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Chapter 1

THE EXTENDED LINEAR COMPLEMENTARITY
PROBLEM AND ITS APPLICATIONS IN
ANALYSIS AND CONTROL OF DISCRETE-
EVENT SYSTEMS

Bart De Schutter
Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628CD Delft

The Netherlands

b.deschutter@dcsc.tudelft.nl

Abstract In this chapter we give an overview of complementarity problems with a spe-

cial focus on the extended linear complementarity problem (ELCP) and its ap-

plications in analysis and control of discrete-event systems such as traffic sig-

nal controlled intersections, manufacturing systems, railway networks, etc. We

start by giving an introduction to the (regular) linear complementarity problem

(LCP). Next, we discuss some extensions, with a particular emphasis on the

ELCP, which can be considered to be the most general linear extension of the

LCP. We then discuss some algorithms to compute one or all solutions of an

ELCP. Next, we present a link between the ELCP and max-plus equations. This

is then the basis for some applications of the ELCP in analysis and model-based

predictive control of a special class of discrete-event systems. We also show that

— although the general ELCP is NP-hard — the ELCP-based control problem

can be transformed into a linear programming problem, which can be solved in

polynomial time.

Keywords: linear complementarity problem, extended linear complementarity problem, al-

gorithms, control applications, discrete-event systems, max-plus-linear systems

Introduction

The Linear Complementarity Problem (LCP) is one of the fundamental

problems in optimization and mathematical programming (Cottle et al., 1992;

Murty, 1988). Several authors have introduced (both linear and nonlinear) ex-

tensions of the LCP, and some of these linear extensions will be discussed in

more detail below. The importance of the LCP and its generalizations is evi-

denced by a broad range of applications in the fields of engineering and eco-
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nomics such as quadratic programming, determination of Nash equilibriums,

nonlinear obstacle problems, and problems involving market equilibriums, in-

variant capital stock, optimal stopping, contact and structural mechanics, elas-

tohydrodynamic lubrication, traffic equilibriums, operation planning in dereg-

ulated electricity markets, manufacturing systems, etc. (see the other chapters

of this book, the books and overview papers (Cottle et al., 1992; Ferris and

Pang, 1997a; Ferris and Pang, 1997b; Ferris et al., 2001; Isac et al., 2002) and

the references therein).

Apart from the LCP the focus of this chapter will be on yet another ex-

tension of the LCP, which we have called the Extended Linear Complemen-

tarity Problem (ELCP) (De Schutter and De Moor, 1995a), and which can

in some way be considered as the most general linear extension of the LCP.

This problem arose from our research on discrete-event systems (max-plus-

linear systems, max-plus-algebraic applications, and min-max-plus systems (

De Schutter and De Moor, 1995b; De Schutter and van den Boom, 2000)) and

hybrid systems (traffic signal control, and first-order hybrid systems with sat-

uration (De Schutter and De Moor, 1998b; De Schutter, 2000)). Furthermore,

the ELCP can also be used in the analysis of several classes of hybrid systems

such as piecewise-affine systems (Sontag, 1981; Heemels et al., 2001), max-

min-plus-scaling systems (De Schutter and van den Boom, 2001b), and linear

complementarity systems (De Schutter and De Moor, 1998a; Heemels et al.,

2000).

This chapter is organized as follows: In Section 1.1 we present the LCP

and the ELCP, and we discuss how they are related. In Section 1.2 we present

some other (linear) generalizations of the LCP, and we show that they can be

considered as special cases of the ELCP. Next, we discuss some algorithms

to compute one or all solutions of an ELCP in Section 1.3. In Section 1.4

we then explain the relation between systems of max-plus equations and the

ELCP, which is the basis for several applications of the ELCP in analysis and

control of discrete-event systems, some of which are then discussed in more

detail in Section 1.5. We conclude this chapter with a summary.

As this chapter is mainly intended to be an overview the proofs will be

reduced to a minimum (with appropriate references to the papers where the

full proofs can be found), and only be given in case they are functional.

1. Linear Complementarity Problem

1.1 Notation

All vectors used in this paper are assumed to be column vectors. The trans-

pose of a vector a is denoted by aT. Furthermore, inequalities for vectors have

to be interpreted entrywise. We use In to denote the n by n identity matrix, and

0m×n to denote the m by n zero matrix. If the dimensions of the identity matrix

or the zero matrix are omitted, they should be clear from the context.
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1.2 Linear Complementarity Problem (LCP)

One of the possible formulations of the LCP is the following (Cottle et al.,

1992):

Given M ∈ R
n×n and q ∈ R

n, find vectors w, z ∈ R
n such that

w = Mz+q (1.1)

w,z > 0 (1.2)

wTz = 0 . (1.3)

Note that if w and z are solutions of the LCP then it follows from (1.2) and

(1.3) that

ziwi = 0 for i = 1, . . . ,n ,

i.e., for each i we have the following conditions: if wi > 0 then we should have

zi = 0, and if zi > 0 then wi = 0. So the zero patterns of w and z are comple-

mentary. Therefore, condition (1.3) is called the complementarity condition of

the LCP.

For an extensive state-of-the-art overview of the LCP (and related problems)

we refer the interested reader to (Cottle et al., 1992; Ferris and Pang, 1997a;

Ferris and Pang, 1997b; Ferris et al., 2001; Isac et al., 2002).

1.3 Extended Linear Complementarity Problem
(ELCP)

The ELCP is defined as follows (De Schutter and De Moor, 1995a):

Given A∈R
p×n, B∈R

q×n, c∈R
p, d ∈R

q, and m index sets φ1, . . . ,φm ⊆
{1, . . . , p}, find x ∈ R

n such that

Ax > c (1.4)

Bx = d (1.5)

m

∑
j=1

∏
i∈φ j

(Ax− c)i = 0 . (1.6)

The feasible set of the ELCP (1.4)–(1.6) is defined by

F = {x ∈ R
n | Ax > c,Bx = d} .

The surplus variable surp(i,x) of the ith inequality of Ax > c is defined as

surp(i,x) = (Ax− c)i.

Condition (1.6) represents the complementarity condition of the ELCP. One

possible interpretation of this condition is the following: Since Ax > c, all the

terms in (1.6) are nonnegative. Therefore, (1.6) is equivalent to

∏
i∈φ j

(Ax− c)i = 0 for j = 1, . . . ,m .
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So we could say that each set φ j corresponds to a group of inequalities in

Ax > c, and that in each group at least one inequality should hold with equality

(i.e., the corresponding surplus variable is equal to 0).

The solution set of an ELCP can be characterized as follows (De Schutter

and De Moor, 1995a):

Theorem 1.1 In general the solution set S of an ELCP consists of the

union of faces of a polyhedron.

This solution set can be represented using four sets:

a set X fin of finite vertices of S ,

a set X ext of generators for the extreme rays of S ,

a basis X cen for the linear subspace associated with the maximal affine

subspace of S ,

and a set Λ of pairs of so-called maximal cross-complementary subsets

of X ext and X fin (where each pair corresponds to a face of S ).

In Section 1.3.1 we will present an algorithm to compute these sets. Then x is a

solution of the ELCP if and only if there exists an ordered pair (X ext
s ,X fin

s ) ∈
Λ such that

x = ∑
xcen

k ∈X cen

λkxcen
k + ∑

xext
k ∈X ext

s

κkxext
k + ∑

xfin
k ∈X fin

s

µkxfin
k (1.7)

with λk ∈ R, κk > 0, µk > 0 for all k and ∑
k

µk = 1.

We can also reverse Theorem 1.1 (De Schutter and De Moor, 1995a):

Theorem 1.2 The union of any arbitrary set of faces of an arbitrary poly-

hedron can be described by an ELCP.

