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Fuzzy Approximation for Convergent

Model-Based Reinforcement Learning

Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška

Abstract—Reinforcement Learning (RL) is a learning control
paradigm that provides well-understood algorithms with good
convergence and consistency properties. Unfortunately, these
algorithms require that process states and control actions
take only discrete values. Approximate solutions using fuzzy
representations have been proposed in the literature for the
case when the states and possibly the actions are continuous.
However, the link between these mainly heuristic solutions
and the larger body of work on approximate RL, including
convergence results, has not been made explicit. In this paper,
we propose a fuzzy approximation structure for the Q-value
iteration algorithm, and show that the resulting algorithm is
convergent. The proof is based on an extension of previous
results in approximate RL. We then propose a modified, serial
version of the algorithm that is guaranteed to converge at least
as fast as the original algorithm. An illustrative simulation
example is also provided.

I. INTRODUCTION

Learning controllers can tackle problems where pre-

programmed solutions are difficult or impossible to design.

Reinforcement learning (RL) is a popular learning paradigm,

mainly because it requires only mild assumptions on the pro-

cess to be controlled, and is able to work without an explicit

model [1]–[3]. A RL controller measures directly the process

state, and receives feedback on the control performance in

the form of a scalar reward signal. The learning objective is

to maximize the cumulative reward signal. Well-understood

algorithms with good convergence and consistency properties

are available for solving the RL task, both when a model

of the controlled process is available and when it is not.

However, these algorithms require that the controller inputs

(process states) and outputs (control actions) take values in

a relatively small discrete set. When the state and / or action

spaces are continuous or contain a large number of elements,

approximate solutions must be used.

Approximation schemes have been proposed for model-

based RL [4]–[6], as well as for model-free or model-learning

RL [7]–[13].1 Unfortunately, in general, approximate RL is

not guaranteed to converge [4], [14]. One type of approxi-

mators for which many RL algorithms converge are linear
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Center for Systems and Control of the Delft University of Techno-
logy, The Netherlands (email: i.l.busoniu@tudelft.nl, b@deschutter.info,
r.babuska@tudelft.nl). Bart De Schutter is also with the Marine and Trans-
port Technology Department of TU Delft. Damien Ernst is with Supélec,
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basis functions, also known as kernel functions, averagers,

and interpolative representations [4], [5], [7], [8].

Fuzzy approximation for RL is also popular in the lit-

erature, mainly for model-free RL . Fuzzy approximators

are combined e.g., with Q-learning [15], yielding fuzzy

Q-learning [16]–[18], or with actor-critic algorithms [1],

yielding fuzzy actor-critic architectures [18]–[23]. For fuzzy

Q-learning, Takagi-Sugeno fuzzy rule-bases are typically

used. Actor-critic algorithms use fuzzy rule-bases for the

actor element, and either fuzzy or other approximators (e.g.,

neural networks) for the critic element. Typically, fuzzy RL

approaches are heuristic, and their convergence has not been

studied, with the exception of the actor-critic algorithms in

[20], [21]. These algorithms use special rulebase structures

and parameter update rules in order to guarantee conver-

gence. The results on convergence in the larger body of work

in approximate RL have not been employed for fuzzy RL .

In this work, we propose a fuzzy approximator similar

to others previously used for Q-learning [16], [18], but

we combine it with the model-based Q-iteration algorithm

(see e.g., [8]). This approximator works for continuous

states and discrete actions; however, continuous actions can

be handled by discretization. We show that the resulting

fuzzy Q-iteration algorithm converges. We then propose an

asynchronous, serial version of fuzzy Q-iteration, which

converges at least as fast as the original algorithm. The

modified algorithm has not, to the authors’ best knowledge,

been studied yet in approximate RL , although exact serial

value iteration is widely used [3].

The remainder of this paper is structured as follows.

