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Abstract—As power systems generally are large interconnected
systems controlled by several parties, centralized optimal power
flow (OPF) control taking the entire grid into account is often not
feasible. To use optimal control in power systems nevertheless,
the overall system is decomposed into areas with associated
subproblems, which are solved in an iterative way. Currently
available decomposition techniques assume that the models and
control objectives of areas are formulated to be non-overlapping,
i.e., the border of one area is at the same time also the border
of a neighboring area. However, when the areas are determined
independently from each other, e.g., by sensitivity analysis, the
areas can be overlapping, making currently existing techniques
not directly applicable. In this paper, we extend one of these
techniques, viz. a modified Lagrange decomposition method, to
the case of overlapping areas. Simulations are carried out on an
adjusted IEEE 57-bus system in which the controlled entities are
FACTS devices and the objective is to improve system security.

I. INTRODUCTION

Optimal power flow (OPF) is a well known-method to

control and optimize the operation of a power system [1].

Typically, a model of the considered power system is used to

formulate an optimization problem to find the optimal settings

of the controllable devices with respect to a given objective

function and subject to given constraints. Such an approach

assumes that a model of the power system is available and that

settings can be determined from a central point in the system.

However, for larger power systems, e.g., the Europe-covering

UCTE grid, obtaining an accurate overall model of the system

is cumbersome due to the system’s size, and even if a model

would be available, the computations to solve the optimization

problem would become intractable. Moreover, large power

systems typically span several countries or regions, each of

them having control of only their own part of the power

system, making implementation of central control unfeasible.

To facilitate the application of OPF to large-scale problems,

the overall system can be decomposed into smaller areas, each

with an associated control subproblem, which is solved iter-

atively in a coordinated way. This coordination is necessary,

since a setting chosen in one area will influence the situation

and thus the choice of settings in the other areas of the system.

Traditional approaches for multi-area OPF assume that

a decomposition of the overall system model and control

objectives is possible into models of areas that cover strictly
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Fig. 1. Non-overlapping (left, no buses are shared) versus overlapping areas
(right, some buses are shared).

separate regions [2], [3], i.e., the areas are assumed to be non-

overlapping, see Fig. 1. When OPF is used for power flow

control of multiple areas, and each bus can be assigned only

to one individual area, then this is an appropriate assumption.

However, when sensitivity analysis is used to determined the

minimal area that individual FACTS devices have to consider

[4], then for FACTS devices that are close to each other, the

corresponding areas will be overlapping, thus not satisfying the

underlying assumption of current decomposition techniques.

In the following, a particular approach for multi-area control,

first proposed in [3] for non-overlapping areas, is extended

and applied to the case of overlapping areas. The method

is used to coordinate FACTS devices for steady-state system

security by improving the voltage profile, preventing lines

from overloading, and minimizing active power losses.

This paper is organized as follows. In Sect. II the mod-

els of the network and FACTS devices used for OPF are

described. In Sect. III the overall OPF problem is defined.

In Sect. IV current decomposition techniques which assume

non-overlapping areas are discussed. In Sect. V an extension

to overlapping areas for one of these methods is proposed, and

in Sect. VI simulation results are presented for FACTS control

of overlapping areas in an adjusted IEEE 57-bus system.

II. MODELS FOR POWER SYSTEMS WITH FACTS DEVICES

As the focus lies on improving the steady-state system

security, the power system is modeled using static equations

describing the steady-state characteristics of the power system.

For the transmission lines the well known π-model is used [1].

Generators are modeled with constant active power injection

and constant voltage magnitude, while loads are modeled
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Fig. 2. (a) Model of an SVC and (b) of a TCSC.

with constant active and constant reactive power injections. A

single generator is used as slack generator with fixed voltage

magnitude and angle [1]. The FACTS devices that we consider

are Static Var Compensators (SVCs) and Thyristor Controlled

Series Compensators (TCSCs), since these FACTS devices are

used most frequent in power systems [5].

An SVC is a device that is shunt-connected to a bus and

injects or absorbs reactive power QSVC to control the voltage

VSVC at the bus to which it is connected [6]. The SVC is

modeled as a shunt-connected variable susceptance (as in

Fig. 2(a)) for which the injected reactive power QSVC is

QSVC = −V 2
SVCBSVC, (1)

where BSVC is the variable effective susceptance of the device.

