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Abstract

In this paper we discuss a model predictive control method for dynamic traffic management

of railway networks. The main aim of the predictive controller is to recover from delays in

an optimal way by breaking connections and changing the departure of trains (at a cost). To

model the railway system we use a switching max-plus-linear system description. We define

the model predictive control design problem for the railway network, and we show that the

problem can be recast into a mixed integer linear programming problem. This problem

can be solved using existing solvers for MILP problems, or with a genetic algorithm or

tabu search algorithm. We also apply the control strategy to a model of the Dutch railway

network.

Keywords: Railway network management, switching max-plus-linear models, model pre-

dictive control.

1 Introduction

In recent years a lot of research effort has been oriented towards the design of timetables

that are robust against propagation of delays in the network, caused by technical failures,

fluctuation of passenger volumes, measures of railway personnel and weather influence [19,

20, 23, 24]. In this paper we concentrate on the operational-level management, and design

a feedback controller that takes the most effective actions, based on measurements of the

actual train positions. The measures we can take are changing the train speed, breaking train

connections, or changing the order of trains.

From [4, 6, 14, 15, 22] we know that a railway network with rigid connection constraints

and a fixed routing schedule can be modeled using max-plus-linear models. A max-plus-

linear model is ‘linear’ in the max-plus algebra [2], which has maximization and addition as

its basic operations. Max-plus-linear systems can be characterized as discrete event systems

in which only synchronization and no concurrency or choice occurs.

Note that in the railway context, synchronization means that some trains should give pre-

defined connections to other trains, and a fixed routing means that the order of departure

is fixed. However, in the case of large delays, it is sometimes better — from a global

performance viewpoint — to break a connection or to reschedule the order of trains, and to

let a train depart anyway. In this way we prevent an accumulation of delays in the network.

Of course, missed connections should lead to a penalty due to dissatisfied passengers. In

[10, 11] we have considered the control of railway networks using breaking connections

1



only as control measure. In [25] we have extended the control handles and rescheduled

the trains by breaking connections as well as changing train order. In this paper we will

model a controlled railway system using the switching max-plus-linear system description

of [27]. In this description we use a number of MPL models, each model corresponds to a

specific mode, describing the network by a different set of connection and order constraints.

We control the system by switching between different modes, allowing us to break train

connections and to change the order of trains. In this paper we define a control algorithm

to optimize the performance of the network, and we show that the resulting optimization

problem can be solved as a mixed integer problem or a mixed integer linear programming

problem. Although these problems are in general NP-hard, recently several efficient solvers

have become available. The management algorithm will be applied to a simulation model

of the Dutch railway network. Computational experiments show that the proposed genetic

algorithm approach yields good results.

2 Model

Consider a railway operations system, which follows a schedule with period T . In nominal

operation mode, we assume that all the trains follow a pre-scheduled route, with fixed train

order and pre-defined connections. If for some reason we have to break connections or

change the train order, we will operate in a perturbed mode. With every new schedule we

can associate a perturbed mode. First we will discuss the nominal operation.

2.1 Nominal operation

Consider a railway operations system which is operating in nominal operation mode.

Each track of the railway network has a number and a train allocated to it. For the sake

of simplicity we will say ‘(virtual) train j’ to denote the (physical) train on track j, and

‘station j’ to denote the station at the beginning of track j (cf. Figure 1). Let n be the

number of ‘virtual’ tracks in the network. We say virtual to denote that some of the virtual

tracks may actually be the same physical track (corresponding to different trains using the

same track). This means that the number of tracks is usually smaller than n. Let dj(k) be

the time instant at which train j departs from its departure station for the kth time, and let

aj(k) be the time instant at which train j arrives from its arrival station for the kth time

Let rj(k) be the departure time for this train according to the time schedule. Let pi(k) be

the predecessor track of train i, and let Cj(k) be the set of trains to which the kth train j

gives a connection. Let Fj(k) be the set of trains that move over the same track as train

j, in the same direction as train j, and are scheduled behind train j. Let Wj(k) be the set

of trains that move over the same track as train j, in the opposite direction of train j, and

are scheduled behind train j. Furthermore, let tj(k) be the traveling time on track j, define

a minimum connection time cmin
ij (k) for passengers to get from train j to train i for each

train j ∈ Ci(k) and define a minimum stopping time smin
j (k) of train j at station j to allow

passengers to get off or on the train. Finally, define a minimum separation time fmin
j (k)

between two different trains moving over the same track and in the same direction as train

j, and a minimum separation time wmin
j (k) between two different trains moving over the

same track and in the opposite direction.