Section II introduces the necessary RL elements, and Sec-

tion III describes approximate model-based RL . Section IV

describes the proposed fuzzy approximation structure. The

properties of approximate Q-iteration using this structure are

analyzed in Section V. Section VI illustrates the proposed

algorithms on a simulated example. Finally, Section VII

outlines ideas for future work and concludes the paper.

II. BACKGROUND: REINFORCEMENT LEARNING

In this section, we briefly introduce the RL task and

characterize its optimal solution, following [1]–[3].

Consider a deterministic Markov decision process with

the state space X , the action (control) space U , the state

transition function f : X×U → X , and the reward function

ρ : X × U → R.2 As a result of the control action uk

2A stochastic formulation is possible, where the state transitions are prob-
abilistic. In that case, expected returns under these probabilistic transitions
must be considered, and the results discussed still hold.



applied in state xk, the state changes to xk+1 = f(xk, uk).
The controller receives feedback on its performance in the

form of the scalar reward signal rk+1 = ρ(xk, uk). This

reward evaluates the immediate effect of action uk, but

says nothing directly about the long-term effects of this

action. The controller chooses actions given the current state,

according to its policy h : X → U : uk = h(xk).
The learning goal is the maximization, starting from the

current moment in time (k = 0), of the discounted return:

∞∑

k=0

γkrk+1 =

∞∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1) is the discount factor. The discounted

return compactly represents the reward accumulated by the

controller in the long-run. The learning task is therefore

to maximize long-term performance, while only receiving

feedback about immediate, one-step performance. This can

be achieved by computing the optimal action-value function.

An action-value function (Q-function), Qh : X ×U → R,

gives the return of each state-action pair under a policy h:

Qh(x, u) = ρ(x, u) +

∞∑

k=1

γkρ(xk, h(xk)) (2)

where x1 = f(x, u) and xk+1 = f(xk, h(xk)), ∀k. The

optimal action-value function is defined as Q∗(x, u) =
maxh Q

h(x, u). Any policy that picks for every state the

action with the highest optimal Q-value:

h∗(x) = argmax
u

Q∗(x, u) (3)

is then optimal (i.e., it maximizes the return (1)).

A central result in RL is the Bellman optimality equation:

Q∗(x, u) = ρ(x, u) + γmax
u′∈U

Q∗(f(x, u), u′) ∀x, u (4)

This equation states that the optimal value of action u taken

in state x is the expected immediate reward plus the expected

(discounted) optimal value attainable from the next state.

Let the set of all Q-functions be denoted by Q. The Q-

iteration mapping T : Q → Q is the right-hand side of the

Bellman equation for any Q-function:

[T (Q)](x, u) = ρ(x, u) + γmax
u′∈U

Q(f(x, u), u′) (5)

Using this notation, the Bellman optimality equation (4)

states that Q∗ is a fixed point of T , i.e., Q∗ = T (Q∗). The

following result is also well-known (see e.g., [24]).

Theorem 1: T is a contraction with factor γ in the

infinity norm, i.e., for any pair of functions Q, Q′,

‖T (Q)− T (Q′)‖
∞
≤ γ ‖Q−Q′‖

∞
.

The Q-value iteration (Q-iteration) algorithm starts from

an arbitrary Q-function Q0 and at each iteration ℓ updates

the Q-function using the formula Qℓ+1 = T (Qℓ). From

Theorem 1, it follows that T has a unique fixed point, and

from (4), this point is Q∗. Therefore, Q-iteration converges

to Q∗ as ℓ→∞.

The standard Q-iteration uses an a priori model of the

task (in the form of the transition and reward functions f , ρ).

There are also algorithms that learn a model from experience,

and others that do not use an explicit model at all [1], [2].

III. FUNCTION APPROXIMATION FOR Q-ITERATION

In general, the practical implementation of RL algorithms

requires that Q-values are stored and updated explicitly for

each state-action pair. This can only be realized when the

number of state and action values is small. When the state

and / or action spaces contain a large or infinite number of

elements (e.g., they are continuous), approximate solutions

must be used instead.