Remark 1.3 The complementarity conditions of both the LCP and the ELCP

consist of a sum of products. However, in contrast to the ELCP where the prod-

ucts may contain one, two or more factors, the products in complementarity

condition of the LCP always contain exactly two factors. Moreover, any vari-

able in the LCP is contained in precisely one index set φ j, while in the ELCP

formulation it may be contained in any number of index sets.

We also have the following complexity result:

Theorem 1.4 In general the ELCP with rational data is an NP-hard prob-

lem.

The proof of this result is based on the fact that in general the LCP with rational

data is also NP-hard (Chung, 1989).
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1.4 The link between the LCP and ELCP

It is easy to verify that the following lemma holds:

Lemma 1.5 The LCP is a special case of the ELCP.

Moreover, we also have a reverse statement (De Schutter et al., 2002):

Theorem 1.6 If the surplus variables of the inequalities of an ELCP are

bounded (from above1) over the feasible set of the ELCP, then the ELCP can

be rewritten as an LCP.

Proof : Consider the ELCP (1.4)–(1.6). If there is an equality condition Bx =
d present, then we remove it using the following procedure: we can replace

Bx = d by Bx > d, and impose equality conditions on these inequalities by

adding the index sets φm+1 = {p+ 1}, . . . , φm+q = {p+ q}. So from now on

we consider the following formulation of the ELCP2:

Ax > c (1.8)

m

∑
i=1

∏
j∈φi

(Ax− c) j = 0 . (1.9)

The proof of the theorem consists of two main steps:

1 First, we transform the ELCP into a mixed integer problem to get rid

of the ELCP complementarity condition at the cost of introducing some

additional binary variables.

2 Next, we transform all variables (both binary and real-valued ones) into

nonnegative real ones, which will lead to an LCP.

Step 1: Transformation into a mixed integer problem

Define a diagonal matrix Dupp ∈ R
p×p with (Dupp)ii = d

upp
ii an upper bound

for surp(i,x) = (Ax− c)i over the feasible set F of the ELCP. So for each i ∈
{1, . . . , p} we have d

upp
ii > (Ax−c)i for all x ∈F . Now consider the following

system of equations:

δ ∈ {0,1}p, x ∈ R
n (1.10)

0 6 (Ax− c)i 6 d
upp
ii δi for i = 1, . . . , p (1.11)

∑
i∈φ j

δi 6 #φ j −1 for j = 1, . . . ,m , (1.12)

where #φ j denotes the number of elements of the set φ j. Problem (1.10)–(1.12)

will be called the equivalent mixed integer linear feasibility problem (MILFP).

Now we show that the MILFP is equivalent to the ELCP (1.8)–(1.9) in the

sense that x is a solution of the ELCP (1.8)–(1.9) if and only if there exists

a δ such that (x,δ ) is a solution of (1.10)–(1.12). Equation (1.8) is implied
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by (1.11). Note that (1.10) and (1.12) imply that for each j at least one of

the δi’s with i ∈ φ j is equal to 0. If δi′ = 0, then it follows from (1.11) that

(Ax− c)i′ = 0. This implies that in each index set φ j there is at least one index

for which the corresponding surplus variable equals 0. Hence, the complemen-

tarity condition (1.9) is also implied by (1.10)–(1.12). So (1.10)–(1.12) imply

(1.8)–(1.9), and it is easy to verify that the reverse statement also holds. As a

consequence, the MILFP is equivalent to the ELCP.

Define S ∈ R
m×p with s ji = 1 if i ∈ φ j and s ji = 0 otherwise, and t ∈ R

m

with t j = #φ j −1. The MILFP can now be rewritten compactly as

Find x ∈ R
n and δ ∈ {0,1}p such that

0 6 Ax− c 6 Duppδ (1.13)

Sδ 6 t . (1.14)

Step 2: Now we transform the MILFP into an LCP.

This will be done in three steps.

(a) First we transform condition δ ∈ {0,1}p into the LCP framework. All

the variables of an LCP should be real-valued, but the vector δ in the

MILFP is a binary vector. However, the condition δi ∈ {0,1} is equiva-

lent to the set of conditions

δi ∈ R, δi > 0, 1−δi > 0, δi(1−δi) = 0 .

So if we introduce a vector vδ ∈ R
p of auxiliary variables, then the con-

dition δ ∈ {0,1}p is equivalent to

δ ,vδ ∈ R
p, δ ,vδ > 0, vδ = 1p −δ , δ Tvδ = 0 ,

where 1p is a p-component column vector consisting of all 1’s.

(b) The inequality 0 6 Ax − c can be adapted to the LCP framework by

introducing an auxiliary vector vA ∈ R
p with vA = Ax− c > 0. To ob-

tain a complementarity condition for vA we introduce wA ∈R
p such that

va,wA > 0 and vT
AwA = 0 (Note that we can always take wA = 0 to get

these conditions satisfied). Hence, 0 6 Ax− c can be rewritten as

va,wA > 0, vA = Ax− c, vT
AwA = 0 ,

with vA,wA ∈ R
p. The inequalities Ax− c 6 Duppδ and Sδ 6 t can be

dealt with in a similar way.

(c) All variables in an LCP are nonnegative whereas this condition is not

present in the MILFP. Therefore, we split x in its positive part x+ =
max(x,0) and its negative part x− = max(−x,0). So x = x+− x− with

x+,x− > 0 and (x+)Tx− = 0. To obtain independent LCP-like comple-

mentarity conditions for x+ and x− we introduce additional auxiliary
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vectors v+,v− ∈ R
n with v+ = x+ and v− = x− such that (v−)Tx+ = 0

and (v+)Tx− = 0 with x+,x−,v+,v− > 0.

Combining these three steps results in the following equivalent LCP:











vδ

v−

v+

vA

vDupp

vS











︸ ︷︷ ︸

w

=











−Ip 0 0 0 0 0

0 0 In 0 0 0

0 In 0 0 0 0

0 A −A 0 0 0

Dupp −A A 0 0 0

−S 0 0 0 0 0











︸ ︷︷ ︸

M











δ
x+

x−

wA

wDupp

wS











︸ ︷︷ ︸

z

+











1p

0

0

−c

c

t











︸ ︷︷ ︸

q

(1.15)

w,z > 0 (1.16)

wTz = 0 , (1.17)

with w,z ∈R
3p+2n+m. The solution of the original ELCP can be extracted from

the solution of the LCP (1.15)–(1.17) by setting x = x+− x−.

The introduction of the MILFP in this proof was inspired by the paper (Be-

mporad and Morari, 1999), in which a class of hybrid systems is discussed

consisting of mixed logical dynamic systems, which can be shown to be equiv-

alent to systems with an ELCP-based model description (Heemels et al., 2001).

2. Other extensions of the LCP

Several authors have introduced linear and nonlinear extensions and gener-

alizations of the LCP. Some examples of “linear” extensions of the LCP are:

the Horizontal LCP (Cottle et al., 1992):

Given M, N ∈ R
n×n and q ∈ R

n, find w, z ∈ R
n such that

w,z > 0

Mz+Nw = q

zTw = 0 .

the Vertical LCP (Cottle et al., 1992) (also known as the Generalized

LCP of Cottle and Dantzig (Cottle and Dantzig, 1970)):

Let M ∈ R
m×n with m > n and let q ∈ R

m. Suppose that M and q

are partitioned as follows:

M =








M1

M2

...

Mn








and q =








q1

q2

...

qn








,
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with Mi ∈ R
mi×n and qi ∈ R

mi for i = 1, . . . ,n and with
n

∑
i=1

mi = m.