Now we have the following constraints for the kth departure time xi(k) of train i:
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Figure 1: A part of a railway network.

• Time schedule constraint:

di(k) > ri(k) .

• Running constraint: This gives the relation between the departure and arrival time of

a train. For train i we have

ai(k) = di(k − δ∗i (k)) + ti(k)

where δ∗i (k) is equal to 0 if train arrives at its destination in the same cycle as its

departure, and δ∗i (k) is equal to n is it arrives n cycles later than the departure.

• Continuity constraints: This constraint synchronizes two trains that are ‘physically’

the same train. For train j = pi(k) we have

di(k) > aj(k − δ∗ij(k)) + smin
j (k)

where δ∗ij(k) is equal to n if the (k− n)th train j continues as the kth train i, and 0 if

the kth train j continues as the kth train i.

• Connection constraints: This constraint synchronizes two trains that have to make a

connection. For each train i ∈ Cj(k) we have

di(k) > aj(k − δ∗ij) + cmin
ij (k)

where the role of δ∗ij is similar as for the continuity constraint, so δ∗ij = 1 if the

(k − 1)th train j gives a connection to the kth train i, and δ∗ij = 0 if the kth train j

gives a connection to the kth train i.

• Follow constraints: This constraint synchronizes two subsequent trains on the same

track moving in the same direction . For each train i ∈ Fj(k) we have constraints for

both departure and arrival

di(k) > dj(k − δ∗ij) + fmin
j (k) ai(k) > aj(k − δ∗ij) + fmin

j (k)

(δ∗ij is defined similarly as above).
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• Wait constraints: This constraint synchronizes two trains on the same track moving

in opposite direction. For each train i ∈ Wj(k) we have

di(k) > aj(k − δ∗ij) + wmin
j (k)

(δ∗ij is defined similarly as above).

• Crossing constraint: This constraint synchronizes two trains at a crossing point. A

crossing point can be seen as a short track that has to be used by two consecutive

trains. The first train must have left the crossing before the second train is allowed

to enter the crossing. The constraint will therefore have the same form as the wait

constraint.

In general, all δ∗ij’s may depend on k. However, for the sake of simplicity, we only consider

constant δ∗ij’s with a value that is either 0 or 1 in this paper. Since we let a train depart as

soon as all connection conditions are satisfied, we have

di(k) = max
(

ri(k), (api(k)(k − δ∗ipi(k)
) + smin

pi(k)
(k)), max

j∈Ci(k)
(aj(k − δ∗ij) + cmin

ij (k)),

max
l∈Fi(k)

(al(k − δ∗il) + fmin
l (k)), max

m∈Wi(k)
(am(k − δ∗im) + wmin

m (k))
)

(1)

Note that in a undisturbed, well-defined time schedule the term ri(k) in (1) will be the

largest. However, if due to unforeseen circumstances (an incident, a late departure, etc.)

one of the trains (pi(k),l or m) has a delay the corresponding term can become larger than

the others, then train i will depart later than the scheduled departure time ri(k) and will

therefore also be delayed. Now let us consider a network with n trains and define the

vectors

x(k) =





















d1(k)
...

dn(k)
a1(k)

...

an(k)





















∈ R
2n , r(k) =





















r1(k)
...

rn(k)
−∞

...

−∞





















(so ri(k) = −∞ for n + 1 ≤ i ≤ 2n). By defining the appropriate matrix Am ∈ R
2n×2n,

m = 0, . . . ,mmax, (where mmax = max(δ∗ij) we can rewrite equation (1) as:

xi(k) = max

(

ri(k),max
j,m

(

xj(k−m) + [Am]i,j

)

)

(2)

where [Am]i,j is the (i, j)th entry of the matrix Am.

Now we introduce some notation from max-plus algebra. Define ε = −∞ and Rε =
R∪{ε}. The max-plus-algebraic addition (⊕) and multiplication (⊗) are defined as follows

[2]:

x⊕ y = max(x, y) x⊗ y = x+ y

for x, y ∈ Rε and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)
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[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for A,B ∈ R
m×n
ε , C ∈ R

n×p
ε . The matrix ε is the max-plus-algebraic zero matrix:

[ε]ij = ε for all i, j.