Parametric approximators use a parameter vector θ as

a finite representation of the Q-function Q̂. The following

mappings are defined in order to formalize parametric ap-

proximate Q-iteration (the notation follows [10]).

1) The Q-iteration mapping T , defined by equation (5).

2) The approximation mapping F : Rn → Q, which for

a given value of the parameter vector θ ∈ R
n produces

an approximate Q-function Q̂ = F (θ).
3) The projection mapping P : Q → R

n, which given a

target Q-function Q computes the parameter vector θ
such that F (θ) is as close as possible to Q (e.g., in a

least-squares sense).

The notation [F (θ)](x, u) refers to the value of the Q-

function F (θ) for the state-action pair (x, u). The notation

[P (Q)]l refers to the l-th parameter in the parameter vector

P (Q).
Approximate Q-iteration starts with an arbitrary param-

eter vector θ0 and at each iteration ℓ updates it using the

composition of the mappings P , T , and F :

θℓ+1 = PTF (θℓ) (6)

Unfortunately, the approximate Q-iteration is not guar-

anteed to converge for an arbitrary approximator. Counter-

examples can be found e.g., in [4], [14] for the related value-

iteration algorithm, and those results apply directly to Q-

iteration as well. One particular case in which approximate

Q-iteration converges is when the composite mapping PTF
can be shown to be a contraction [4], [5]. This property will

be used below to show that fuzzy Q-iteration converges.

IV. FUZZY Q-ITERATION

In this section, we propose a fuzzy approximation similar

to others previously used for Q-learning [16], [18], but we

combine it with the model-based Q-iteration algorithm. In the

sequel, it is assumed that the action space is discrete, denoted

by U0 = {uj |j = 1, . . . ,M}. This discrete set can be

obtained from the discretization of an originally continuous

action space. The state space can be either continuous or

discrete. In the latter case, fuzzy approximation is useful

when the number of discrete states is large.

The proposed approximation architecture relies on a fuzzy

partition of the state space into N sets Xi, each described by

a membership function µi : X → [0, 1]. A state x belongs to

each set i with a degree of membership µi(x). In the sequel

the following assumptions are made:



1) The fuzzy partition is normalized, i.e.,
∑N

i=1 µi(x) =
1, ∀x ∈ X .

2) The fuzzy sets in the partition are normal, i.e., for

every i there exists an xi for which µi(xi) = 1 (and

consequently, µi(xi) = 0 for all i 6= i by Assumption

1). The state value xi is called the core of set Xi.

This second assumption is made here for brevity in

the description and analysis of the algorithms; it can

be relaxed using results of [4].

For an example of a partition that satisfies the above

conditions, see Figure 2 of Section VI.

The Q-function is approximated using a Takagi-Sugeno

rule-base with singleton consequents. The rule-base has one

input, the state x, and M outputs q1, . . . , qM , the Q-values

corresponding to each of the discrete actions u1, . . . , uM .

The i-th rule in this rule-base has the form:

Ri : if x is Xi then q1 = θi,1; q2 = θi,2; . . . ; qM = θi,M

The parameters of this approximator are the singleton con-

sequent values appearing in the rule-base. They are arranged

in an N × M matrix θ, one row for each rule i and one

column for each output j.3 The logical expression ‘x is Xi’

holds true with degree µi(x), the membership degree of x
in Xi. The fuzzy rule-base outputs the weighted sum of the

consequent values θi,j in each rule, where the weight factor

of a particular rule corresponds to the degree of fulfillment of

its logical expression. Thus, the approximator takes as input

the state-action pair (x, uj) and outputs the Q-value:

Q̂(x, uj) = [F (θ)](x, uj) =

N∑

i=1

µi(x)θi,j (7)

This is a basis-functions form, with the basis functions

only depending on the state. The approximator (7) can be

regarded as M distinct approximators, one for each of the

M discrete actions.

