
Delft University of Technology
Delft Center for Systems and Control

Technical report 07-008

Continuous-state reinforcement learning
with fuzzy approximation∗

L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška

If you want to cite this report, please use the following reference instead:
L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Continuous-state reinforce-
ment learning with fuzzy approximation,” Proceedings of the 7th Annual Symposium
on Adaptive and Learning Agents and Multi-Agent Systems (ALAMAS 2007) (K. Tuyls,
S. de Jong, M. Ponsen, and K. Verbeeck, eds.), Maastricht, The Netherlands, pp. 21–
35, Apr. 2007.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/07_008.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/07_008.html

Continuous-State Reinforcement Learning

with Fuzzy Approximation

Lucian Buşoniu1, Damien Ernst2, Bart De Schutter1, and Robert Babuška1

1 Delft University of Technology, The Netherlands
2 Supélec, Rennes, France

i.l.busoniu@tudelft.nl, damien.ernst@supelec.fr,

b@deschutter.info, r.babuska@tudelft.nl

Abstract. Reinforcement learning (RL) is a widely used learning pa-
radigm for adaptive agents. Well-understood RL algorithms with good
convergence and consistency properties exist. In their original form, these
algorithms require that the environment states and agent actions take
values in a relatively small discrete set. Fuzzy representations for approx-
imate, model-free RL have been proposed in the literature for the more
difficult case where the state-action space is continuous. In this work, we
propose a fuzzy approximation structure similar to those previously used
for Q-learning, but we combine it with the model-based Q-value iteration
algorithm. We show that the resulting algorithm converges. We also give
a modified, serial variant of the algorithm that converges at least as fast
as the original version. An illustrative simulation example is provided.

1 Introduction

Learning agents can tackle problems where pre-programmed solutions are diffi-
cult or impossible to design. Reinforcement learning (RL) is a popular learning
paradigm for adaptive agents, thanks to the mildness of its assumptions on the
environment (which can be a nonlinear, stochastic process), and to its ability
to work without an explicit model of the environment [1–3]. At each time step,
an RL agent perceives the complete state of the environment and takes an ac-
tion. This action causes the environment to transit into a new state. The agent
then receives a scalar reward signal indicating the quality of this transition. The
agent’s objective is to maximize the cumulative reward over the course of in-
teraction. Well-understood algorithms with good convergence and consistency
properties are available for solving RL problems [1, 3, 4]. Unfortunately, these
algorithms apply in general only to problems having discrete and not too large
state-action spaces since, among others, they require to store estimates of cu-
mulative rewards for every state-action pair. For problems with discrete but
large state-action spaces, or continuous state-action spaces, one has to rely on
approximate algorithms.

In this paper, we analyze the convergence of some model-based reinforce-
ment learning algorithms exploiting a fuzzy approximation architecture. Our
algorithms deal with problems for which the complexity comes from the state

2 Buşoniu, Ernst, et al.

space but not the action space, i.e. for problems for which the state space con-
tains an infinite (or extremely large) number of elements and the action space
is discrete and not too large. Most of our results also hold in the case where
the action space is large or continuous, but in that case require a discretization
procedure that selects a small number of representative actions. A significant
number of (mainly model-free) fuzzy RL algorithms have been proposed, e.g.,
for Q-learning [5–8] or actor-critic techniques [8–13]. However, most of these al-
gorithms are heuristic in nature, and their theoretical properties have not been
investigated. Notable exceptions are the actor-critic algorithms in [10,11].

On the other hand, a rich body of literature concerns the theoretical anal-
ysis of approximate RL algorithms, both in a model-based setting [14–17] and
when an a priori model is not available [18–23].3 While convergence is not en-
sured for an arbitrary approximator (examples of divergence have been pub-
lished [14, 17, 24]), there exist approximation schemes that do provide conver-
gence guarantees. These mainly belong to the family of linear basis functions,
and are encountered under several other names: kernel functions [18, 19], av-
eragers [16], interpolative representations [21]. Some authors also investigate
approximators that alter their structure during learning in order to better rep-
resent the solution [19,25,26]. While some of these algorithms exhibit impressing
learning capabilities, they may face convergence problems, especially if combined
with non-suitable approximation structures [19, 24].

We consider here a fuzzy rule-base approximator that is similar to others
previously used in fuzzy Q-learning, but we combine it with the model-based Q-
value iteration algorithm. We show that the resulting algorithm is convergent.
Afterwards, we propose a variant of this algorithm, which we name serial fuzzy

Q-iteration, and which we show converges at least as fast as the original version.
While serial Q-iteration has been widely used in exact RL , its approximate
counterpart has not been studied before.