Now find z ∈ R
n such that

z > 0

q+Mz > 0

zi

mi

∏
j=1

(qi +Miz) j = 0 for i = 1, . . . ,n .

the Extended LCP of Mangasarian and Pang (Gowda, 1996; Mangasar-

ian and Pang, 1995):

Given M, N ∈ R
m×n and a polyhedral set P ⊆ R

m, find x, y ∈ R
n

such that

x,y > 0

Mx−Ny ∈ P

xTy = 0 .

the Extended Horizontal LCP of Sznajder and Gowda (Sznajder and

Gowda, 1995):

Given k + 1 matrices C0, C1, . . . , Ck ∈ R
n×n, q ∈ R

n and k − 1

vectors d1, d2, . . . , dk−1 ∈ R
n with positive components, find x0,

x1, . . . , xk ∈ R
n such that

x0,x1, . . . ,xk > 0

d j − x j > 0 for j = 1, . . . ,k−1

C0x0 = q+
k

∑
j=1

C jx j

xT
0 x1 = 0

(d j − x j)
Tx j+1 = 0 for j = 1, . . . ,k−1 .

the Generalized LCP of Eaves (Eaves, 1971):

Given n positive integers m1,m2, . . . ,mn, n matrices A1,A2, . . . ,An ∈
R

p×mi , and a vector b ∈ R
p, find x1,x2, . . . ,xn ∈ R

mi such that

x1,x2, . . . ,xn > 0

n

∑
i=1

Aixi 6 b

n

∑
i=1

mi

∏
j=1

(xi) j = 0 .
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the Generalized LCP of Ye (Ye, 1993):

Given A, B∈R
m×n, C ∈R

m×k and q∈R
m, find x, y∈R

n and z∈R
k

such that

x,y,z > 0

Ax+By+Cz = q

xTy = 0 .

the Generalized LCP of De Moor and Vandenberghe (De Moor et al.,

1992):

Given Z ∈ R
p×n and m subsets φ1, φ2, . . . , φm of {1,2, . . . , p}, find

u ∈ R
n (with u 6= 0) such that

u > 0

Zu = 0

m

∑
j=1

∏
i∈φ j

ui = 0 .

the (Extended) Generalized Order LCP of Gowda and Sznajder (Gowda

and Sznajder, 1994):

Given B0,B1, . . . ,Bk ∈ R
n×n, and b0,b1, . . . ,bk ∈ R

n, find x ∈ R
n

such that

(B0x+b0)∧ (B1x+b1)∧ . . .∧ (Bkx+bk) = 0

where ∧ is the entrywise minimum: if x, y ∈ R
n then (x∧ y)i =

min(xi,yi) for i = 1, . . . ,n.

This problem is the Extended Generalized Order LCP. If we take B0 = In

and b0 = 0n×1 we get the (regular) Generalized Order LCP.

the mixed LCP (Cottle et al., 1992):

Given A ∈ R
n×n, B ∈ R

m×m, C ∈ R
n×m, D ∈ R

m×n, a ∈ R
n and

b ∈ R
m, find u ∈ R

n and v ∈ R
m such that

v > 0

a+Au+Cv = 0

b+Du+Bv > 0

vT(b+Du+Bv) = 0 .

It is quite easy3 to show (De Schutter and De Moor, 1995a) that all these gen-

eralizations are special cases of the ELCP. Furthermore, in (De Schutter and

De Moor, 1998a) we have shown that the following extension of the LCP is

also a special case of the ELCP:
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the Linear Dynamic Complementarity Problem (Schumacher, 1996), which

is defined as follows:

Given A ∈ R
n×n, B ∈ R

n×k, C ∈ R
k×n and D ∈ R

k×k, find for a

given x0 ∈ R
n sequences {yl}n−1

l=0 , {ul}n−1
l=0 with yl ,ul ∈ R

k for all l

such that

y0 =Cx0 +Du0

y1 =CAx0 +CBu0 +Du1

...

yn−1 =CAn−1x0 +CAn−2Bu0 + . . .+CBun−2 +Dun−1 ,

and such that for each index i ∈ {1,2, . . . ,k} at least one of the

following statements is true:

[
(y0)i . . . (yn−1)i

]T
= 0 and

[
(u0)i . . . (un−1)i

]T � 0
[
(y0)i . . . (yn−1)i

]T � 0 and
[
(u0)i . . . (un−1)i

]T
= 0 ,

where z � 0 for a vector z ∈ R
n indicates that z is lexicographi-

cally nonnegative, i.e., either zi = 0 for all i or the first nonzero

component of z is positive.

Hence, we have

Conclusion The ELCP can be considered as a unifying framework for the

LCP and its various generalizations.

The underlying geometrical explanation for the fact that all the generaliza-

tions of the LCP mentioned above are particular cases of the ELCP is that they

all have a solution set that consists of the union of faces of a polyhedron, and

that the union of any arbitrary set of faces of an arbitrary polyhedron can be

described by an ELCP (see Theorem 1.2). More generally, if we define a “lin-

ear” generalization of the LCP as a problem consisting of an explicit or implicit

system of linear (in)equalities in combination with a “general” complementar-

ity condition, i.e., an ELCP-like complementarity condition that constrains the

solutions of the problem to lie on the (relative) boundary of the feasible set,

then the solution set of this “linear” generalization will consist of the union of

faces of a polyhedron, which implies that such a “linear” generalization of the

LCP is a special case of the ELCP.

For more information on the generalizations discussed above and for appli-

cations and methods to solve these problems the interested reader may consult

the references cited above and (Andreani and Martı́nez, 1998; Ebiefung and

Kostreva, 1992; Isac, 1992; Júdice and Vicente, 1994; Mangasarian, 1995; Mc-

Shane, 1994; Mohan et al., 1996; Murty, 1988; Vandenberghe et al., 1989;

Zhang, 1994) and the references therein.
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3. Algorithms for the ELCP

In this section we present some algorithms to compute all or just one so-

lutions of an ELCP. For algorithms to solve a (regular) LCP we refer to (Bai,

1999; Chen and Mangasarian, 1995; Cottle et al., 1992; Kaliski and Ye, 1993;

Kanzow, 1996; Kočvara and Zowe, 1994; Kremers and Talman, 1994; Mehro-

tra and Stubbs, 1994; Murty, 1988; Pardalos and Resende, 2002; Schäfer,

2004; Sheng and Potra, 1997; Wright, 1994; Yuan and Song, 2003) and the

references therein.

3.1 An algorithm to compute all solutions

In order to compute the entire solution set of the ELCP (1.4)–(1.6) we first

homogenize the ELCP by introducing a scalar α > 0 and defining

u =

[
x

α

]

, P =

[
A −c

01×n 1

]

and Q = [B −d ] .

Then we get a homogeneous ELCP of the following form:

Given P ∈R
p×n,Q ∈R

q×n and m subsets φ j of {1,2, . . . , p}, find u ∈R
n

(with u 6= 0) such that

Pu > 0 (1.18)

Qu = 0 (1.19)

m

∑
j=1

∏
i∈φ j

(Pu)i = 0 . (1.20)

So now we have a system of homogeneous linear equalities and inequalities

subject to a complementarity condition. Recall that the complementarity con-

dition (1.20) can also be written as

∏
i∈φ j

(Pu)i = 0 for j = 1, . . . ,m . (1.21)

The solution set of the system of homogeneous linear inequalities and equal-

ities (1.18)–(1.19) is a polyhedral cone P and can be described using two sets

of generators: a set of central generators C and a set of extreme generators

E . The set C can be considered as a basis for the linear subspace of P . The

generators in E generate the extreme rays of P . Now u is a solution of (1.18)–

(1.19) if and only if it can be written as

u = ∑
ck∈C

αk ck + ∑
ek∈E

βk ek , (1.22)

with αk ∈ R and βk > 0.

To calculate the sets C and E we use an iterative algorithm that is an adap-

tation of the double description method of Motzkin (Motzkin et al., 1953).
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During the iteration we already remove generators that do not satisfy the (par-

tial) complementarity condition since such rays cannot yield solutions of the

ELCP. In the kth step of the algorithm the partial complementarity condition is

defined as follows:

∏
i∈φ j

(Pu)i = 0 for all j such that φ j ⊂ {1,2, . . . ,k} . (1.23)

So we only consider those groups of inequalities that have already been pro-

cessed entirely. For k > p the partial complementarity condition (1.23) coin-

cides with the full complementarity condition (1.21) or (1.20). This leads to

the following algorithm:

Algorithm 1 : Calculation of the central and extreme generators.