The projection mapping infers from a Q-function the val-

ues of the approximator parameters according to the relation:

θi,j = [P (Q)]i,j = Q(xi, uj) (8)

This is a particular case of the least-squares solution:

P (Q) = argmin
θ

∑

(x,u)∈X0×U0

[Q(x, u)− F (θ)(x, u)]2

when the set of samples X0 × U0 is the Cartesian product

of the set of cores X0 = {x1, . . . , xM} and the discrete

action space U0. Note that when the set of samples is differ-

ent from this, least-squares projection no longer guarantees

convergence [4].

The approximator specified in this way is a special case

of several types of approximators previously considered for

RL : interpolative representations [4], averagers [5], and

representative-state techniques as described in [13]. It also

3The matrix arrangement is adopted for convenience of notation only. For
the theoretical study of the algorithms, the collection of parameters is still
regarded as a vector, leading e.g., to ‖θ‖

∞
= maxi,j |θij |.

Algorithm 1 Parallel fuzzy Q-iteration

1: ℓ← 0; θ0 ← 0 (or arbitrary values)

2: repeat

3: for i = 1, . . . , N, j = 1, . . . ,M do

4: θℓ+1,i,j ← ρ(xi, uj)+

γmaxj
∑N

i=1 µi(f(xi, uj))θℓ,i,j
5: end for

6: ℓ← ℓ+ 1
7: until ‖θℓ − θℓ−1‖∞ ≤ δ

Algorithm 2 Serial fuzzy Q-iteration

1: ℓ← 0; θ0 ← 0 (or arbitrary values)

2: repeat

3: θ ← θℓ
4: for i = 1, . . . , N, j = 1, . . . ,M do

5: θi,j ← ρ(xi, uj) + γmaxj
∑N

i=1 µi(f(xi, uj))θi,j
6: end for

7: θℓ+1 ← θ; ℓ← ℓ+ 1
8: until ‖θℓ − θℓ−1‖∞ ≤ δ

shares similarities with barycentric interpolation [6]. The

analysis in Section V will rely on theoretical properties of

these approximators.

An explicit form of the approximate Q-value iteration

algorithm using the approximator (7) and projection (8) is

given in Algorithm 1. To establish the equivalence between

Algorithm 1 and the approximate Q-iteration in the form

(6), observe that the right-hand side in line 4 of Algorithm 1

corresponds to [T (Q̂ℓ)](xi, uj), where Q̂ℓ = F (θℓ). Hence,

line 4 can be written θℓ+1,i,j ← [PTF (θℓ)]i,j and the entire

for loop described by lines lines 3–5 is equivalent to (6).

In Algorithm 1, only the parameters θℓ at the end of the

previous iteration are used in the computation of the updated

values θℓ+1. Algorithm 2 is an alternative version, which uses

the updated parameters as soon as they are available. Since

the parameters are updated in serial fashion, this version is

called serial Q-iteration. Although the exact counterpart of

this algorithm is widely used [1], [3], approximate serial Q-

iteration has not, to the authors’ best knowledge, been studied

yet. To differentiate between the two versions, we hereafter

call Algorithm 1 parallel fuzzy Q-iteration.

V. ANALYSIS

In this section, the convergence of parallel and serial fuzzy

Q-iteration is established. It is shown that there exists a

parameter vector θ∗ such that for both algorithms, θℓ → θ∗

as ℓ → ∞. The consistency of the algorithms, i.e., the

convergence to the optimal Q-function Q∗ as the maximum

distance between the cores of adjacent fuzzy sets goes to 0,

is not studied here and is a topic for future research. It can

be shown, however, that under certain conditions, F (θ∗) is

within a given bound of the Q∗ [4], [5].

Proposition 1: Fuzzy Q-iteration (Algorithm 1) con-

verges.