The remainder of this paper is structured as follows. Section 2 describes
briefly the RL problem and reminds some classical results from the dynamic
programming theory. Section 3 introduces the approximate Q-iteration algo-
rithm, which is an extension of the classical Q-iteration algorithm to cases where
function approximators are used. Section 4 presents the proposed fuzzy approx-
imation structure. The properties of parallel and serial approximate Q-iteration
using this structure are analyzed in Section 5. Section 6 illustrates the intro-
duced algorithms on a two-dimensional navigation example. Section 7 outlines
ideas for future work and concludes the paper.

2 Reinforcement Learning

In this section, we briefly introduce the RL task and characterize its optimal
solution. The presentation is based on [1–3].

3 Some authors use ‘model-based RL ’ when referring to algorithms that build a model
of the environment from interaction. We use the term ‘model-learning’ for such
techniques, and reserve the name ‘model-based’ for algorithms that rely on an a

priori model of the environment.

Fuzzy Q-value Iteration 3

Consider a deterministic Markov decision process with the state space X,
the action space U , the transition function f : X × U → X, and the reward
function ρ : X × U → R. As a result of the agent’s action uk in state xk at the
discrete time step k, the state changes to xk+1 = f(xk, uk). At the same time,
the agent receives the scalar reward signal rk+1 = ρ(xk, uk), which evaluates the
immediate effect of action uk, but says nothing about its long-term effects. 4,5

The agent chooses actions according to its policy h : X → U , using uk =
h(xk). The goal of the agent is to learn a policy that maximizes, starting from the
current moment in time (k = 0) and from any state x0, the discounted return:

R =

∞∑

k=0

γkrk+1 =

∞∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1). The discounted return compactly represents the reward accu-
mulated by the agent in the long-run. The learning task is therefore to maximize
the long-term performance, while only receiving feedback about the immediate,
one-step performance. This can be achieved by computing the optimal action-
value function.

An action-value function (Q-function), Qh : X × U → R, gives the return of
each state-action pair under a given policy h:

Qh(x, u) = ρ(x, u) +

∞∑

k=1

γkρ(xk, h(xk)) (2)

where x1 = f(x, u) and xk+1 = f(xk, h(xk)) ∀k. The optimal action-value func-
tion is defined as Q∗(x, u) = maxh Q

h(x, u). Any policy that picks for every state
the action with the highest optimal Q-value:

h∗(x) = argmax
u

Q∗(x, u) (3)

is then optimal, i.e., it maximizes the return (1).

A central result upon which RL algorithms rely is the Bellman optimality

equation:

Q∗(x, u) = ρ(x, u) + γmax
u′∈U

Q∗(f(x, u), u′) ∀x, u (4)

This equation states that the optimal value of action u taken in state x is the
expected immediate reward plus the discounted optimal value attainable from
the next state.

4 A stochastic formulation is possible. In that case, expected returns under the prob-
abilistic transitions must be considered.

5 Throughout the paper, standard control-theoretic notation is used: x for state, X
for state space, u for control action, U for action space, f for environment dynamics.
We denote reward functions by ρ, to distinguish from the instantaneous rewards r

and the return R. We denote policies by h.

4 Buşoniu, Ernst, et al.

Let the set of all Q-functions be denoted by Q. Define the Q-iteration map-
ping T : Q → Q, which computes the right-hand side of the Bellman equation
for any Q-function:

[T (Q)](x, u) = ρ(x, u) + γmax
u′∈U

Q(f(x, u), u′) (5)

Using this notation, the Bellman equation (4) states that Q∗ is a fixed point of
T , i.e., Q∗ = T (Q∗). The following result is also well-known (see e.g., [27]).

Theorem 1. T is a contraction with factor γ in the infinity norm, i.e., for any
pair of functions Q, Q′, ‖T (Q)− T (Q′)‖

∞
≤ γ ‖Q−Q′‖

∞
.

The Q-value iteration (or in short Q-iteration) algorithm starts from an ar-
bitrary Q-function Q0 and at each iteration τ updates the Q-function using the
formula Qτ+1 = T (Qτ). From Theorem 1, it follows that T has a unique fixed
point, and since from (4) this point is Q∗, the iterative scheme converges to Q∗

as τ →∞.
Q-iteration uses an a priori model of the task (in the form of the transition

and reward functions f , ρ). There also exist algorithms that do not require
an a priori model. Model-free algorithms work without any explicit model, by
learning directly the optimal Q-function from real or simulated experience in the
environment (e.g., Q-learning [4]). Model-learning algorithms estimate a model
from experience and use it to derive Q∗ (e.g., Dyna [28]).

3 Q-iteration with Function Approximation

In general, the implementation of Q-iteration (5) requires that Q-values are
stored and updated explicitly for each state-action pair. If some of the state or
action variables are continuous, the number of state-action pairs is infinite, and
an exact implementation becomes impossible. Instead, approximate solutions
must be used. Even if the number of state-action pairs is finite but very large,
exact Q-iteration might be impractical, and it is useful to approximate the Q-
function.

The following mappings are defined in order to formalize approximate Q-
iteration (the notation follows [21]).