Initialization:

C0 := {ci | ci is the ith column of In for i = 1, . . . ,n}
E0 := /0

Iteration:

for k := 1,2, . . . , p+q ,

Calculate the intersection of the current polyhedral cone (described

by Ck−1 and Ek−1) with the half-space or hyperplane determined by

the kth inequality or equality of (1.18)–(1.19). This yields a new

polyhedral cone described by Ck and Ek.

Remove the generators that do not satisfy the partial complemen-

tarity condition.

Result: C := Cp+q and E := Ep+q

Not every combination of the form (1.22) satisfies the complementarity con-

dition. Although every linear combination of the central generators satisfies

the complementarity condition, not every positive combination of the extreme

generators satisfies the complementarity condition. Therefore, we introduce

the concept of cross-complementarity:

Definition 1.7 (Cross-complementarity) Let E be the set of extreme gen-

erators of an homogeneous ELCP. A subset Es of E is cross-complementary if

every combination of the form

u = ∑
ek∈Es

βk ek ,

with βk > 0 , satisfies the complementarity condition.

In (De Schutter and De Moor, 1995a) we have proved that in order to check

whether a set Es is cross-complementary it suffices to test only one strictly pos-

itive combination of the generators in Es, e.g., the combination with βk = 1 for
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all k. Now we can determine Γ, the set of maximal cross-complementary sets

of extreme generators: Γ = {Es |Es is maximal and cross-complementary } .
Algorithm 2 : Determination of the cross-complementary sets of extreme

generators.

Initialization:

Γ := /0

Construct the cross-complementarity graph G with a node ei for

each generator ei ∈ E and an edge between nodes ek and el if the

set {ek,el} is cross-complementary.

S := {e1}
Depth-first search in G :

Select a new node enew that is connected by an edge to all nodes

of the set S and add the corresponding generator to the test set:

S new := S ∪{enew}.

if S new is cross-complementary

then Select a new node and add it to the test set.

else Add S to Γ: Γ := Γ∪{S } , and go back to the last point

where a choice was made.

Continue until all possible choices have been considered.

Result: Γ

Now u is a solution of the homogeneous ELCP if and only if there exists a set

Es ∈ Γ such that u can be written as

u = ∑
ck∈C

αk ck + ∑
ek∈Es

βk ek , (1.24)

with αk ∈ R and βk > 0.

Finally, we have to extract the solution set S of the original ELCP (cf. equa-

tion (1.7)), i.e., we have to retain solutions of the form (1.24) that have an

α component equal to 1 (uα = 1). So we transform the sets C , E , and Γ as

follows:

If c ∈ C then cα = 0. We drop the α component and put the result in

X cen (i.e., the basis the linear subspace associated with the maximal

affine subspace of S ).

If e ∈ E then there are two possibilities:

– If eα = 0 then we drop the α component and put the result in X ext

(i.e., the set of generators for the extreme rays of S ).

– If eα > 0 then we normalize e such that eα = 1. Next, we drop

the α component and put the result in X fin (i.e., the set of finite

vertices of S ).
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For each set Es ∈ Γ we construct the set of corresponding extreme gener-

ators X ext
s and the set of corresponding finite vertices X fin

s . If X fin
s 6= /0

then we add the pair (X ext
s ,X fin

s ) to Λ, the set of pairs of maximal cross-

complementary sets of finite vertices and extreme generators (where

each pair corresponds to a face of S ).

For a more detailed and precise description of these algorithms and a worked

example the interested reader is referred to (De Schutter and De Moor, 1995a).

Also note that the running time and memory requirements of the algorithms

presented above increase exponentially with the size of the ELCP (see (De

Schutter, 1996) for more details). This implies that the above ELCP algorithm,

which determines the entire solution set of the ELCP, is not well suited for

large ELCPs with a large number of variables and (in)equalities, or a complex

solution set. Therefore, we will now present some method to compute only

one solution of an ELCP.

3.2 Algorithms to compute one solution

Some of the methods that could be used to compute one solution of an ELCP

are:

via global minimization (Mangasarian and Solodov, 1993):

We could minimize the left-hand side of the complementarity condition

(1.6) subject to the linear equality and inequality constraints (1.4)–(1.5).

This results in an nonlinear non-convex optimization problem with lin-

ear constraints, that could, e.g., be solved using multi-start local op-

timization (SQP), simulated annealing, tabu search, etc. (Pardalos and

Resende, 2002).

as a system multi-variate polynomial equations:

if we introduce a dummy variable si then the ith inequality of the system

Ax > c can be transformed into an equality: Ai,.x− s2
i = ci. Note that

si = 0 if and only if Ai,.x = ci. If we repeat this reasoning for each in-

equality, then we find that the complementarity condition (1.6) results in
m

∑
j=1

∏
i∈φ j

si = 0. The resulting system of multi-variate polynomial equa-

tions could then be solved using, e.g., a homotopy method (Li, 2003).

using a combinatorial approach:

We could select one index i j out of each set φ j for j = 1, . . . ,m. Each

index i j then corresponds to an inequality of Ax > c that should hold

with equality. So in that case we just get a system of linear equalities and

inequalities. If this system has a solution, we have obtained a solution of

the ELCP; if not, we have to select another combination of indices, and

repeat the process.

using a mixed-integer linear programming approach:

This approach is based on Theorem 1.6 and applies if the surplus vari-

ables of the inequalities of the ELCP are bounded over the feasible set.
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Note that a sufficient condition for this is that the feasible set of the

ELCP is bounded. For engineering problems such bounds are often

available, e.g., as a consequence of physical or other constraints, op-

erating ranges, etc. If we add a dummy linear objective function to

the MILFP (1.10)–(1.12) we obtain a mixed-integer linear programming

problem. This problem can then be solved using, e.g., a branch-and-

bound method (Fletcher and Leyffer, 1998; Taha, 1987) or a branch-

and-cut method (Cordier et al., 1999). Moreover, there exist good com-

mercial and free solvers for mixed-integer linear programming problems

(such as, e.g., CPLEX, Xpress-MP, GLPK, lp solve, etc.; see (Atamtürk

and Savelsbergh, 2005; Linderoth and Ralphs, 2004) for an overview)

Note that all these approaches are essentially of combinatorial nature. How-

ever, based on our own experiences the bests results are usually obtained using

the mixed-integer linear programming approach.

4. Link with max-plus equations

In this section we consider max-plus equations as they arise in various ap-

plications in the max-plus algebra and in the analysis and control of max-plus-

linear systems. But first we give a short introduction to the basic concepts of

the max-plus algebra.

4.1 Max-plus algebra

The basic operations of the max-plus algebra (Cuninghame-Green, 1979;

Baccelli et al., 1992) are maximization and addition, which are represented by

⊕ and ⊗ respectively:

x⊕ y = max(x,y) and x⊗ y = x+ y

for x,y ∈ Rε
def
= R∪ {−∞}. The structure (Rε ,⊕,⊗) is called the max-plus

algebra. The operations ⊕ and ⊗ are called the max-plus-algebraic addition

and max-plus-algebraic multiplication respectively since many properties and

concepts from linear algebra can be translated to the max-plus algebra by re-

placing + by ⊕ and × by ⊗. Note that 0 is the identity element for ⊗ and that

−∞ is absorbing for ⊗.

The matrix En is the n× n max-plus-algebraic identity matrix: (En)ii = 0

for all i and (En)i j = −∞ for all i, j with i 6= j. The basic max-plus-algebraic

operations are extended to matrices as follows. If A,B ∈ R
m×n
ε , C ∈ R

n×p
ε then

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n⊕

k=1

aik ⊗ ck j = max
k

(aik + ck j)

for all i, j. Note the analogy with the definitions of matrix sum and product in

conventional linear algebra.