Proof: The proof follows from the convergence proof

of value iteration with averagers [5], or with interpolative

representations [4]. This is because fuzzy approximation is

an averager by the definition in [5], and an interpolative

representation by the definition in [4]. For these types of

approximator, P and F are nonexpansions, making PTF a

contraction with factor γ, i.e., ‖PTF (θ)− PTF (θ′)‖
∞
≤

γ ‖θ − θ′‖
∞

, for any θ, θ′.
Similarly to the convergence proof for exact serial value

iteration in [3], it is shown below that the approximate serial

Q-iteration Algorithm 2 converges.

Proposition 2: Serial fuzzy Q-iteration (Algorithm 2) con-

verges.

Proof: Denote n = N ·M , and rearrange the matrix

θ into a vector in R
n, placing first the elements of the first

row, then the second etc. The element at row i and column

j of the matrix is now the l-th element of the vector, with

l = (i− 1) ·M + j.

Define for all l = 0, . . . , n recursively the mappings Sl :
R

n → R
n as:

S0(θ) = θ

[Sl(θ)]l =

{
[PTF (Sl−1(θ))]l if l = l

[Sl−1(θ)]l l ∈ {1, . . . , n} \ l

In words, Sl corresponds to updating the first l parameters

using approximate serial Q-iteration, and Sn is a com-

plete iteration of the approximate serial algorithm. Now we

show that Sn is a contraction, i.e., ‖Sn(θ)− Sn(θ
′)‖

∞
≤

γ ‖θ − θ′‖
∞

, for any θ, θ′. This can be done element-by-

element. By the definition of Sl, the first element is only

updated by S1:

|[Sn(θ)]1 − [Sn(θ
′)]1| = |[S1(θ)]1 − [S1(θ

′)]1|

= |[PTF (θ)]1 − [PTF (θ′)]1|

≤ γ ‖θ − θ′‖
∞

The last step follows from the contraction mapping property

of PTF .

Similarly, the second element is only updated by S2:

|[Sn(θ)]2 − [Sn(θ
′)]2| = |[S2(θ)]2 − [S2(θ

′)]2|

= |[PTF (S1(θ))]2 − [PTF (S1(θ
′))]2|

≤ γ ‖S1(θ)− S1(θ
′)‖

∞

= γmax{|[PTF (θ)]1 − [PTF (θ′)]1| ,

|θ2 − θ′2| , . . . , |θn − θ′n|}

≤ γ ‖θ − θ′‖
∞

where ‖S1(θ)− S1(θ
′)‖

∞
is expressed by direct maximiza-

tion over its elements, and the contraction mapping property

of PTF is used twice.

Continuing in this fashion, we obtain

|[Sn(θ)]l − [Sn(θ
′)]l| ≤ γ ‖θ − θ′‖

∞
for all l, and

thus Sn is a contraction. Therefore, serial fuzzy Q-iteration

converges.

This proof is actually more general, showing that approx-

imate serial Q-iteration converges for any approximation F
and projection P for which PTF is a contraction.

In the same way as exact serial value iteration [3], serial

fuzzy Q-iteration can be shown to converge at least as quickly

as Algorithm 1.

The following bound on the suboptimality of the computed

Q-function follows from [5], but applies only when the

action space of the original problem is discrete (i.e., no

discretization is necessary prior to fuzzy Q-iteration).

Proposition 3: If the original action space is discrete and

minQ
∥∥Q∗ −Q

∥∥
∞

= ε where Q is any fixed point of the

composite mapping FP : Q → Q, then fuzzy Q-iteration

converges to θ∗ such that:

‖Q∗ − F (θ∗)‖
∞
≤

2ε

1− γ
(9)

For example, any Q-function which satisfies Q(x, uj) =∑N

i=1 µi(x)Q(xi, uj) ∀x, j is a fixed point of FP . In

particular, if the optimal Q-function has this form, i.e., is

exactly representable by the chosen fuzzy approximator, the

algorithm will converge to it (since in this case ε = 0).