The control input BSVC is limited to the domain

BSVC,min ≤ BSVC ≤ BSVC,max, (2)

where the values of BSVC,min and BSVC,max are determined

by the size of the device.

A TCSC is a device connected in series with a transmission

line. It can change the line reactance Xline and therefore is

able to control the active power flowing over the line [6]. The

device is modeled as a variable reactance XTCSC connected in

series with the line, as in Fig. 2(b). The total reactance Xline

of the line including the TCSC is therefore

Xline = X +XTCSC, (3)

where X is the reactance of the line without the TCSC

installed. The reactance XTCSC is limited to the domain

XTCSC,min ≤ XTCSC ≤ XTCSC,max (4)

where the values of XTCSC,min and XTCSC,max are determined

by the size of the TCSC device and the characteristics of the

line in which it is placed, since due to the physics the allowed

compensation rate of the line XTCSC/X is limited [7].

III. OPTIMAL POWER FLOW CONTROL PROBLEM

Our OPF objective is to improve the system security through

1) minimization of deviations of bus voltages from given

references to improve the voltage profile,

2) minimization of active power losses,

3) and preventing lines from overloading,

by choosing appropriate settings for the FACTS devices. These

goals are captured by the objective function

f(·) =
n
∑

i=1

(Vi − Vref,i)
2
+

∑

(i,j)∈I

Ploss,ij(Vi, θi, Vj , θj)

+
∑

(i,j)∈I

(

Sij(Vi, θi, Vj , θj)

Sij,max

)2

, (5)

where n is the number of buses in the network, where for each

bus i ∈ {1, . . . , n}, Vi and θi denote voltage magnitude and

angle, where I denotes all (i, j), i ∈ {1, . . . , n}, j ∈ {, . . . , n}
for which there is a line between bus i and j, and where

for each (i, j) ∈ I, Sij(·) is the apparent power flow with

maximum Sij,max and Ploss,ij(·) the active power loss.

To determine the values of the variables involved in the

objective function, a model of the network is used. The model

of the network consists of the power flow equations coming

forth from the models of the generators, loads, power lines,

and FACTS devices as described in Sect. II, augmented with

relations to compute Sij(·) and Ploss,ij(·).
Denoting by x all variables involved, the model of the

network and additional bound constraints are combined into

equality constraints g(x) = 0 and inequality constraints

h(x) ≤ 0, such that the overall OPF problem involves

minimizing f(x) over x, subject to g(x) = 0 and h(x) ≤ 0.

The solution of this optimization problem yields the settings

for the FACTS devices that minimize the objective function,

while taking into account the constraints. In theory such

a control problem may be solvable; in practice this may

be intractable or impossible, due to the large scale of the

problem or inaccessibility of all actuators and sensors by a

single controller. Instead, multiple smaller areas have to be

considered and multi-area control has to be employed.

IV. NON-OVERLAPPING MULTI-AREA OPF CONTROL

In multi-area OPF control, the overall OPF problem is

decomposed into several subproblems each associated with an

area. These subproblems are then solved in an iterative proce-

dure. For this purpose, various decomposition techniques have

been proposed over the years, mainly having their foundation

in Lagrange and augmented Lagrange theory. A comparison

on the performance in power systems of a selection of these

methods is given in [2], [8], [9], [10].

One of the existing approaches is the modified Lagrange

decomposition approach, proposed in [11] and applied to OPF

in [3]. This approach makes for each area p a distinction

between local and external variables, where the local variables

are the decision variables of area p and the external variables

are the decision variables of other areas. As we will see in the

following, constraints that include local as well as external

variables are interconnecting constraints and are moved as

soft constraints into the objective function of one area, while

keeping them explicit as hard constraints in the constraint set

of another area. In each iteration, an area obtains values for the

Lagrange multipliers of the interconnecting constraints that it

considers as hard constraints. These values are communicated



to the neighboring areas and used in their objective functions

to penalize the corresponding soft constraints. The overall ob-

jective function is completely assigned to each area, although

with the external variables fixed. We elaborate on this in the

following.