16

The max-plus-algebraic matrix power of A ∈ R
n×n
ε is defined as follows:

A⊗0
= En and A⊗k

= A⊗A⊗k−1
for k = 1,2, . . . For scalar numbers x,r ∈R we

have x⊗r
= r · x.

4.2 Systems of max-plus-polynomial equations

In the next section we shall see that many max-plus-algebraic problems can

be written in the following form:

mk⊕

i=1

aki ⊗
n⊗

j=1

x j
⊗cki j

= bk for k = 1, . . . , p1 (1.25)

mk⊕

i=1

aki ⊗
n⊗

j=1

x j
⊗cki j

6 bk for k = p1 +1, . . . , p1 + p2 , (1.26)

i.e., the max-plus-algebraic equivalent of a system of polynomial equations.

Therefore, we call (1.25)–(1.26) a system of multivariate polynomial equalities

and inequalities in the max-plus algebra, or a system of max-plus-polynomial

equations for short. Note that the exponents can be negative or real. Using the

notations introduced in Section 1.4.1 it is easy to verify that in conventional

algebra this problem can be rewritten as follows:

Given a set of integers {mk} and three sets of coefficients {aki}, {bk}
and {cki j} with i ∈ {1, . . . ,mk}, j ∈ {1, . . . ,n} and k ∈ {1, . . . , p1, p1 +
1, . . . , p1 + p2}, find x ∈ R

n such that

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j

)

= bk for k = 1, . . . , p1 (1.27)

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j

)

6 bk for k = p1 +1, . . . , p1 + p2 . (1.28)

Let us now we show that (1.27)–(1.28) can be recast as an ELCP.

4.3 Translation into an ELCP

Clearly, the kth equation of (1.27) is equivalent to the system of linear in-

equalities

aki + cki1x1 + cki2x2 + . . .+ ckinxn 6 bk for i = 1, . . . ,mk ,

where at least one inequality should hold with equality. So equation (1.27)

will lead to p1 groups of linear inequalities, where in each group at least one

inequality should hold with equality.

Using the same reasoning equations of the form (1.28) can also be transformed

into a system of linear inequalities, but without an extra condition.

If we define p1 + p2 matrices Ck and p1 + p2 column vectors dk such that

(Ck)i j = cki j and (dk)i = bk − aki, then our original problem is equivalent to
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p1 + p2 groups of linear inequalities Ckx 6 dk, where there has to be at least

one inequality that holds with equality in each group Ckx6 dk for k = 1, . . . , p1.

Now we define

Ã =








−C1

−C2

...

−Cp1+p2







, c̃ =








−d1

−d2

...

−dp1+p2








,

and p1 sets φ j such that φ j = {s j + 1, . . . ,s j +m j} for j = 1, . . . , p1, where

s1 = 0 and s j+1 = s j +m j for j = 1, . . . , p1 −1. Our original problem (1.27)–

(1.28) is then equivalent to the following ELCP:

Find x ∈ R
n such that

Ãx > c̃

p1

∑
j=1

∏
i∈φ j

(Ãx− c̃)i = 0 .

Conversely, we can also show that any ELCP can be written as a system

of max-plus equations of the form (1.27)–(1.28), which yields the following

theorem (De Schutter and De Moor, 1996):

Theorem 1.8 A system of multivariate polynomial equalities and inequali-

ties in the max-plus algebra is equivalent to an ELCP.

Proof : As we have already shown that (1.27)–(1.28) can be recast as an ELCP.

To show that the ELCP (1.4)–(1.6) can also be recast as a system of the form

(1.27)–(1.28), we consider the equivalent ELCP of the form (1.8)–(1.9), and

we rewrite the ELCP inequalities into the form c−Ax 6 0 and we note that

if in a group of several homogeneous inequalities of this form at least one

inequality should hold with equality, then the maximum of the left-hand sides

of the inequalities in this group should be equal to 0. Hence, we get on equation

of the form (1.27) for the ELCP inequalities that belong to some subset φ j, and

an equation of the form (1.28) for the other ELCP inequalities.

5. Applications: Analysis and control of
max-plus-linear systems

5.1 Max-plus-linear discrete event systems

Typical examples of discrete-event systems are flexible manufacturing sys-

tems, telecommunication networks, parallel processing systems, traffic control

systems and logistic systems. The class of discrete-event systems essentially

consists of man-made systems that contain a finite number of resources (e.g.,

machines, communications channels, or processors) that are shared by several

users (e.g., product types, information packets, or jobs) all of which contribute

to the achievement of some common goal (e.g., the assembly of products, the
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end-to-end transmission of a set of information packets, or a parallel computa-

tion) (Baccelli et al., 1992).

In general, models that describe the behavior of a discrete-event system are

nonlinear in conventional algebra. However, there is a class of discrete-event

systems – the max-plus-linear discrete-event systems – that can be described

by a model that is “linear” in the max-plus algebra (Baccelli et al., 1992).

The max-plus-linear discrete-event systems can be characterized as the class

of discrete-event systems in which only synchronization and no concurrency

or choice occurs. More specifically, these systems can be described by a model

of the form

xi(k) = max
(

max
j=1,...,n

(ai j + x j(k−1)),

max
j=1,...,m

(bi j +u j(k))
)

for i = 1, . . . ,n (1.29)

yi(k) = max
j=1,...,n

(ci j + x j(k)) for i = 1, . . . , l, (1.30)

where x(k) represents the time instants at which the internal processes of the

system start for the kth time (i.e., the state of the system), u(k) represents the

time instants at which the system is fed with new data or products for the kth

(i.e., the input of the system), and y(k) represents the time instants at which

the kth batch of final data or finished products leave the system (i.e., the output

of the system). The additions with ai j, bi j, and ci j in (1.29)–(1.30) correspond

to the time delays like processing times, production times, traveling times, etc.

The maximizations correspond to synchronization: a new activity can only

start as soon as all predecessor activities are finished.

In a manufacturing context x(k) contains the time instants at which the pro-

cessing units start working for the kth time, u(k) the time instants at which the

kth batch of raw material is fed to the system, and y(k) the time instants at

which the kth batch of finished product leaves the system.

Using the notations from max-plus algebra introduced in Section 1.4.1 the

model (1.29)–(1.30) can be written as

xi(k) =
n⊕

j=1

ai j ⊗ x j(k−1) ⊕
m⊕

j=1

bi j ⊗u j(k) for i = 1, . . . ,n

yi(k) =
n⊕

j=1

ci j ⊗ x j(k) for i = 1, . . . , l,

or in a more compact matrix-vector format as

x(k) = A⊗ x(k−1) ⊕ B⊗u(k) (1.31)

y(k) =C⊗ x(k) . (1.32)

This latter form also illustrates where the name “max-plus-linear” systems

comes from: for these systems the state and the output are a linear combination

(in the max-plus sense) of the previous state and the input.
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Using the model (1.31)–(1.32) we can compute the output sequence y(1), . . . ,
y(N) of the system for a given input sequence u(1), . . . ,u(N) and initial state

x(0) as follows:

y(k) =C⊗A⊗k ⊗ x(0) ⊕ C⊗A⊗k−1 ⊗B⊗u(1)⊕

C⊗A⊗k−2 ⊗B⊗u(2) ⊕ . . . ⊕ C⊗B⊗u(k) (1.33)

for k = 1, . . . ,N.

To illustrate the definition presented above we now consider a simple (max-

plus-linear) manufacturing system, determine its evolution equations, and write

them in the forms (1.29)–(1.30) and (1.31)–(1.32).

Example 1.9 Consider the production system of Figure 1.1.

P1

P2

✲

✲

P
P
P
P

P
P
P
Pq

✏
✏
✏
✏

✏
✏
✏
✏✶

P3
✲u(k) y(k)

t1=2

t2=0

t3=1

t4=0
t5=0

d1=11

d2=12

d3=7

Figure 1.1. A simple manufacturing system.