In max-plus notation, equation (2) becomes

xi(k) = ri(k)⊕

n
⊕

j=1

M
⊕

m=1

xj(k −m)⊗ [Am]i,j

and in matrix-notation we obtain

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕Ammax
⊗ x(k −mmax)⊕ r(k)

=
(

mmax
⊕

m=0

Am ⊗ x(k −m)
)

⊕ r(k) (3)

2.2 Perturbed operation

In the nominal operation we have assumed that some trains should give pre-defined con-

nections to other trains, and the order of trains on the same track is fixed. However, if one

of the preceding trains has a too large delay, then it is sometimes better — from a global

performance viewpoint — to let a connecting train depart anyway or to change the depar-

ture order on a specific track. This is done in order to prevent an accumulation of delays

in the network. In this paper we will consider the switching between different operation

modes, where each mode corresponds to a different set of pre-defined or broken connection

and a specific order of train departures. We allow the system to switch between different

modes, allowing us to break train connections and to change the order of trains. Note that

any broken connection or change of train order leads to a new model, similar to the nominal

equation (3), but now with adapted system matrices (A(ℓ)) for the ℓ-th model. We have the

following system equation for the perturbed operation:

x(k) =
(

mmax
⊕

m=mmin

Am(ℓ(k))⊗ x(k −m)
)

⊕ r(k) (4)

Usually mmin = 0. However, in perturbed operation it may occasionally happen that a

delayed train of the kth cycle is rescheduled behind a train in the (k + 1)th cycle. In

that case we will have mmin = −1. The nominal behavior of the system, as defined by

the nominal timetable is related to the nominal model ℓ = 0, with corresponding system

matrices Am(0).

3 The railway control problem

3.1 Timing aspects

Switching max-plus-linear systems are different from conventional time-driven systems in

the sense that the event counter k is not directly related to a specific time. A time instant t
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in cycle k (so (k−1)T ≤ t < kT ), some of the components of x(k) may already be known

while other components of x(k) may still lie in the future (Recall that x(k) contains the

time instants at which the depart or arrive in the kth cycle). Therefore, we will now present

a method to address the timing issues in control of switching MPL systems.

We consider the case of full state information, since the components of x(k) correspond

to departure and arrival times, which are in general easy to measure.

Consider time instant t and let cycle (k− 1) be the last completed cycle, so x(k− 1) ≤
t. We may have measurements of trains in cycle k that have already departed or arrived

at time t. We will denote them as apast(k) and apast(k) respectively. Sometimes there is

information available about the estimated traveling time for trains that have not yet arrived

at their destination at time t. With this information we can make an estimation t̂est(k|t)
(with the same dimension as t(k)) of the future traveling times. If no further information is

available on a specific traveling time we take the nominal traveling time [t̂est(k|t)]i = ti,nom.

These values t̂est(k|t) can be substituted in the matrices Am(ℓ(k)) to make the future system

description as accurate as possible.

3.2 Control problem

Next we have to define the set U(k|t) of possible future control actions (i.e. breaking con-

nections or changing train order). Certain control actions are not feasible any more (e.g.

if a connection has been broken in the past and the connecting train has already departed,

it is impossible to ‘repair’ this connection.). We define the vector u(k|t) ∈ U(k|t), where

each element corresponds to a specific control action, so a specific (scheduled) connection

or specific (scheduled) train order. We assume u(k|t) to be binary, where ui(k|t) = 0 corre-

sponds to the nominal case, and ui(k|t) = 1 to the perturbed case (the connection is broken

or the order of two trains is switched, see also Section 5).

To select the optimal set of possible future control actions, we define the following

optimal control problem at time instant t:

min
{u(k|t),u(k+1|t),u(k+2|t),...}

J(k|t) (5)

where the performance index J(k|t) is given by

J(k, t) =

Np
∑

j=0

n
∑

i=1

Qi êi(k + j|t) +

nu
∑

ℓ=1

Rℓ uℓ(k + j|t) (6)

where Np is the prediction horizon, ê(k+j|t) is the vector with the expected delays (êi(k+
j|t) = x̂i(k+ j|t)− ri(k+ j) ≥ 0), and Q, R are weighting matrices. The first term of (6)

is related to the sum of all predicted delays, and the second term denotes the penalty for all

broken connections and switched train orders during cycle k + j.