The decomposition concept for constraints and objective

function is based on the first-order optimality conditions for

the overall problem and the subproblems. Applying this de-

composition, the first-order optimality conditions for all areas

combined are equivalent to the first-order optimality conditions

for the overall problem [11]. In the following we focus on

equality constraints, noting that inequality constraint can be

transformed into equality constraints using slack variables.

The classification of equality constraints as hard or soft for

a particular area in a multi-area power network is done in

the following way: equality constraints are included as hard

constraints in the area where the bus to which this equation

is assigned, is located, and taken into account in the objective

function of the other areas as soft constraints.

The procedure to set up the subproblems then is as follows:

1) Determine which buses, and thus which variables, are

included in which area, defined, e.g., by given control

regions or by sensitivity analysis.

2) Assign the overall objective function to each area p and

define the external variables as fixed.

3) For each bus i in each area p, set up the power flow

equality constraints and include them into the constraint

set of area p.

4) Determine for each constraint whether it is an inter-

connecting constraint gp,int(xp, xpe
) which involves local

variables xp as well as external variables xpe
or whether

it is a constraint gp(xp) only using local variables.

5) Include gp,int(xp, xpe
) in each area m as a soft constraint

in the objective function for which a variable xm appears

as external variable in this equation.

For M areas, the subproblem solved by area p ∈
{1, . . . ,M} with decision variables xp at a particular iteration

step is therefore given by

min
xp

f(xp, xpe
) + (λpe,int)

Tgpe,int(xp, xpe
) (6)

subject to

gp,int(xp, xpe
) = 0 (7)

gp(xp) = 0 (8)

where the subscript p denotes local variables and equations

associated with buses in area p. The subscript pe is used

accordingly for external variables and equations associated

with external buses. The bar and subscript pe notation for

a variable, e.g., v̄pe
, indicates that the value of v is set to

the value determined for v in the previous iteration. The

subscript int indicates interconnecting constraints that include

local variables as well as external variables. The variables

λpe,int are the Lagrange multipliers for the interconnecting

constraints gpe,int included as soft constraints in area p and

as hard constraints in the area where the bus to which this

constraint is associated to is located.

Using this problem setup for each area, the outline of the

scheme to determine the settings of the manipulated variables,

e.g., FACTS devices, is as follows:

1) Each area p initializes its variables xp and λp,int by

setting the variables for voltage magnitudes and angles

and the manipulated variable to the current steady-state

values and the Lagrangian multipliers to zero.

2) Iteration counter s is set to 1.

3) Given xpe
and λpe,int from the initialization or iteration

step s− 1, each area p ∈ {1, . . . ,M} solves in parallel

with the other areas its subproblem given by equations

(6)-(8) to obtain xp and λp,int for iteration s.

4) The areas exchange the requested values resulting from

their optimization problem with their neighbors.

5) Unless a stopping condition is satisfied, e.g., the absolute

changes in all variables from step s− 1 to s are smaller

than a pre-defined threshold, the next iteration is started

by increasing s and going back to step 3.

In order to speed up the computations, in the original

method only one Newton-Raphson step is performed in solv-

ing the subproblem in step 3, instead of determining the

actual optimal solution of the subproblem [11]. In [11] a

proof is given that shows that when applying an interior

point algorithm in combination with a conjugate gradient

method, the multi-area control converges to the overall optimal

solution. In our approach, we solve the optimization problem

completely as the computation time for one iteration is not

considered here and convergence is expected to be faster.

The advantage of the method in [11] over the augmented

Lagrange methods as discussed is that no parameter tuning is

necessary. Only the state variables and the Lagrange multipli-

ers have to be initialized. A shortcoming is that this method,

as well as other methods, requires that the network is decom-

posable into non-overlapping areas as it is assumed that each

variable can be assigned to either one of the areas. However,

in case of overlapping areas, certain variables and constraints

are included in more than one area and the identification

of local and external constraints is not straightforward any

more. Therefore, the method is not directly applicable for our

purpose. In the following, we consider an extension of this

method to overlapping areas.

V. EXTENSION TO OVERLAPPING AREAS

Now we extend the approach for non-overlapping areas to

overlapping areas. For multi-area control in power systems,

areas are overlapping areas when at least one bus, and thus

some variables, cannot be assigned uniquely to one particular

area, but are common to at least two areas, contrary to non-

overlapping areas, for which no bus is included at the same

time in multiple areas, see Fig. 1. Overlapping areas thus

share a common area, consisting of those buses that are part

of multiple areas. In the case of overlapping areas, several

difficulties concerning the choice of the decision variables, the

constraints, and the objective functions have to be overcome.