This manufacturing system consists of three processing units: P1, P2 and P3,

and works in batches (one batch for each finished product). Raw material is

fed to P1 and P2, processed and sent to P3 where assembly takes place. The

processing times for P1, P2 and P3 are respectively d1 = 11, d2 = 12 and d3 = 7

time units. It takes t1 = 2 time units for the raw material to get from the input

source to P1, and t3 = 1 time unit for a finished product of P1 to get to P3. The

other transportation times and the set-up times are assumed to be negligible.

A processing unit can only start working on a new product if it has finished

processing the previous product. Each processing unit starts working as soon

as all parts are available.

Let us now we determine the time instant at which processing unit P1 starts

working for the kth time. If we feed raw material to the system for the kth

time, then this raw material is available at the input of processing unit P1 at

time t = u(k)+2. However, P1 can only start working on the new batch of raw

material as soon as it has finished processing the previous, i.e., the (k− 1)th
batch. Since the processing time on P1 is d1 = 11 time units, the (k − 1)th
intermediate product will leave P1 at time t = x1(k− 1)+ 11. Since P1 starts

working on a batch of raw material as soon as the raw material is available

and the current batch has left the processing unit, this implies that we have

x1(k) = max(x1(k−1)+11, u(k)+2) . (1.34)
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Using a similar reasoning we find the following expressions for the time in-

stants at which P2 and P3 start working for the kth time and for the time instant

at which the kth finished product leaves the system:

x2(k) = max(x2(k−1)+12, u(k)+0) (1.35)

x3(k) = max(x1(k)+11+1,x2(k)+12+0, x3(k−1)+7) (1.36)

= max(x1(k−1)+23, x2(k−1)+24, x3(k−1)+7, u(k)+14) (1.37)

y(k) = x3(k)+7+0 . (1.38)

Let us now rewrite the evolution equations of the production system using the

symbols ⊕ and ⊗. It is easy to verify that (1.34) can be rewritten as

x1(k) = 11⊗ x1(k−1) ⊕ 2⊗u(k) .

Equations (1.35)–(1.38) result in

x2(k) = 12⊗ x2(k−1) ⊕ u(k)

x3(k) = 23⊗ x1(k−1) ⊕ 24⊗ x2(k−1) ⊕ 7⊗ x3(k−1) ⊕ 14⊗u(k)

y(k) = 7⊗ x3(k) .

If we rewrite these evolution equations in max-algebraic matrix notation, we

obtain the description

x(k) =





11 −∞ −∞
−∞ 12 −∞
23 24 7



⊗ x(k−1) ⊕





2

0

14



⊗u(k)

y(k) =
[
−∞ −∞ 7

]
⊗ x(k) .

5.2 Max-plus-algebraic problems and analysis of
max-plus systems

Is is easy to verify that the following max-plus-algebraic problems can be

recast as a system of max-plus-polynomial equations and inequalities and thus

also as an ELCP (De Schutter and De Moor, 1996; De Schutter, 1996):

solving two-sided max-plus-linear equations:

Given A,B ∈ R
m×n
ε , and c,d ∈ R

m
ε , find x ∈ R

n
ε such that

A⊗ x ⊕ c = B⊗ x ⊕ d .

max-plus-algebraic matrix decomposition:

Given a matrix A ∈R
m×n
ε and an integer p > 0, find B ∈R

m×p
ε and

C ∈ R
p×n
ε such that

A = B⊗C .

determining state space realizations of max-plus-linear systems:
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Given a partial impulse response {Gk}N
k=1 of a max-plus-linear sys-

tem with unknown system matrices A, B and C, and a system order

n, determine the system matrices of the system.

For a single-input system the impulse response is the output of the sys-

tem for the input sequence given by u(1) = 0 and u(k) =−∞ for all k > 0

(i.e., an impulse signal), and for the initial state x(0)=
[
−∞ −∞ . . . −∞

]T
.

In general, for a multi-input system, the sequence of the ith columns of

the Gk’s corresponds to the output sequence obtained when an impulse

signal is applied to the ith input and the other inputs are keep at −∞.

Using (1.33) it is then easy to very that the impulse response satisfies

Gk =C⊗A⊗k−1 ⊗B for all k .

If {Gk}N
k=1 is known this results in a system of max-plus-polynomial

equations in A, B, and C.

transformation of state space models:

Given system matrices A, B, C, find L, Â, and Ĉ such that

[
A

C

]

=

[
Â

Ĉ

]

⊗L .

If we can find such a decomposition, and if we define

Ã = L⊗ Â, B̃ = L⊗B, C̃ = Ĉ ,

then it is easy to verify that the state space models corresponding to the

triplets (A, B, C) and (Ã, B̃, C̃) of systems matrices have the same impulse

response, i.e.,

C⊗A⊗k ⊗B = C̃⊗ Ã⊗k ⊗ B̃ for all k .

In that case we say that (A, B, C) and (Ã, B̃, C̃) are equivalent realizations

of the same max-plus-linear system.

An alternative transformation is the following

Given system matrices A, B, C, find M, Â, and B̂ such that

[
A B

]
= M⊗

[
Â B̂

]
.

In this case we should consider

Ã = Â⊗M, B̃ = B̂, C̃ =C⊗M .

Other applications related to the max-plus algebra that result in an ELCP in-

clude computing singular value decompositions, QR decompositions, and other

matrix factorizations in the extended max-plus-algebra, and systems of max-

min-plus equations (De Schutter and De Moor, 1998c)
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5.3 Model-based predictive control of
max-plus-linear systems

5.3.1 Framework. As a final application we consider model pre-

dictive control (MPC) of max-plus-linear systems. MPC (Maciejowski, 2002)

was pioneered simultaneously by Richalet et al. (Richalet et al., 1978), and

Cutler and Ramaker (Cutler and Ramaker, 1979). Since then, MPC has prob-

ably become the most applied advanced control technique in the process in-

dustry. A key advantage of MPC is that it can accommodate constraints on

the inputs and outputs. Usually MPC uses linear or nonlinear discrete-time

models. However, we now consider the extension of MPC to max-plus-linear

discrete-event systems (De Schutter and van den Boom, 2001a).

In MPC we determine at each event step k the optimal input sequence u(k),
u(k+1), . . . ,u(k+Np−1) over a given prediction horizon Np. We assume that

at event step k, the previous value x(k − 1) of the state can be measured or

estimated using previous measurements. We can then use (1.33) to estimate

the evolution of the output of the system for the input sequence u(k), . . . ,u(k+
Np −1):

ŷ(k+ j|k) =C⊗A⊗ j ⊗ x(k−1) ⊕
j

⊕

i=0

C⊗A⊗ j−i ⊗B⊗u(k+ i) , (1.39)

where ŷ(k+ j|k) is the estimate of the output at event step k+ j based on the

information available at event step k. If the due dates r for the finished products

are known and if we have to pay a penalty for every delay, a well-suited output

cost criterion is the tardiness:

Jout(k) =
Np−1

∑
j=0

l

∑
i=1

max(ŷi(k+ j|k)− ri(k+ j),0) . (1.40)

On the other hand we also want to keep the throughput time and the internal

buffer levels as low as possible. Therefore, we will maximize the input time

instants. For a manufacturing system, this would correspond to a scheme in

which raw material is fed to the system as late as possible. This results in the

following input cost criterion

Jin(k) =
Np−1

∑
j=0

m

∑
i=1

u(k+ j) . (1.41)

The input and output cost criteria are combined as follows in the overall per-

formance function J:

J(k) = Jout(k)+λJin(k) ,

with λ > 0.

Since for discrete-event systems the inputs u(k) correspond to consecutive

feeding times, this sequence should be nondecreasing, resulting in the con-

straint

u(k+ j)> u(k+ j−1) for j = 0, . . . ,Np −1 .