1. The Q-iteration mapping T , defined by equation (5).
2. The approximation mapping F : Rn → Q, which for a given value of the

parameter vector θ ∈ R
n produces an approximate Q-function Q̂ = F (θ). In

other words, the parameter vector θ is a finite representation of Q̂.
3. The projection mapping P : Q → R

n, which given a target Q-function Q

computes the parameter vector θ such that F (θ) is as close as possible to Q

(e.g., in a least-squares sense).

The notation [F (θ)](x, u) refers to the value of the Q-function F (θ) for the
state-action pair (x, u). The notation [P (Q)]l refers to the l-th component in the
parameter vector P (Q).

Fuzzy Q-value Iteration 5

Approximate Q-iteration starts with an arbitrary parameter vector θ0 and
at each iteration τ updates it using the composition of the mappings P , T , and
F :

θτ+1 = PTF (θτ) (6)

Unfortunately, the approximate Q-iteration is not guaranteed to converge for
an arbitrary approximator structure. Counter-examples can be found e.g., in [14,
24] for the related value-iteration algorithm, but those results apply directly to Q-
iteration as well. One particular case in which approximate Q-iteration converges
is when the composite mapping PTF can be shown to be a contraction [14,16].
This property will be used below to show that fuzzy Q-iteration converges.

4 Fuzzy Q-iteration

In this section, we propose a fuzzy approximation scheme similar to those pre-
viously used in combination with Q-learning [5,6,8], and apply it to the model-
based Q-iteration algorithm. The theoretical properties of the resulting fuzzy
Q-iteration algorithm are investigated in Section 5.

In the sequel, it is assumed that the action space is discrete, denoted by
U0 = {uj |j = 1, . . . ,M}. For instance, this discrete set can be obtained from the
discretization of an originally continuous action space. The state space can be
either continuous or discrete. In the latter case, fuzzy approximation is useful
when the number of discrete states is large.

The proposed approximation architecture relies on a fuzzy partition of the
state space into N sets Xi, each described by a membership function µi : X →
[0, 1]. A state x belongs to each set i with a degree of membership µi(x). In the
sequel the following assumptions are made:

1. The fuzzy partition is normalized, i.e.,
∑N

i=1
µi(x) = 1, ∀x ∈ X.

2. All the fuzzy sets in the partition are normal, i.e., for every i there exists an xi

for which µi(xi) = 1 (consequently, µi(xi) = 0 for all i 6= i by assumption 1).
The state value xi is called the center value of set Xi. This second assumption
is required here for brevity in the description and analysis of the algorithms;
it can be relaxed using results of [14].

For two examples of fuzzy partitions that satisfy the above conditions, see
Figure 1, from Section 6.

The fuzzy approximator stores an N ×M matrix of parameters, with one
component θi,j corresponding to each state-action pair (xi, uj).

6 The approxi-
mator takes as input the state-action pair (x, uj) and outputs the Q-value:

Q̂(x, uj) = [F (θ)](x, uj) =

N∑

i=1

µi(x)θi,j (7)

6 The matrix arrangement is adopted for convenience of notation only. For the the-
oretical study of the algorithms, the collection of parameters is still regarded as a
vector, leading e.g., to ‖θ‖

∞
= maxi,j |θi,j |.

6 Buşoniu, Ernst, et al.

This is a basis-functions form, with the basis functions only depending on
the state. The approximator (7) can be regarded as M distinct approximators,
one for each of the M discrete actions.

The approximator (7) is equivalent to a Takagi-Sugeno rule-base with one
input, the state x, and M singleton outputs, the Q-values corresponding to each
of the discrete actions u1, . . . , uM . The i-th rule in this rule-base has the form:

Ri : if x is Xi then Q(x, u1) = θi,1

and Q(x, u2) = θi,2 . . . and Q(x, uM) = θi,M

The logical expression ‘x is Xi’ is here characterized true with degree µi(x), the
membership degree of x in Xi. The fuzzy rule-base outputs the weighted sum of
the consequent values θi,j in each rule, where the weight factor of a particular rule
i corresponds to the degree of fulfillment of its logical expression. This weighted
sum is written as (7).

The projection mapping infers from a Q-function the values of the approxi-
mator parameters according to the relation:

θi,j = [P (Q)]i,j = Q(xi, uj) (8)

The approximation structure (7), (8) shares some strong similarities with
several classes of approximators that have already been used in RL : interpolative
representations [14], averagers [16], and representative-state techniques [23].

The Q-iteration algorithm using the approximation architecture (7) and pro-
jection mapping (8) can be written as Algorithm 1. To establish the equivalence
between Algorithm 1 and the approximate Q-iteration in the form (6), observe

that the right-hand side in line 4 of Algorithm 1 corresponds to [T (Q̂τ)](xi, uj),

where Q̂τ = F (θτ). Hence, line 4 can be written θτ+1,i,j ← [PTF (θτ)]i,j and the
entire for loop described by lines 3–5 is equivalent to (6).