Area p Area m

t1

t1

t1

t1

t1

t1

t1

t2

t2

t3

t3

t4

t4 t4

Fig. 3. Illustration of different bus types.

A. Decision variables

From the point of view of a particular area p three types of

buses can be determined:

1) local buses: buses which are only included in area p;

2) common buses: those buses included in area p and some

other area m, hence, located in the common area;

3) external buses: those busses not included in area p.

The terms local, common, and external are also used for

the variables associated with the respective buses. The local

variables for area p are denoted by xp, the common variables

by xpc
, and the external variables by xpe

.

Each area has its local variables as decision variables in

the OPF problem. Furthermore, also the common variables

are considered as its decision variables. In the course of the

iteration process, the values of these common variables are

exchanged among the areas. The external variables of an area

are not considered decision variables, but instead assumed

given by another area.

The difficulty for multi-area OPF for overlapping areas

arises from the common variables. Even though we assume

that the areas have the same objective with respect to these

variables, combined with the objective for their local variables,

this might result in conflicting intentions for the common

variables.

B. Constraints

There are constraints that depend on common variables and

possibly also on local or external variables. In power systems,

such constraints correspond to the power flow equations for

the buses in the common area and buses in any of the areas

which are connected to at least one bus in the common or in

an other area.

In order to classify the types of constraints, we first classify

the types of buses. For multi-area OPF with overlapping areas,

four different types of buses are distinguished. In Fig. 3, an

illustration of these types from the view point of area p is

given. The bus types t1-t4 can be described as:

1) bus type t1: all local buses and in addition, common

buses that are not connected to any local bus;

2) bus type t2: common buses that are connected to at least

one local bus;

3) bus type t3: external buses that are connected to at least

one local bus;

TABLE I
TREATMENT OF CONSTRAINTS ASSOCIATED WITH DIFFERENT BUS TYPES

FOR AREA p

type bus location how to deal with constraints

t1 local, common gt1 (xp, xpe , xpc )
t2 common gt2 (xp, xpe , xpc )

fp = · · ·+ λpcgt2 (xp, xpe , xpc )

t3 external fp = · · ·+ λpegt3 (xp, xpe , xpc )
t4 external -

TABLE II
DECOMPOSITION OF THE OBJECTIVE FUNCTION FOR AREA p

term in overall f(·) how to include in fp(·)

f1(xp) fp(·) = · · ·+ f1(xp)
f2(xp, xpc ) fp(·) = · · ·+ f2(xp, xpc)
f3(xpe , xpc ) fp(·) = · · ·+ 0

f4(xpc ) fp(·) = · · ·+ 1

a
f4(xpc)

f5(xp, xpe ) fp(·) = · · ·+ f5(xp, xpe )

4) bus type t4: external buses that are connected to only

external and common buses.

Each of the bus types yields a different way of dealing with

the constraints associated with that bus in the OPF formulation

for the area. In general, if a constraint is included in one area

using fixed values for the external variables, it is included in

the objective function of another area with contrary variables

fixed and weighted with the Lagrange multiplier for this

constraint given from the first area. So, for a particular area, its

constraints of type t1 and t2 are included as hard constraints

with external variables fixed, while its constraints of t2 and t3
are included as soft constraints in the objective function with

external and common variables fixed. Constraints associated

with buses of type t4 are not taken into account in the

considered area. Table I gives the overview of how constraints

associated to different bus types are taken into account.

C. Objective function

From the point of view of area p, the overall objective

function consists of terms that involve only local variables,

common variables, and external variables, and possibly com-

binations. E.g., if the deviations of voltages from a given

reference value are minimized, the objective function includes,

among others, terms that are dependent on only common

variables. When active power losses are minimized, both

common and external variables can be involved in objective

function terms.

In the case of overlapping areas, the overall objective

function is decomposed such that it holds that the gradient

of the overall objective function is equal to the sum of the

gradients of the objective functions of the areas, i.e.,

∂f

∂x
=

M
∑

p=1

∂fp
∂x

. (9)

The concept used is to equally divide the terms including

only common variables and assign them to the involved areas.

