − 1 future samples. On the basis of previous gear and

control input information it evaluates the optimal decision

strategy. In the on-line methods this is done by solving an

optimal control problem, in the off-line methods by consulting

a pre-scheduled table.

The integration of (1) is done after the optimization, using

the Matlab ode45 subroutine and assuming the input u, j
constant.

B. Points of comparison and results

The comparison topics are listed in Table IV, and for each

line of the table the worst entry is indicated in bold and the

best in italics. The comparison is divided into four groups.

The first one (computational features) refers to strictly

computational highlights of the problem, and should orientate

the reader with time and memory demands and complexity

of the method. We use the acronyms NP-H and P to indicate

NP-hard and Polynomial complexity. For what concerns the

on-line computational time the maximum and average values

along the whole simulation time are collected. Linear and

off-line methods (BTA, BGS, MLD-off and PI) are really

competitive compared to the others, especially with the method

NMPC. As a drawback the off-line methods require a longer

off-line pre-computation. We remark here that the sampling

time T = 1 s is longer than in common ACC devices, where

measurements are taken at the frequency of 5 to 10 Hz [1],

[29] (that is T = 0.1 − 0.2 s). Nevertheless, this is not

restrictive; in fact all methods (except for NMPC) require an

on-line computation time shorter than 0.1 s.

3If the leading vehicle is human driven, it is not useful to predict the
reference over a long future period. Hence, we have limited the prediction
period to Np = 2. If automatically driven vehicles [28] are used, then higher
values may be selected for Np.



7

The major advantage of the off-line methods is that they do

not require the optimizer on-board, but merely an efficient

data-base browser. In a real-life application this is highly

preferable, since the performance of an on-board platform is

unquestionably poorer than that of a desktop computer. More-

over, the optimizers require extra on-board memory (indicated

in Table IV with ‘+opt.’) and may have a cost impact due to

software licenses. On the other hand, off-line MPC methods

require a bigger on-line memory. Under these considerations

the method 8 (PI) is highly competitive, as it does not require

a significant amount of on-line memory.

The Max tractable Np, only applicable for MPC methods,

is the biggest Np such that the on-line computational time is

smaller than the sampling time T = 1 s. For the MPC off-line

methods, this value is the biggest Np such that the required

on-line memory is smaller than 128 Mb, the memory capacity

of an on-board chip.

Finally, the item Number (#) of regions (for off-line MPC

methods) is an indicator of the granularity of the solution:

when integers are involved the look-up table is more complex.

The second group of comparison points refers to the pro-

gramming features, such as basic data of the correspond-

ing optimization problem, and in particular the size of the

problem. The number of variables (real and integer), the

number of constraints (linear and nonlinear), and the number

of parameters (i.e., the dimension of θ(k)) which affects the

complexity for the off-line methods, are computed. Methods

1 to 5, which make use of the more complex gear shift

prediction model, have a very high number of variables. This

is due to the transformation of the problem into an equivalent

one, as it happens in particular for the MLD-on method

which requires the introduction of several auxiliary variables

and constraints. This results in higher computation time and

memory requirements. In this section of the table we also

recall whether the method is on-line (Y = ‘Yes’).

The third group of the table lists some important features of

the quality of the solution, providing a better insight into the

physical/mechanical aspects of the problem. The first indicator

is the total cost of the evolution in closed loop. A higher value

of the cost means, broadly speaking, a worse tracking of the

position. For this item the most approximate methods behave

better. On the counterpart, it can be seen in the following

line, they violate the constraint on the acceleration, due to

a very aggressive initial action. The PI controller, which

does not allow to include constraints, performs the poorest.

Other aspects are also listed, in particular the maximum and

minimum ∆u, namely the variation of the throttle or brake

position. All methods behave quite similarly for this item,

due to the fact that they all exhibit an initial effort to reach

the target: in this case a longer horizon would produce some

differences. Next we consider transient features: position and

velocity overshoot, the duration of the transient on the velocity

tracking4 and the number of gear switchings made to reach

the steady state of the velocity. In particular with position

overshoot we indicate with how many meters the vehicle

4The time required by the controller to keep the velocity within a 5 % band
around the reference.

overtakes the reference5. In all cases the linear methods are

really competitive.

The same conclusion cannot be drawn for the number of

constraint violations, in the fourth group of the table: in

this case the bigger model mismatch of the linear methods

compared to the MLD or NMPC methods is the source of

numerous constraint violations. This shows once more the

importance of the trade-off in the MPC framework between

the accuracy of the prediction model and the quality of the

solution. To better highlight this aspect, the same computations

were performed in the presence of disturbances. In particular

two cases are reported: measurement errors (abbreviated dist.)

on position and velocity (uniformly random distributed error

of 1m for the position and 0.1m/s for the speed) and model

variation (abbreviated mdl. var.). For the former case the

number of gear switchings is unstable for method GLA (28

switchings) and PI (38 switchings), while the other methods

are not affected. In the latter case a particular scenario with

wet asphalt (smaller friction coefficient µ = 0.005), loaded

vehicle (higher mass m = 900 kg), long driving (higher tire

pressure and bigger wheel radius R = 0.30m) is depicted.

As expected in this case the on-line methods are not affected

(they recompute on-line the optimization) but the look-up

table or pre-computed coefficients for the PI, generated with

nominal parameters, will only suggest sub-optimal solutions

and possibly more constraint violations.

V. CONCLUSIONS

We have presented a benchmark that serves as test bed

to compare MPC-based control methods developed for PWA

systems. More specifically, we have considered the design

an adaptive cruise controller for a SMART, and we have

considered seven different variants (on-line and off-line), with

different degrees of approximation of the friction and of the

prediction model. In addition, we have considered a version

of an ACC controller as it is used in industry (based on an

adaptive PI method). We have compared and assessed the dif-

ferent methods including the trade-offs between performance

and computational aspects. The results are collected in a table

from which it is possible to recognize the expected behavior of

the different methods and which allows to compare the strong

and weak points of each of the methods.

Topics for future research include: considering more com-

plex scenarios, performing the comparison on real vehicles,

including additional controllers in the comparison, and in-

vestigating whether the obtained results also apply to other

applications.
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