Algorithm 2 is a different version of fuzzy Q-iteration, that makes more effi-
cient use of the updates by using the latest updated values of the parameters θ
in each step of the computation. Since the parameters are updated in serial fa-
shion, this version is called serial Q-iteration. Although the exact counterpart of
this algorithm is widely used [1,3], the serial variant has received little attention
in the context of approximate RL . To differentiate between the two versions,
Algorithm 1 is hereafter called parallel fuzzy Q-iteration.

5 Convergence of Fuzzy Q-iteration

In this section, the convergence of parallel fuzzy Q-iteration and serial fuzzy
Q-iteration is established, i.e., it is shown that there exists a parameter vector
θ∗ such that for both algorithms, θτ → θ∗ as τ →∞. In addition, serial fuzzy Q-
iteration is shown to converge at least as fast as the parallel version. The distance
between F (θ∗) and the true optimum Q∗, as well as the suboptimality of the
greedy policy in F (θ∗), are also shown to be bounded [14, 16]. The consistency
of the fuzzy Q-iteration, i.e., the convergence to the optimal Q-function Q∗ as

Fuzzy Q-value Iteration 7

Algorithm 1 Parallel fuzzy Q-iteration

1: θ0 ← 0; τ ← 0
2: repeat

3: for i = 1, . . . , N, j = 1, . . . ,M do

4: θτ+1,i,j ← ρ(xi, uj) + γmaxj

∑N

i=1
µi(f(xi, uj))θτ,i,j

5: end for

6: τ ← τ + 1
7: until ‖θτ − θτ−1‖

∞
≤ δ

Algorithm 2 Serial fuzzy Q-iteration

1: θ0 ← 0; τ ← 0
2: repeat

3: θ ← θτ
4: for i = 1, . . . , N, j = 1, . . . ,M do

5: θi,j ← ρ(xi, uj) + γmaxj

∑N

i=1
µi(f(xi, uj))θi,j

6: end for

7: θτ+1 ← θ

8: τ ← τ + 1
9: until ‖θτ − θτ−1‖

∞
≤ δ

the maximum distance between the centers of adjacent fuzzy sets goes to 0, is
not studied here, and is a topic for future research.

Proposition 1. Parallel fuzzy Q-iteration (Algorithm 1) converges.

Proof. The proof follows from the proof of convergence of (parallel) value it-
eration with averagers [16], or with interpolative representations [14]. This is
because fuzzy approximation is an averager by the definition in [16], and an inter-
polative representation by the definition in [14]. The main idea of the proof is that
PTF is a contraction with factor γ, i.e., ‖PTF (θ)− PTF (θ′)‖

∞
≤ γ ‖θ − θ′‖

∞
,

for any θ, θ′. This is true thanks to the non-expansive nature of P and F , and
because T is a contraction. �

Similarly to the convergence proof for exact serial value iteration in [3], it is
shown below that the approximate serial Q-iteration Algorithm 2 converges.

Proposition 2. Serial fuzzy Q-iteration (Algorithm 2) converges.

Proof. Denote n = N · M , and rearrange the matrix θ into a vector in R
n,

placing first the elements of the first row, then the second etc. The element at
row i and column j of the matrix is now the l-th element of the vector, with
l = (i− 1) ·M + j.

Define for all l = 0, . . . , n recursively the mappings Sl : R
n → R

n as:

S0(θ) = θ

[Sl(θ)]l =

{
[PTF (Sl−1(θ))]l if l = l

[Sl−1(θ)]l if l ∈ {1, . . . , n} \ l

8 Buşoniu, Ernst, et al.

In words, Sl corresponds to updating the first l parameters using approxi-
mate serial Q-iteration, and Sn is a complete iteration of the approximate serial
algorithm. Now we show that Sn is a contraction, i.e., ‖Sn(θ)− Sn(θ

′)‖
∞
≤

γ ‖θ − θ′‖
∞
, for any θ, θ′. This can be done element-by-element. By the defini-

tion of Sl, the first element is only updated by S1:

|[Sn(θ)]1 − [Sn(θ
′)]1| = |[S1(θ)]1 − [S1(θ

′)]1|

= |[PTF (θ)]1 − [PTF (θ′)]1|

≤ γ ‖θ − θ′‖
∞

The last step follows from the contraction mapping property of PTF .
Similarly, the second element is only updated by S2:

|[Sn(θ)]2 − [Sn(θ
′)]2| = |[S2(θ)]2 − [S2(θ

′)]2|

= |[PTF (S1(θ))]2 − [PTF (S1(θ
′))]2|

≤ γ ‖S1(θ)− S1(θ
′)‖

∞

= γmax{|[PTF (θ)]1 − [PTF (θ′)]1| ,

|θ2 − θ′2| , . . . , |θn − θ′n|}

≤ γ ‖θ − θ′‖
∞

where ‖S1(θ)− S1(θ
′)‖

∞
is expressed by direct maximization over its elements,

and the contraction mapping property of PTF is used twice. Continuing in this
fashion, we obtain |[Sn(θ)]l − [Sn(θ