To compute the predictions of x̂(k + j|t) we make use of the fact that at time t we

have apast(k|t), apast(k|t), and t̂est(k + j|t) available and using that we can determine the

estimates Âm(ℓ(k+ j|t)) of all future Am(ℓ(k+ j)). Now x̂(k+ j|t) for j≥1 can be found

by successive substitution

x̂(k + j|t) =
(

mmax
⊕

m=mmin

Âm(ℓ(k + j − 1|t))⊗ x̂(k + j −m|t)
)

⊕ r(k + j) (7)
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In principle we have all elements to solve the optimal control problem (5). Note that if the

railway network is well-defined and there is some margin in the schedule, there will always

be an integer N such that in the nominal case (u(k + j|t) = 0 for all j ≥ 0) the delays will

have vanished (ê(k + j|t) = 0 for all j ≥ 0). By choosing Np = N in the performance

index (6) we are sure that enough delay terms are taken into account. In many cases a

smaller value for Np will be sufficient. A major advantage of a small prediction horizon Np

is that the computational complexity of the optimization problem is drastically reduced.

4 Affine models

If the model is affine in the control parameters, the model predictive control problem can

be recast into a mixed integer linear programming (MILP) problem using techniques that

are similar to the ones used in [3, 9]. We start by showing that in the case of breaking

connections and changing departure order the matrices Âm(ℓ(k)) can be written in an affine

form:

Âm(ℓ(k)) = Âm(0) +

nu
∑

i=1

Âi
m ui(k) , (8)

In subsection 4.3 we proof that the problem becomes a MILP problem.

4.1 Breaking connections

Consider the case where variable ul(k) is related to the connection of train j to train i, with

nominal connection constraint

di(k) > aj(k − δ∗ij) + cmin
ij (k)

This means that in the nominal case we have

[Aδ∗
ij
(0)]p,q =

{

cmin
ij (k) for {p, q} = {i, j + n}
ǫ elsewhere

To break the constraint we replace the above connection constraint by

di(k) > aj(k − δ∗ij) + cmin
ij (k)− β ui(k)

where β is a large number such that for ul(k) = 1 the constraint is satisfied over the whole

time schedule. (so if Tmax and Tmin are the maximum and minimum time instants in the

time schedule we make sure that β ≪ Tmax − Tmin). Now the matrix Aδ∗
ij
(l) is defined as:

[Aδ∗
ij
(l)]p,q =

{

−β for {p, q} = {i, j + n}
ǫ elsewhere

4.2 Changing departure order

Consider the case where variable ul(k) is related to the order of two trains j and i moving

over the same track in the same direction, with nominal following constraints

di(k) > dj(k − δ∗ij) + fmin
j (k) (9)
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ai(k) > aj(k − δ∗ij) + fmin
j (k) (10)

To be able to change the order of the trains i and j we replace these constraints by

di(k) > dj(k − δ∗ij) + fmin
j (k)− β ul(k) (11)

ai(k) > aj(k − δ∗ij) + fmin
j (k)− β ul(k) (12)

where β is a large number (see previous subsection), and introduce new constraints

dj(k) > di(k + δ∗ij)− β + (fmin
i (k) + β)ul(k) (13)

aj(k) > ai(k + δ∗ij)− β + (fmin
i (k) + β)ul(k) (14)

so that for ul(k) = 0 the constraints (11–12) are relevant and the constraints (13–14) are

always satisfied, where for ul(k) = 1 the constraints (13–14) are relevant and the constraints

(11–12) are always satisfied.

This means that for δ∗ij 6= 0 the nominal matrices Aδ∗
ij
(0) and Aδ∗

ij
(0) are given by

[Aδ∗
ij
(0)]p,q =







fmin
j (k) for {p, q} = {i, j}
fmin
j (k) for {p, q} = {i+ n, j + n}
ǫ elsewhere

[A−δ∗
ij
(0)]p,q =







−β for {p, q} = {j, i}
−β for {p, q} = {j + n, i+ n}
ǫ elsewhere

and for δ∗ij = 0 the nominal matrix A0(0) is given by:

[A0(0)]p,q =























fmin
j (k) for {p, q} = {i, j}
fmin
j (k) for {p, q} = {i+ n, j + n}
−β for {p, q} = {j, i}
−β for {p, q} = {j + n, i+ n}
ǫ elsewhere

Now for δ∗ij 6= 0 the matrices Aδ∗
ij
(l) and Aδ∗

ij
(l) are given by

[Aδ∗
ij
(l)]p,q =







−β for {p, q} = {i, j}
−β for {p, q} = {i+ n, j + n}
ǫ elsewhere

[A−δ∗
ij
(l)]p,q =







fmin
i (k) + β for {p, q} = {j, i}
fmin
i (k) + β for {p, q} = {j + n, i+ n}
ǫ elsewhere

and for δ∗ij = 0 the matrix A0(l) is given by

[A0(l)]p,q =























−β for {p, q} = {i, j}
−β for {p, q} = {i+ n, j + n}
fmin
i (k) + β for {p, q} = {j, i}
fmin
i (k) + β for {p, q} = {j + n, i+ n}
ǫ elsewhere
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4.3 The mixed integer linear programming problem (MILP)

Now the model predictive problem above can be recast into a mixed integer linear pro-

gramming problem (MILP). We will now outline the main ideas behind this transformation.