In this section, we have established the parallel and serial

fuzzy Q-iteration as theoretically sound algorithms for ap-

proximate RL in continuous-state tasks. When the original

action space is discrete, bounds on the derived Q-function

and policy were also shown to hold.

VI. SIMULATION EXAMPLE

As an illustrative example, fuzzy Q-iteration is applied in

simulation to the minimum-time stabilization of a two-link

manipulator.

A. Two-link Manipulator Model

The two-link manipulator, depicted in Figure 1, is de-

scribed by the fourth-order nonlinear model:

M(α)α̈+ C(α, α̇)α̇+G(α) = τ (10)

where α = [α1, α2]
T, τ = [τ1, τ2]

T. The system has two

control inputs, the torques in the two joints, τ1 and τ2, and

four measured outputs – the link angles, α1, α2, and their

angular speeds α̇1, α̇2.

In the sequel, it is assumed that the manipulator operates

in a horizontal plane, leading to G(α) = 0. The mass matrix

M(α) and the Coriolis and centrifugal forces matrix C(α, α̇)
have the following form:

M(α) =

[
P1 + P2 + 2P3 cosα2 P2 + P3 cosα2

P2 + P3 cosα2 P2

]
(11)

C(α, α̇) =

[
b1 − P3α̇2 sinα2 −P3(α̇1 + α̇2) sinα2

P3α̇1 sinα2 b2

]

(12)

2l

m

α2
m

l
α1

2
1

1

motor

2

1

motor

Fig. 1. Schematic drawing of the two-link rigid manipulator.



TABLE I
PHYSICAL PARAMETERS OF THE MANIPULATOR

Symbols and values Meaning

l1 = l2 = 0.4m link lengths
m1 = 1.25 kg, m2 = 0.8 kg link masses

I1 = 0.066 kgm2, I2 = 0.043 kgm2 link inertias
c1 = c2 = 0.2m centers of mass for the links
b1 = 0.08 kg/s, b2 = 0.02 kg/s dampings in the joints
τ1,max = 1.5Nm, τ2,max = 1Nm maximum motor torques
α̇1,max = α̇2,max = 2π rad/s maximum angular velocities

The meaning and values of the physical parameters of the

system are given in Table I. Using these, the rest of the

parameters in (10) can be computed by:

P1 = m1c
2
1 +m2l

2
1 + I1 P2 = m2c

2
2 + I2

P3 = m2l1c2
(13)

B. Setup of the RL Algorithm

The input of the RL controller (the process state) is x =
[αT, α̇T]T, and its output (the command signal) is u = τ .

The discrete time step is set to TS = 0.05 and the discrete-

time dynamics f are obtained by numerical integration of

(10) between consecutive time steps.

The control goal is the stabilization of the system around

α = α̇ = 0 in minimum time, with a tolerance of ±5 ·π/180
rad for the angles, and ±0.1 rad/s for the angular speeds.

The reward function chosen to express this goal is:

ρ(x, u) =





0 if |αp| ≤ 5 · π/180 rad

and |α̇p| ≤ 0.1 rad/s, p = 1, 2

−1 otherwise

(14)

where [α1, α2, α̇1, α̇2]
T = f(x, u) (the next state).

Each torque signal τp, p = 1, 2 takes continuous values in

the corresponding interval [−τp,max, τp,max]. To apply fuzzy

Q-iteration, three discrete values are chosen for each torque:

−τp,max (maximal torque clockwise), 0, and τp,max (maximal

torque counter-clockwise).