′)]l| ≤ γ ‖θ − θ′‖
∞

for all l, and thus Sn is a
contraction. Therefore, serial fuzzy Q-iteration converges. �

This proof is actually more general, showing that approximate serial Q-
iteration converges for any approximator structure F and projection P for which
PTF is a contraction. It can also be easily shown that parallel and fuzzy Q-
iteration converge to the same parameter vector; indeed, the repeated applica-
tion of any contraction mapping will converge to its unique fixed point regardless
of whether it is applied in a parallel or serial (element-by-element) fashion.

We now show that serial fuzzy Q-iteration converges at least as fast as the
parallel version. For that, we first need the following monotonicity lemma. In this
lemma, as well as in the sequel, vector and function inequalities are understood
to be satisfied element-wise.

Lemma 1. If θ ≤ θ′, then PTF (θ) ≤ PTF (θ′).

Proof. It will be shown in turn that F , T , and P are monotonous.
To show that F is monotonous we show that, given θ ≤ θ′, it follows that for

all x, uj :

F (θ)(x, uj) ≤ F (θ′)(x, uj) ⇔
N∑

i=1

µi(x)θi,j ≤
N∑

i=1

µi(x)θ
′

i,j

The last inequality is true by the assumption θ ≤ θ′.

Fuzzy Q-value Iteration 9

To show that T is monotonous we show that, given that Q ≤ Q′:

[T (Q)](x, u) ≤ [T (Q′)](x, u)

⇔ ρ(x, u) + γmax
u′∈U

Q(f(x, u), u′) ≤ ρ(x, u) + γmax
u′∈U

Q′(f(x, u), u′)

⇔ max
u′∈U

Q(f(x, u), u′) ≤ max
u′∈U

Q′(f(x, u), u′)

The last inequality is true because Q(f(x, u), u′) ≤ Q′(f(x, u), u′) for all u′,
which follows from the assumption Q ≤ Q′.

To show that P is monotonous we show that, given that Q ≤ Q′, it follows
that for all i, j:

[P (Q)]i,j ≤ [P (Q′)]i,j ⇔ Q(xi, uj) ≤ Q′(xi, uj)

The last inequality is true by assumption. Therefore, the composite mapping
PTF is monotonous. �

Proposition 3. If a parameter vector θ satisfies θ ≤ PTF (θ) ≤ θ∗, then:

(PTF)k(θ) ≤ Sk(θ) ≤ θ∗ ∀k ≥ 1

Proof. This follows from the monotonicity of PTF , and can be shown element-
wise, in a similar fashion to the proof of Proposition 2. Note that this result is
an extension of Bertsekas’ result on exact value iteration [3]. �

In words, Proposition 3 states that k iterations of serial fuzzy Q-iteration
move the parameter vector at least as close to the convergence point as k itera-
tions of the parallel algorithm.

The following bounds on the sub-optimality of the convergence point, and
of the policy corresponding to this point, follow from [14, 16]. However, these
bounds apply only when the action space of the original problem is discrete
(i.e., no discretization is applied prior to fuzzy Q-iteration).

Proposition 4. If the original action space is discrete and minQ
∥∥Q∗ −Q

∥∥
∞

=
ε where Q is any fixed point of the composite mapping FP : Q → Q, then serial
and parallel fuzzy Q-iteration converge to θ∗ such that:

‖Q∗ − F (θ∗)‖
∞
≤

2ε

1− γ
(9)

‖Q∗ −Qĥ∗

‖∞ ≤
4γε

(1− γ)2
(10)

where Qĥ∗

is the action-value function of the approximately optimal policy ĥ∗(x) =
argmaxu[F (θ∗)](x, u).

For example, any Q-function that satisfiesQ(x, uj) =
∑N

i=1
µi(x)Q(xi, uj) for

all x, j, is a fixed point of FP . In particular, if the optimal Q-function has this
form, i.e., is exactly representable by the chosen fuzzy approximation structure,

10 Buşoniu, Ernst, et al.

the algorithm will converge to it, and the corresponding policy will be optimal
(since in this case ε = 0).

In this section, we have established fuzzy Q-value iteration as a theoretically
sound technique to perform approximate RL in continuous-variable tasks. In
addition to the convergence of both parallel and serial fuzzy Q-iteration, it was
shown that the serial version converges at least as fast as the parallel one, and
therefore might be more desirable in practice. When the original action space is
discrete, bounds on the derived Q-function and policy were also shown to hold.
This provides a degree of confidence in the results of fuzzy Q-iteration.