The ELCP and Its Applications in Discrete-Event Systems 23

Furthermore, we sometimes also have constraints such as minimum or maxi-

mum separation between input and output events:

a1(k+ j)6 u(k+ j)−u(k+ j−1)6 b1(k+ j) for j = 0, . . . ,Np −1

a2(k+ j)6 ŷ(k+ j|k)− ŷ(k+ j−1|k)6 b2(k+ j) for j = 0, . . . ,Np −1 ,

maximum due dates for the output events:

ŷ(k+ j|k)6 r(k+ j) for j = 0, . . . ,Np −1 ,

or maximum deviations from the due dates:

r(k+ j)−δ−(k+ j)6ŷ(k+ j|k)
6 r(k+ j)+δ+(k+ j) for j = 0, . . . ,Np −1 ,

If we define

ũ(k) =








u(k)
u(k+1)

...

u(k+Np −1)







, ỹ(k) =








ŷ(k|k)
ŷ(k+1|k)

...

ŷ(k+Np −1|k)








,

we can collect all the above constraints into one system of linear equations of

the form

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) . (1.42)

5.3.2 The MPL-MPC problem and its link with the ELCP.
If we combine the material of previous subsection, we finally obtain the

following problem:

At event step k, find the input sequence vector ũ(k) that minimizes J(k)=
Jout(k)+λJin(k) subject to the evolution equations (1.39) and the con-

straints (1.42).

This problem will be called the max-plus-linear MPC (MPL-MPC) problem

for event step k. MPL-MPC also uses a receding horizon principle, which

means that at event step k the future control sequence u(k), . . . , u(k+Np−1) is

determined such that the cost criterion is minimized subject to the constraints.

At event step k the first element of the optimal sequence (i.e., u(k)) is then

applied to the system. At the next event step, the horizon is shifted, the model

is updated with new information of the measurements, and a new optimization

at event step k+1 is performed, and so on.

Let us now have a closer look at the MPL-MPC problem. We could consider

both ũ(k) and ỹ(k) as optimization variables. Clearly, as the constraints of

the MPL-MPC problem are a combination of max-plus-polynomial constraints

and linear constraints, they can be recast as an ELCP. This implies that the

optimal sequence ũ(k) can be determined by optimizing J(k) over the solution

set of this ELCP.
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5.3.3 Algorithms for the MPL-MPC problem. Now we

discuss some methods to solve the MPL-MPC problem. The material in this

section is inspired by (De Schutter and van den Boom, 2001a), but due to the

fact that we focus on one particular performance function (i.e., (1.40)–(1.41)

we can make some significant simplifications in our explanation and in our

approach with respect to (De Schutter and van den Boom, 2001a).

As indicated above we can solve the MPL-MPC problem by first determin-

ing the entire solution set of the ELCP that corresponds to the constraints of

the MPL-MPC problem in a parameterized way using the algorithms of Sec-

tion 1.3.1, and then optimizing J(k) over this solution set. However, as the

MPL-MPC problem has to be solved at each event step, this approach is not

feasible in practice.

Alternatively, we could consider the MPL-MPC problem as a nonlinear

non-convex optimization problem and use standard multi-start nonlinear non-

convex local optimization methods to compute the optimal control policy. How-

ever, in practice this approach is also often not feasible.

We could also apply the mixed-integer programming approach as follows:

note that since A, B and C are known, the evolution equations (1.39) can be

rewritten as

ỹi(k) = max
j=1,...,mNp

(hi j + ũ j(k),g j(k)) for i = 1, . . . , lNp , (1.43)

for some matrix H and a vector g(k) that depends on x(k−1) (see (De Schutter

and van den Boom, 2001a) for the exact expressions). We can now eliminate

ỹ(k) from the objective function J(k), resulting in an expression of the form

J(k) =
lNp

∑
i=1

(
max

j=1,...,mNp

(hi j + ũ j(k),g j(k))− r̃i(k)
)
+λ

mNp

∑
j=1

ũ j(k)

= max
i=1,...,K

max
j=1,...,mNp

(pi jũ j(k)+q j(k))

= max
i=1,...,K

(Pũ(k)+q(k))i

for an appropriately defined matrix P, vector q, and constant K where r̃(k)
is defined in a similar way as ỹ(k) and where we have made recursive use

of the following basic property: for α ,β ,γ ∈ R we have max(α ,β ) + γ =
max(α + γ ,β + γ). If we now introduce a scalar dummy variable t such that

t = max
i=1,...,K

(Pũ(k)+q(k))i , (1.44)

then the MPL-MPC problem reduces to minimizing a linear objective function

(J(k) = t) subject to the constraints (1.42), (1.43), and (1.44). Note that these

constraints are a combination of max-plus and linear constraints, i.e., they cor-

respond to an ELCP. As shown in the proof of Theorem 1.6, these constraints

thus can be rewritten as a system of mixed-integer linear equations (in fact the

detour via the ELCP is not necessary, and the equations can directly be trans-

formed into mixed-integer linear constraints). Hence, the MPL-MPC problem

can be recast as a mixed-integer linear programming problem.
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If in addition the matrix Bc(k) in (1.42) only has nonnegative entries we

can make a further simplification, which will ultimately result in a linear pro-

gramming problem. In fact, if all entries of Bc(k) are nonnegative (this occurs,

e.g., when there are no constraints on ỹ(k), or if there are only upper bound

constraints on ỹ(k)), then we can also easily eliminate ỹ(k) from the linear

constraints (1.42), resulting in

(Ac(k)ũ(k))ℓ+
lNp

∑
i=1

(Bc)ℓi max
j=1,...,mNp

(hi j + ũ j(k),g j(k))6 (cc(k))ℓ for all ℓ,

or equivalently an expression of the form

max
i=1,...,L

(S(ℓ)(k)ũ(k)+ s(ℓ)(k))ℓ 6 (cc(k))ℓ for all ℓ,

for an appropriately defined matrix S(ℓ)(k) and vector s(ℓ)(k), or even more

simply

Sℓ(k)ũ(k)+ s(k)6 c(ℓ)(k) for all ℓ, (1.45)

for an appropriately defined vector c(ℓ)(k). As now we have eliminated ỹ(k)
completely, we have to minimize

J(k) = max
i=1,...,K

(Pũ(k)+q(k))i

over the linear constraint (1.45). If we again introduce a dummy variable t and

solve the following linear optimization problem

min
t,ũ(k)

t

subject to (1.45) and t > (Pũ(k)+q(k))i for i = 1, . . . ,K ,

then it is easy to verify that in the optimal solution, at least one of the bounds

on t is tight, i.e., (1.44) holds. So in this case we can find the optimal solution

of the MPL-MPC problem via linear programming, for which efficient algo-

rithms exist such as (variants of) the simplex method or interior point methods

(Nesterov and Nemirovskii, 1994; Pardalos and Resende, 2002).

For a worked example and a comparison of several of these alternative MPL-

MPC algorithms, we refer the interested reader to (De Schutter and van den

Boom, 2001a).

In (De Schutter and van den Boom, 2000; De Schutter and van den Boom,

2001b) we have extended the above results to max-min-plus-scaling systems, a

class of discrete-event systems that can be modeled using the operations max-

imization, minimization, addition and scalar multiplication. Related work in-

volving the determination of optimal switching times for traffic signals and for

first-order linear hybrid systems with saturation is described in (De Schutter,

2000; De Schutter, 2002).
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6. Summary

In this chapter we have presented the extended linear complementarity prob-

lem (ELCP) and its relation to the regular linear complementarity problem

(LCP) and to various linear generalizations of the LCP. We have shown that

the ELCP can in a way be considered to be the most general linear extension

of the LCP. We have also discussed some properties of the solution set of an

ELCP and presented some algorithms to solve an ELCP: we have considered

an algorithm for determining the complete solution set of an ELCP, and also

several algorithms to determine only one solution. Next, we have shown that a

system of max-plus-polynomial equations is equivalent to an ELCP, which al-

lows us to solve several problems that arise in the max-plus algebra, and in the

analysis and control of max-plus-linear systems. In particular, for the model-

based predictive control of max-plus-linear systems the original ELCP-based

problem can be reduced to a linear programming problem, which can be solved

very efficiently.
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Notes
1. We only need boundedness from above since the surplus variables are always nonnegative due to the

condition Ax > c.