Define the vectors

x̃(k)=











x(k)
...

x(k+Np−2)
x(k+Np−1)











, ũ(k)=











u(k)
...

u(k+Np−2)
u(k+Np−1)











, z̃(k)=











x(k − 1)
...

x(k−mmax+1)
x(k−mmax)











,

ℓ̃(k)=











ℓ(k)
...

ℓ(k+Np−2)
ℓ(k+Np−1)











, r̃(k)=











r(k)
...

r(k+Np−2)
r(k+Np−1)











,

Note that by defining

Ã(ℓ̃(k)) =













A0(ℓ(k)) A−1(ℓ(k)) · · · A−Np
(ℓ(k))

A1(ℓ(k + 1)) A0(ℓ(k + 1))
. . . A1−Np

(ℓ(k))
...

...
. . .

...

ε ε · · · Ammax
(ℓ(k +Np))













and

B̃(ℓ̃(k)) =





















A1(ℓ(k)) · · · Ammax−1(ℓ(k)) Ammax
(ℓ(k))

A2(ℓ(k + 1)) · · · Ammax
(ℓ(k + 1)) ε

...
...

...

Ammax
(ℓ(k +mmax − 1)) · · · ε ε

...
...

...

ε · · · ε ε





















where Am(ℓ(k + j)) = ε for m < mmin and for m > mmax, we can write

x̃(k) = Ã(ℓ̃(k))⊗ x̃(k)⊕ B̃(ℓ̃(k))⊗ z̃(k)⊗ r̃(k) (15)

Note that due to (8) the matrices Ã(ℓ̃(k)) and B̃(ℓ̃(k)) will be affine in ũ, and there exist

matrices Ãi and B̃i such that:

Ã(ũ(k)) = Ã0 +

nu
∑

i=1

Ãiũi(k + j|k) ,

B̃(ũ(k)) = B̃0 +

nu
∑

i=1

B̃iũi(k + j|k) ,

The objective function J is linear in ũ and x̃, and can be written as:

J(k) = cTe x̃(k) + cTu ũ(k) (16)

9



The max-plus equation (7) can be transformed into a system of mixed-integer linear in-

equalities. Equation (15) can be written as

x̃i(k) = max

(

r̃i(k),max
j

x̃j(k) + [Ã(ũ)]i,j ,max
j

z̃j(k) + [B̃(ũ)]i,j

)

,

which can be transformed into

x̃i(k) ≥ r̃i(k)

x̃i(k) ≥ x̃j(k) + [Ã0]i,j +

nu
∑

p=1

[Ãp]i,j ũp(k) , ∀j

x̃i(k) ≥ z̃l(k) + [B̃0]i,l +

nu
∑

p=1

[B̃p]i,lũp(k) , ∀l

It is clear that all these constraints are linear in x̃ and ũ, and we end up with the linear

inequality constraint:

Ac

[

x̃(k)
ũ(k)

]

≤ bc(k) (17)

So we have a linear objective function (16) that has to be minimized subject to the linear

constraints (17) over real variables x̃(k) and binary variables ũ(k). Hence, we finally end

up with an MILP.

5 Solving the MILP problem

The MILP problem as derived in the previous section can be solved using one of the several

existing commercial and free solvers for MILP problems (such as, e.g., CPLEX, Xpress-

MP, GLPK, lp solve, etc. — see [1, 21] for an overview). However,if the network is too

large, the MILP solvers will not converge fast enough and we need other solvers, e.g. ge-

netic algorithms [8] or with tabu search [17], to efficiently solve our integer optimal control

problem. An important issue then is to generate a good initial solution for the optimization

problem.