6 Example: 2-D Navigation

In this section, fuzzy Q-iteration is applied to a two-dimensional (2-D) navigation
problem with continuous state and action variables. A point-mass with a unit
mass value (1kg) has to be steered on a rectangular surface such that it gets close
to the origin in minimum time, and stays there. The state x contains the 2-D co-
ordinates of the point mass, cx and cy, and its 2-D velocity: x = [cx, cy, ċx, ċy]

T.
The motion of the point-mass is affected by friction, which can vary with the po-
sition, making the dynamics non-linear. Formally, the continuous-time dynamics
of this system are: [

c̈x
c̈y

]
=

[
ux

uy

]
− b(cx, cy)

[
ċx
ċy

]
(11)

where the control input u = [ux, uy]
T is a 2-D force (acceleration), and the scalar

function b(cx, cy) is the position-varying damping coefficient (friction). All the
state and action variables are bounded. The bounds are listed in Table 1, which
also collects the meaning and measuring units of all the variables.

Table 1. Variables for the navigation problem

Symbol Parameter Domain; Unit

cx, cy horizontal, vertical coordinate [−5, 5] m
ċx, ċy horizontal, vertical velocity [−2, 2] m/s
ux, uy horizontal, vertical control force [−1, 1] N

b damping coefficient R
+ kg/s

To obtain the transition function f for RL , time is discretized with a step
of Ts = 0.2s, and the dynamics (11) are numerically integrated between the
discretization points.7

The goal of reaching the origin in minimum time is expressed by the following
reward function:

ρ(x, u) =

{
10 ‖x‖

∞
≤ 0.1

0 otherwise
(12)

7 The numerical integration algorithm is the Dormand-Prince variant of Runge-Kutta,
as implemented in the MATLAB 7.2 function ode45.

Fuzzy Q-value Iteration 11

1

0.5

−2
0

−1 0 1 2

ċx

µ
ċ
x
,i
3
(ċ

x
)

Fig. 1. Left: triangular fuzzy partition for ċx ∈ [−2, 2]. Each membership function is
plotted in a different line style. The partition for ċy is identical. Right: composition of
the fuzzy partitions for ċx, ċy, yielding the two-dimensional fuzzy partition for [ċx, ċy]

T.
Each membership surface is plotted in a different style. The original single-dimensional
fuzzy partitions are highlighted in full black lines.

This means that both of the coordinates and the velocities have to be smaller
than 0.1 in magnitude for the agent to get a non-zero reward.

The control force is quantized into 9 discrete values: {−1, 0, 1} × {−1, 0, 1}.
These correspond to full acceleration into the 4 cardinal directions, diagonally,
and no acceleration at all. Each of the individual velocity domains is partitioned
into a triangular fuzzy partition with three fuzzy sets centered at {−2, 0, 2}, as
in Figure 1, left. Since the triangular partition satisfies Assumptions 1, 2, the
set of centers completely determines the shape of the membership functions.

For the position coordinates, triangular partitions are used as well, the centers
of which vary between the two particular damping landscapes considered in the
sequel. The fuzzy partition of the state space X = [−5, 5]2 × [−2, 2]2 is then
defined as follows. One fuzzy set is computed for each combination (i1, i2, i3, i4)
of individual sets for the four state components: µcx,i1 ; µcy,i2 ; µċx,i3 ; and µċy,i4 .
The membership function of each composite set is defined as the product of the
individual membership functions, applied to their individual variables:

µ(x) = µcx,i1(cx) · µcy,i2(cy) · µċx,i3(ċx) · µċy,i4(ċy) (13)

where x = [cx, cy, ċx, ċy]
T. It is easy to verify that the fuzzy partition computed

in this way still satisfies Assumptions 1, 2. This way of building the state space
partition can be thought of as a conjunction of one-dimensional concepts corre-
sponding to the fuzzy partitions of the individual state variables. An example of
such a composition for the two velocity variables is given in Figure 1, right.

6.1 Uniform Damping Landscape

In a first, simple scenario, the damping was kept constant: b(cx, cy) = b0 =
0.5 kg/s. Identical triangular fuzzy partitions were defined for cx and cy, with
the centers in {−5,−2,−0.3,−0.1, 0, 0.1, 0.3, 2, 5}. Serial and parallel fuzzy Q-
iteration were run with a discount factor γ = 0.98 and a threshold δ = 0.01 (see
Algorithms 1 and 2). The parameters γ and δ are set somewhat arbitrarily, but

12 Buşoniu, Ernst, et al.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

cx

c y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

cx

c y

Fig. 2. Left: The policy for constant damping, when ċx = ċy = 0. The direction and
magnitude of the control force on a grid of sample points (marked by dots) is indicated
by lines. Thick, black lines indicate exact policy values in the centers of the fuzzy
partition (marked by thick, black dots). Right: A set of representative trajectories,
each given in a different shade of gray. The initial velocity is always zero. The position
of the point-mass at each sample is indicated by dots, from which a rough impression
of the speed can be obtained.

their variation around the given values does not significantly affect the computed
policy. The serial algorithm converged in 339 iterations; the parallel one in 343.
Therefore, in this particular problem, the speed of convergence for the serial
algorithm is close to the speed for the parallel one (i.e., the worst-case bound).
The policies computed by the two algorithms are similar.