Separately for each state component, a normal, complete

triangular fuzzy partition is defined. Such a partition is

completely determined by the core coordinates of the fuzzy

sets. For α̇1 and α̇2, the interval is partitioned into 7 fuzzy

sets, with their cores at {−360,−180,−30, 0, 30, 180, 360} ·
π/180 rad/s. This partition is depicted as an example in

Figure 2. For α1 and α2, 12 sets are used, with their cores

at {−180,−130,−80,−30,−15,−5, 0, 5, 15, 30, 80, 130} ·
π/180 rad. There is no fuzzy set with core π, because this

is identical with the first set, having the core −π (the angles

evolve on a circle manifold [−π, π)).
The fuzzy partition of the state space is then defined as

follows. One fuzzy set is computed for each combination

(i1, . . . , i4) of individual sets for the four state components

α1, α2, α̇1, α̇2. Such a fuzzy set has the following member-

ship function:

µ(x) = µα1,i1(α1)·µα2,i2(α2)·µα̇1,i3(α̇1)·µα̇2,i4(α̇2) (15)

This way of building the state space partition can be thought

of as a conjunction of one-dimensional concepts correspond-

ing to the fuzzy partitions of the individual state variables.

1
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Fig. 2. The triangular fuzzy partition for the state variable α̇1 ∈
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Fig. 3. State, command, and reward signals for RL control (thin black line
– link 1, thick gray line – link 2). The initial state is x0 = [−π,−π, 0, 0]T.

The fuzzy partition computed in this way still satisfies

Assumptions 1 and 2. It contains (12 · 7)2 = 7056 sets.

An approximate optimal action-value function is computed

with serial and parallel fuzzy Q-iteration. The discount factor

is set to γ = 0.98.

C. Results

Figure 3 presents a controlled trajectory starting from the

initial state x0 = [−π,−π, 0, 0]T, together with the corre-

sponding command and reward signals. In order to obtain a

continuous policy from the computed Q-function, the follow-

ing heuristic is used. For any state value, an action is com-

puted by interpolating between the best local actions, using

the membership degrees as weights: h(x) =
∑N

i=1 µi(x)uj∗
i

,

where j∗i is the index of the best local action for the core

state xi, j
∗

i = argmaxj Q̂
∗(xi, uj) = argmaxj θ

∗

i,j .

The controller successfully stabilizes the system in about

2.7 s. Because the control actions were originally continuous

and had to be discretized prior to running the fuzzy Q-

iteration, the bound (9) does not apply.

Figure 4 compares the convergence rate of the two al-
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Fig. 4. Convergence (solid line – fuzzy Q-iteration, dashed line – serial
fuzzy Q-iteration). The vertical axis represents the distance to the optimal
parameter vector.

gorithms. As expected from Section V, serial fuzzy Q-

iteration converges more quickly. It gets within 10−5 of the

optimum in under 200 iterations, as opposed to 300 for the

parallel version. Because the computation time required by

one iteration is nearly the same for the two algorithms, this

translates directly into a decrease of the computation time

required for serial fuzzy Q-iteration.

VII. CONCLUSIONS AND FUTURE WORK

In this work, fuzzy approximation was combined with the

model-based Q-iteration algorithm, and it was shown that

the resulting algorithm is convergent. A serial version of the

algorithm was then proposed that updates parameters more

efficiently, and that converges at least as fast as the original,

parallel version. The algorithms exhibited good performance

on a nonlinear control problem with four continuous states

and two continuous actions.

A first direction for future work is the study of the

consistency of fuzzy Q-iteration, i.e., the asymptotic con-

vergence to the optimal Q-function as the distance between

the cores of the fuzzy sets shrinks to 0. Another important

step is the study of online (model-learning or model-free)

fuzzy RL algorithms that have good learning speed and

low computational complexity. Possibly, results from kernel-

based or interpolation-based RL apply to this case [7], [10].

It would also be interesting to extend our approach such that

it can handle without discretization complex or continuous

action spaces.

Finally, it would be very useful to find a method of adapt-

ing the structure of the fuzzy approximator (e.g., the cores

of the triangular fuzzy sets in the partitions) during learning,

using the current Q-function estimate, in order to minimize

the distance to the optimum. It should be noted however

that changing the approximator structure while learning an

approximate Q-function could lead to convergence problems.
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