To find a good initial guess for the integer optimization we first solve an easier problem,

in which we structure the input signal. This is done by defining a decision mechanism,

where we use thresholds on (expected) delays to decide whether a connection should be

broken or train orders should be switched. First consider the case where variable ul(k) is

related to the connection of train j to train i, with nominal connection constraint

di(k) > aj(k − δ∗ij) + cmin
ij (k)

and let ri(k) > t. Define âj(k − δ∗ij |t) as the expected arrival-time of train j. Now we

choose
{

ul(k) = 0 if âj(k−δ∗ij |t)+cmin
ij (k)−ri(k) ≤ τ

ul(k) = 1 otherwise,

where τ is a non-negative threshold. Next consider the case where variable ul(k) is related

to the order of two trains j and i moving over the same track in the same direction, with

nominal following constraint

di(k) > dj(k − δ∗ij) + fmin
j (k)
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and let di(k) ≥ t (that means that at time t train i has not departed yet). Now we choose
{

ul(k) = 0 if d̂j(k−δ∗ij |t)+fmin
j (k)−ri(k) ≤ φ

ul(k) = 1 otherwise,

where φ is a non-negative threshold. Finally consider the case where variable ul(k) is

related to the order of two trains j and i moving over the same track in the same direction,

with nominal waiting constraint

di(k) > aj(k − δ∗ij)

and let ri(k) > t. Now we choose
{

ul(k) = 0 if âj(k − δ∗ij |t)− ri(k) ≤ ω

ul(k) = 1 otherwise,

where âj(k − δ∗ij |t) is the expected arrival-time and ω is a non-negative threshold. In this

structured-input case we end up with the minimization of (6) using the three parameters,

giving us a non-linear optimization problem over the variables (τ, φ, ω). In the worked

example in the next Section we first optimize over the structured inputs, and use the resulting

sequence u(k+ j|t) as an initial value for the general case, solved with a genetic algorithm.

6 Example: The Dutch railway system

We consider a simulation example of a simplified version of the Dutch railway system (see

Figure 2). The Dutch railway system operates a periodic timetable with a cycle time of 1

hour. There are 3 types of trains running in the network: intercity trains, interregional trains

and local trains. In this example we only consider the system of intercity and interregional

trains, which means that the network consists of 40 stations, 110 tracks, 164 trains, 381 train

movements per hour, 271 follow constraints, and 67 connection constraints.

Each train departs as soon as all the relevant connections are guaranteed (except for

connections that are broken), the passengers have gotten the opportunity to change over,

and the earliest departure time indicated in the timetable has passed.

We obtain a state space description of the railway system in the form of (2) for nominal

operation, and (4) for perturbed operation where x(k) has 381 states. The criterion function

is given by (6) where Q = I , and R is a diagonal matrix with Rℓ,ℓ = 5 when uℓ is related to

a connection constraint and Rℓ,ℓ = 10 when uℓ is related to a follow constraint. We solve

the optimal control problem (5) for the structured input case and the general case (without

structuring). In the last optimization we use the result of the structured input as an initial

value to start the optimization. We assume the system is at nominal schedule for k < 0
and we introduce random delays in the running times of 18 trains in the cycles k = 1, 2, 3.

The maximum delay is 19.9 min, the minimum delay is 0.12 min, and the average delay is

11.9 min. For every cycle k we first optimize the threshold values (τ, φ) (there are no single

tracks taken into consideration), and compute the corresponding optimal structured input

signal ustructured(k + j|t), j ≥ 0. Subsequently we optimize the (unstructured) input signal

u(k+ j|t) with a genetic algorithm, using the earlier computed sequence ustructured(k+ j|t)
as an initial value.

In Figure 3 the maximum delay emax(k) = max(e(k)) in each cycle k is given for the

optimal controlled case, and for the uncontrolled case (so u(k+ j|t) = 0 for all j > 0). We

see that the delay in the controlled case decays much faster than the uncontrolled case.

11



Figure 2: Dutch railway network

7 Discussion

We have presented a control design method for a railway network. The control action con-

sists in breaking certain connections or changing the order of departure to prevent delays

from accumulating. These control moves can only be done at a certain cost. We have shown

that the resulting optimization problem is a mixed integer linear programming (MILP) prob-

lem, that can be solved using existing commercial and free solvers for MILP problems, or

by other integer optimization methods, for example genetic algorithms or tabu search.

Good initial values for the integer optimization are obtained by first solving a low-

dimensional real-valued optimization problem using a structured input sequence. This struc-

tured input sequence is based on a decision mechanism, where we use thresholds on (ex-

pected) delays to decide whether a connection should be broken or the order of the trains

should be switched.

Due to the use of a receding horizon this method can be used in on-line applications

and it can deal with (predicted) changes in the system parameters. So if we can predict the

delays that will occur due to an incident or to works, then we can include this information

when determining the optimal control input for the next cycles of the operation of the net-

work.
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