A continuous policy was obtained by interpolating between the best lo-
cal actions, using the membership degrees as weights: ĥ∗(x) =

∑N

i=1
µi(x)uj∗

i
,

where j∗i is the index of the best local action for the center state xi, j∗i =
argmaxj [F (θ∗)](xi, uj) = argmaxj θ

∗

i,j .

Figure 2 presents a slice through the computed policy for zero velocity,
ĥ∗(cx, cy, 0, 0), together with a few sample trajectories. This slice is clearly dif-
ferent from the optimal continuous-action policy, which would steer the agent
directly towards the goal zone regardless of the position. Also, since the actions
are originally continuous, the bound (10) does not apply. Nevertheless, the slice
presented in the figure is close to the best that can be achieved under the given
action quantization.

6.2 Varying Damping Landscape

In the second scenario, to increase the difficulty of the problem, the damping
(friction with the surface) varies as an affine sum of d Gaussian functions:

b(cx, cy) = b0 +
d∑

i=1

bi exp

[
−
(cx − gx,i)

2

σ2
x,i

−
(cy − gy,i)

2

σ2
y,i

]
(14)

Fuzzy Q-value Iteration 13

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

cx

c y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

cx

c y

Fig. 3. Left: The policy for varying damping (14), when ċx = ċy = 0. Darker areas
indicate larger damping. The direction and magnitude of the control force on a grid
of sample points is indicated. The thick, black lines indicate exact policy values in the
centers of the fuzzy partition. Right: A set of representative controlled trajectories.

The chosen values were: b0 = 0.5, d = 2, b1 = b2 = 8, gx,1 = 0, gy,1 = −2.3,
σx,1 = 2.5, σx,2 = 1.5, and for the second Gaussian function: gx,2 = 4.7, gy,2 =
1, σx,2 = 1.5, σy,2 = 2. So, the damping has two maxima equal to 8.5 kg/s,
at positions (0,−2.3) and (4.7, 1). The damping variation can be observed in
Figure 3, where the surface is colored darker when the damping is larger.

The fuzzy set centers for the position partition are marked by thick black
dots in Figure 3, left. They were chosen making use of prior knowledge about
the position of the high-friction areas. The centers include representative points
around these areas, and some points near the goal. Serial and parallel fuzzy
Q-iteration were run with the same settings as before, and converged in the
same number of iterations. Figure 2 presents a slice through the resulting policy
for zero velocity, ĥ∗(cx, cy, 0, 0), together with a few sample trajectories. It can
be clearly seen how the policy steers around the high-friction areas, and how
the interpolation helps in providing meaningful commands between the fuzzy
partition centers.

7 Conclusion and Future Work

In this work, we have considered a model-based reinforcement learning approach
employing parametric fuzzy architectures to represent the state-action value
functions. We have proposed two different ways for updating the parameters
of the fuzzy architecture, a parallel and a serial one. We have shown that in
both cases the algorithms were converging, with the serial version converging at
least as fast as the parallel one. The algorithms exhibited good performance in
a nonlinear control problem with four continuous state variables.

The fuzzy approximation architecture plays a crucial role in our approach.
It determines the computational complexity of fuzzy Q-iteration, as well as the

14 Buşoniu, Ernst, et al.

accuracy of the solution. While we considered in this paper that the approx-
imation architecture was given a priori, we suggest as a first future research
direction to develop techniques able to determine for a given accuracy some low-
complexity approximation architectures. We stress that such techniques should
not imply computational burdens that undermine the benefits of using the re-
sulting low-complexity ǫ-accurate approximator, over more complex but pre-
designed ǫ-accurate approximators relying e.g., on a triangulation of the state
space.

A second direction for future work is the study of the consistency properties of
the fuzzy Q-iteration: whether the algorithm converges to the optimal solution
as the distance between fuzzy centers decreases to 0. A third direction is the
search for online (model-learning or model-free) fuzzy RL algorithms which have
good learning speed and low computational complexity. Finally, while most of
the research in RL for designing good approximation architectures focuses on
problems having simple action spaces, we think it would be interesting to extend
our approach such that it can handle directly (without discretization) complex
or continuous action spaces.

Acknowledgement: This research is financially supported by Senter, Dutch Ministry

of Economic Affairs within the BSIK-ICIS project “Interactive Collaborative Infor-

mation Systems” (grant no. BSIK03024), by the NWO Van Gogh grant VGP 79-99,

and by the STW-VIDI project “Multi-Agent Control of Large-Scale Hybrid Systems”

(DWV.6188).