Terms that use local variables from one area and variables from

the common area are only included in the area that includes

all variables, and terms that use variables from both areas are

fully included in both areas.



Table II shows how terms depending on local, common,

external variables, and combinations of these are taken into

account in the decomposed system fulfilling criteria (9). The

number of areas that include the common variables appearing

in the considered term is denoted by a.

If the objective function is decomposed like this and the

constraints are taken into account as given in the previous

section, the first-order optimality conditions for the overall

problem and the subproblems show that this decomposition

yields the same optimal solution for the overall problem as

for the decomposed problem.

D. Extended scheme

Having defined how constraints and objective function are

formulated in the overlapping case, the adapted scheme is as

follows:

1) Determine which buses, and thus which variables, are

included in which area and distinguish between local,

common, and external variables.

2) Define the objective function of each area p including

the terms of the overall objective function as defined in

Table II.

3) For each bus i and each area p, set up the power flow

equality constraints and include them into the constraint

set of area p.

4) Determine the type t1, . . . , t4 for each bus.

5) For buses of type t2 and t3 include the constraints

associated with these buses according to Table I as soft

constraints into the objective function.

Hence, the structure of the subproblem for each area p has

been set up and can be used to formulate the subproblems for

use in a similar scheme as given for the non-overlapping case.

VI. SIMULATION RESULTS

Simulations are carried out on the IEEE 57-bus grid with

additional FACTS devices installed at various locations [12].

In order to find an interesting and meaningful situation for

FACTS control, the grid was adapted by placing an additional

generator at bus 30 leading to increased power flows in the

center of the grid.

Various test scenarios with different FACTS devices and

area definition have been examined. Here we present two

representative scenarios. The areas used in these scenarios are

shown in Fig. 4. It can be seen that these areas are overlapping,

since there are several buses that are included in both areas.

The objective function for the overall system is defined as in

(5) and decomposed as elaborated in Sect. V-C. The controllers

of each area use the SNOPT solver of Tomlab to solve their

subproblems at each iteration step.

A. Scenario 1: Control of SVCs

In the first scenario, two SVCs are present. The SVCs are

placed at (local) buses 14 and 29. As the SVCs are mainly

used to influence the voltage profile, the line limits are chosen

such that no line is at the risk of being overloaded.
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Fig. 4. IEEE 57-bus system with decomposition into 2 areas. Scenario 1:
SVCs at buses 14 and 29, scenario 2: TCSCs in lines 22 and 72.

Fig. 5 shows the convergence of the SVC device settings

over the iterations. As can be seen, the settings of the SVC

devices converge within only a few iterations to the final

values, which are equal to the values obtained from an overall

optimization. Fig. 6 shows the evolution of the deviations

between the values determined by both areas for the voltage

magnitudes and angles at some common buses again indicating

fast convergence.

B. Scenario 2: Control of TCSCs

In the second scenario, two TCSC devices are installed in

lines 72 and 22. Since TCSCs are mainly used to influence

active power flows and to resolve congestion, the line limits

are chosen such that lines 7 and 60 are overloaded in the base

case when the FACTS devices are set out of operation.

The results for the TCSC device settings and the difference

between the voltage magnitudes and angles for some common

buses over the iterations are given in Figs. 7 and 8, respec-

tively. The line reactance of line 72 is 0.1242 Ω yielding an

upper compensation limit of 0.02484 Ω (see Sect. II). Thus,

the controller of area 1 sets the TCSC to its upper limit for

the first few iterations. But after some additional iterations, the

TCSC settings converge to their final value which are again

equal to the values obtained from the overall optimization.

In Fig. 9, the line loadings of lines 7 and 60, the lines which

are overloaded without FACTS devices, are shown. Line 7 is

immediately brought below its limit whereas for line 60, the

loading approaches 100% in the course of the optimization

process.

VII. CONCLUSIONS AND FUTURE WORK

A method for decomposition of control problems assum-

ing non-overlapping areas is extended to applications with

overlapping areas. Various aspects concerning state variables,

constraints and objective function are considered and taken

into account in the extended method. Simulations show fast

convergence to overall optimal values for problems involving

SVC and TCSC devices.
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Future work will explore the use of reduced area models

determined by sensitivity analysis in which the models of the

areas do not fully cover the whole network.
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