2. Note, however, that if we want to solve an ELCP using, e.g., the algorithm of Section 1.3.1, then the

formulation (1.5)–(1.6) leads to a more efficient solution than the reformulation (1.8)–(1.9).

3. Regarding the Extended LCP of Mangasarian and Pang, note that we may assume without loss of

generality that P can be represented as P = {u ∈R
m |Su > t} for some matrix S ∈R

l×m and vector t ∈R
l .

References

Andreani, R. and Martı́nez, J.M. (1998). On the solution of the extended lin-

ear complementarity problem. Linear Algebra and Its Applications, 281(1–

3):247–257.



The ELCP and Its Applications in Discrete-Event Systems 27

Atamtürk, A. and Savelsbergh, M.W.P. (2005). Integer-programming software

systems. Annals of Operations Research, 140(1):67–124.

Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.P. (1992). Synchronization

and Linearity. John Wiley & Sons, New York.

Bai, Z.Z. (1999). On the convergence of the multisplitting methods for the

linear complementarity problem. SIAM Journal on Matrix Analysis and Ap-

plications, 21(1):67–78.

Bemporad, A. and Morari, M. (1999). Control of systems integrating logic,

dynamics, and constraints. Automatica, 35(3):407–427.

Chen, C. and Mangasarian, O.L. (1995). Smoothing methods for convex in-

equalities and linear complementarity problems. Mathematical Program-

ming, 71(1):51–69.

Chung, S. (1989). NP-completeness of the linear complementarity problem.

Journal of Optimization Theory and Applications, 60(3):393–399.

Cordier, C., Marchand, H., Laundy, R., and Wolsey, L.A. (1999). bc-opt: A

branch-and-cut code for mixed integer programs. Mathematical Program-

ming, Series A, 86(2):335–353.

Cottle, R.W. and Dantzig, G.B. (1970). A generalization of the linear comple-

mentarity problem. Journal of Combinatorial Theory, 8(1):79–90.

Cottle, R.W., Pang, J.S., and Stone, R.E. (1992). The Linear Complementarity

Problem. Academic Press, Boston.

Cuninghame-Green, R.A. (1979). Minimax Algebra, volume 166 of Lecture

Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin,

Germany.

Cutler, C.R. and Ramaker, B.L. (1979). Dynamic matrix control – a computer

control algorithm. In Proceedings of the 86th AIChE National Meeting,

Houston, Texas.

De Moor, B., Vandenberghe, L., and Vandewalle, J. (1992). The generalized

linear complementarity problem and an algorithm to find all its solutions.

Mathematical Programming, 57:415–426.

De Schutter, B. (1996). Max-Algebraic System Theory for Discrete Event Sys-

tems. PhD thesis, Faculty of Applied Sciences, K.U.Leuven, Leuven, Bel-

gium.

De Schutter, B. (2000). Optimal control of a class of linear hybrid systems with

saturation. SIAM Journal on Control and Optimization, 39(3):835–851.

De Schutter, B. (2002). Optimizing acyclic traffic signal switching sequences

through an extended linear complementarity problem formulation. Euro-

pean Journal of Operational Research, 139(2):400–415.

De Schutter, B. and De Moor, B. (1995a). The extended linear complementar-

ity problem. Mathematical Programming, 71(3):289–325.

De Schutter, B. and De Moor, B. (1995b). Minimal realization in the max

algebra is an extended linear complementarity problem. Systems & Control

Letters, 25(2):103–111.

De Schutter, B. and De Moor, B. (1996). A method to find all solutions of a sys-

tem of multivariate polynomial equalities and inequalities in the max alge-



28

bra. Discrete Event Dynamic Systems: Theory and Applications, 6(2):115–

138.

De Schutter, B. and De Moor, B. (1998a). The Linear Dynamic Complemen-

tarity Problem is a special case of the Extended Linear Complementarity

Problem. Systems & Control Letters, 34(1–2):63–75.

De Schutter, B. and De Moor, B. (1998b). Optimal traffic light control for a

single intersection. European Journal of Control, 4(3):260–276.

De Schutter, B. and De Moor, B. (1998c). The QR decomposition and the

singular value decomposition in the symmetrized max-plus algebra. SIAM

Journal on Matrix Analysis and Applications, 19(2):378–406.

De Schutter, B., Heemels, W.P.M.H., and Bemporad, A. (2002). On the equiv-

alence of linear complementarity problems. Operations Research Letters,

30(4):211–222.

De Schutter, B. and van den Boom, T. (2000). Model predictive control for

max-min-plus systems. In Boel, R. and Stremersch, G., editors, Discrete

Event Systems: Analysis and Control, volume 569 of The Kluwer Interna-

tional Series in Engineering and Computer Science, pages 201–208. Kluwer

Academic Publishers, Boston.

De Schutter, B. and van den Boom, T. (2001a). Model predictive control for

max-plus-linear discrete event systems. Automatica, 37(7):1049–1056.

De Schutter, B. and van den Boom, T.J.J. (2001b). Model predictive control

for max-min-plus-scaling systems. In Proceedings of the 2001 American

Control Conference, pages 319–324, Arlington, Virginia.

Eaves, B.C. (1971). The linear complementarity problem. Management Sci-

ence, 17(9):612–634.

Ebiefung, A.A. and Kostreva, M.K. (1992). Global solvability of generalized

linear complementarity problems and a related class of polynomial comple-

mentarity problems. In Floudas, C.A. and Pardalos, P.M., editors, Recent

Advances in Global Optimization, Princeton Series in Computer Science,

pages 102–124. Princeton University Press, Princeton, New Jersey.

Ferris, M.C., Mangasarian, O.L., and Pang, J.S., editors (2001). Complemen-

tarity: Applications, Algorithms and Extensions, volume 50 of Applied Op-

timization. Springer.

Ferris, M.C. and Pang, J.S., editors (1997a). Complementarity and Variational

Problems: State of the Art. Philadelphia, Pennsylvania: SIAM. (Proceedings

of the International Conference on Complementarity Problems, Baltimore,

Maryland, November 1995).

Ferris, M.C. and Pang, J.S. (1997b). Engineering and economic applications of

complementarity problems. SIAM Review, 39(4):669–713.

Fletcher, R. and Leyffer, S. (1998). Numerical experience with lower bounds

for MIQP branch-and-bound. SIAM Journal on Optimization, 8(2):604–616.

Gowda, M.S. (1996). On the extended linear complementarity problem. Math-

ematical Programming, 72:33–50.

Gowda, M.S. and Sznajder, R. (1994). The generalized order linear comple-

mentarity problem. SIAM Journal on Matrix Analysis and Applications,

15(3):779–795.



The ELCP and Its Applications in Discrete-Event Systems 29

Heemels, W.P.M.H., De Schutter, B., and Bemporad, A. (2001). Equivalence

of hybrid dynamical models. Automatica, 37(7):1085–1091.

Heemels, W.P.M.H., Schumacher, J.M., and Weiland, S. (2000). Linear com-

plementarity systems. SIAM Journal on Applied Mathematics, 60(4):1234–

1269.

Isac, G. (1992). Complementarity Problems. Springer-Verlag, Berlin, Germany.

Isac, G., Bulavsky, V.A., and Kalashnikov, V.V. (2002). Complementarity, Equi-

librium, Efficiency and Economics, volume 63 of Nonconvex Optimization

and Its Applications. Springer.
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