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, US (1998)

2. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4 (1996) 237–285

3. Bertsekas, D.P.: Dynamic Programming and Optimal Control. 2nd edn. Volume 2.
Athena Scientific (2001)

4. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8 (1992) 279–292
5. Bonarini, A., Montrone, F., Restelli, M.: Reinforcement distribution in continu-

ous state action space fuzzy Q-learning: A novel approach. In: Proceedings 6th
International Workshop on Fuzzy Logic and Applications (WILF-05), Milan, Italy
(15–17 September 2005)

6. Glorennec, P.Y.: Reinforcement learning: An overview. In: Proceedings Euro-
pean Symposium on Intelligent Techniques (ESIT-00), Aachen, Germany (14–15
September 2000) 17–35

7. Horiuchi, T., Fujino, A., Katai, O., Sawaragi, T.: Fuzzy interpolation-based Q-
learning with continuous states and actions. In: Proceedings 5th IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE-96), New Orleans, US (8-11
September 1996) 594–600

8. Jouffe, L.: Fuzzy inference system learning by reinforcement methods. IEEE Trans-
actions on Systems, Man, and Cybernetics—Part C: Applications and Reviews
28(3) (1998) 338–355

9. Berenji, H.R., Khedkar, P.: Learning and tuning fuzzy logic controllers through
reinforcements. IEEE Transactions on Neural Networks 3(5) (1992) 724–740

Fuzzy Q-value Iteration 15

10. Berenji, H.R., Vengerov, D.: A convergent actor-critic-based FRL algorithm with
application to power management of wireless transmitters. IEEE Transactions on
Fuzzy Systems 11(4) (2003) 478–485

11. Vengerov, D., Bambos, N., Berenji, H.R.: A fuzzy reinforcement learning approach
to power control in wireless transmitters. IEEE Transactions on Systems, Man,
and Cybernetics—Part B: Cybernetics 35(4) (2005) 768–778

12. Bonarini, A.: Evolutionary learning, reinforcement learning, and fuzzy rules for
knowledge acquisition in agent-based systems. Proceedings of the IEEE 89(9)
(2001) 1334–1346

13. Lin, C.K.: A reinforcement learning adaptive fuzzy controller for robots. Fuzzy
Sets and Systems 137 (2003) 339–352

14. Tsitsiklis, J.N., Van Roy, B.: Feature-based methods for large scale dynamic pro-
gramming. Machine Learning 22(1–3) (1996) 59–94

15. Szepesvári, C., Munos, R.: Finite time bounds for sampling based fitted value
iteration. In: Proceedings Twenty-Second International Conference on Machine
Learning (ICML-05), Bonn, Germany (7–11 August 2005) 880–887

16. Gordon, G.: Stable function approximation in dynamic programming. In: Pro-
ceedings Twelfth International Conference on Machine Learning (ICML-95), Tahoe
City, US (9–12 July 1995) 261–268

17. Wiering, M.: Convergence and divergence in standard and averaging reinforcement
learning. In: Proceedings of the 15th European Conference on Machine Learning
(ECML’04), Pisa, Italy (20–24 September 2004) 477–488

18. Ormoneit, D., Sen, S.: Kernel-based reinforcement learning. Machine Learning 49

(2002) 161–178
19. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research 6 (2005) 503–556
20. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine

Learning Research 4 (2003) 1107–1149
21. Szepesvári, C., Smart, W.D.: Interpolation-based Q-learning. In: Proceedings

Twenty-First International Conference on Machine Learning (ICML-04), Bannf,
Canada (July 4–8 2004)

22. Singh, S.P., Jaakkola, T., Jordan, M.I.: Reinforcement learning with soft state
aggregation. In: Advances in Neural Information Processing Systems 7, Denver,
Colorado, USA (1994) 361–368

23. Ernst, D.: Near Optimal Closed-loop Control. Application to Electric Power Sys-
tems. PhD thesis, University of Liège, Belgium (March 2003)

24. Boyan, J., Moore, A.: Generalization in reinforcement learning: Safely approximat-
ing the value function. In: Advances in Neural Information Processing Systems 7
(NIPS-94), Denver, Colorado, US (1994) 369–376

25. Munos, R., Moore, A.: Variable-resolution discretization in optimal control. Ma-
chine Learning 1 (2001) 1–31

26. Sherstov, A.A., Stone, P.: Function approximation via tile coding: Automating
parameter choice. In: Proceedings 6th International Symposium on Abstraction,
Reformulation and Approximation (SARA-05). Volume 3607 of Lecture Notes in
Computer Science., Airth Castle, Scotland, UK (26–29 July 2005) 194–205

27. Jodogne, S.: Closed-Loop Learning of Visual Control Policies. PhD thesis, Uni-
versity of Liège, Belgium (December 2006)

28. Sutton, R.S.: Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In: Proceedings Seventh International
Conference on Machine Learning (ICML-90), Austin, Texas, US (June 21–23 1990)
216–224

