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Abstract

The Kalman filter provides an efficient means to estimate the state of a linear process, so

that it minimizes the mean of the squared estimation error. However, for naturally distri-

buted applications, the construction and tuning of a centralized observer may present diffi-

culties. Therefore, we propose the decomposition of a linear process model into a cascade

of simpler subsystems and the use of a Kalman filter to individually estimate the states of

these subsystems. Both a theoretical comparison and simulation examples are presented.

The theoretical results show that the distributed observers, except for special cases, do not

minimize the overall error covariance, and the distributed observer system is therefore sub-

optimal. However, in practice, the performance achieved by the cascaded observers is com-

parable and in certain cases even better than the performance of the centralized observer.

A distributed observer system also leads to increased modularity, reduced complexity, and

lower computational costs.

Key words: State estimation, Kalman filters, cascaded systems

1 Introduction

Many problems in decision making, control, and monitoring require the estimation

of states and possibly uncertain parameters, based on a dynamic system model
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and a sequence of noisy measurements. For such a purpose, dynamic systems are

often modeled in the state-space framework, using a state-transition model, which

describes the evolution of states over time and a measurement model, which relates

the measurement to the states. In state-estimation problems, these models may also

be given in a probabilistic form.

The most well-known and widely used probabilistic estimation methods are the

Kalman filter and its extension to nonlinear systems, the Extended Kalman Filter

(Kalman, 1960; Welch and Bishop, 2002). While the Kalman filter has severe limi-

tations and becomes unstable for highly nonlinear processes, for a linear process, it

provides an efficient means to estimate the states so that it also minimizes the mean

of the squared error. The filter supports the estimation of past, present and future

states, even if a precise model of the system considered is unknown.

Since the publication of the Kalman’s seminal paper (Kalman, 1960), the Kalman

filter has been the subject of extensive research and applications, particularly in the

area of autonomous robots, assisted navigation and sensor data fusion (Lee et al.,

1995; Dorfmüller-Ulhaas, 2003; Caron et al., 2006). A wide variety of Kalman

filters have also been developed from the Kalman’s original formulation: the ex-

tended Kalman filter, the information filter and the family of sigma-point Kalman

filters (van der Merwe and Wan, 2003).

The Kalman filter is also extensively used in combination with fuzzy systems. Since

the Takagi-Sugeno fuzzy model (Wang et al., 2000) is a nonlinear combination of

local linear models, Kalman filters have been used to develop state estimators for

nonlinear systems which can be represented by models in this form (McGinnity

and Irwin, 1997; Simon, 2003; Zhang and Wei, 2003). Fuzzy systems can also be

used to tune parameters in a Kalman filter (Aja-Fernandez et al., 2003).

In multi-agent applications, each agent should be able to observe at least some local

states and make decisions based on these observations. This can be achieved by

using local observers, i.e., each agent implements an individual observer. However,

currently, no results are available on the performance analysis of the local observers

versus a centralized observer. In this paper, we provide such results and study the

conditions under which Kalman-type observers can be used in a cascaded setting.

We propose the decomposition of a system model into cascaded subsystems, and

use separate estimators for the subsystems. The idea behind this type of estimation

is that many systems can be represented as cascaded, observable subsystems, which

are less complex than the original system. Separate observers can be designed for

the individual subsystems. This makes the tuning easier. Moreover, different types

of observers can be combined, depending on the subsystems considered. Most im-

portantly, such a setting is well suited for a cooperative multi-agent system. Each

agent has the task of observing one of the subsystems, possibly using different

methods and relying on its own measurements and the information gathered from
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other agents. In turn, each agent communicates its own results to other agents. If

all the agents in a system use the same estimation method, then such a distributed

observer system can be designed and implemented in a modular manner.

In this paper, Kalman-type filters are designed for cascaded subsystems and the

performance of the cascaded filters is studied. We present a theoretical comparison

of the centralized and cascaded Kalman filter and also compare their performance

both on academic examples and simulated real-world problems. These examples

illustrate the possible application of the proposed distributed setting not only for

large-scale systems, but also a class of nonlinear systems.

The paper is organized as follows. Section 2 presents the proposed cascaded ob-

server setting, Section 3 reviews the Kalman Filter methodology. The distributed

Kalman filters are presented in Section 4, with three illustrative examples in Sec-

tion 5. Section 6 presents the application of the cascaded Kalman filters to a large-

scale system and Section 7 presents the application of the proposed approach to a

nonlinear system. Finally, Section 8 concludes the paper.

2 Cascaded Subsystems

Consider the following observable linear MIMO system:

x(k) = Ax(k − 1) + Bu(k − 1)

y(k) = Cx(k)
(1)

and assume that this system can be partitioned into subsystems. For the ease of

notation, and without a loss of generality, only two subsystems are considered,

x = [x1T x2T ]T and y = [y1T y2T ]T :

x1(k) = A11x1(k − 1) + B1u(k − 1)

y1(k) = C11x1(k)
(2)

and
x2(k) = A22x2(k − 1) +B2u(k − 1) + A21x1(k − 1)

y2(k) = C22x2(k) + C21x1(k)
(3)

so that (2) is observable. Note that, since both systems (1) and (2) are observable,

this also means that the subsystem (3) is observable for given x1(k) and x1(k − 1).
In fact, for subsystem (3), x1(k − 1) is an input.

In general, such a partition of the model does not necessarily exist. The necessary

and sufficient condition for the existence of a partition is that the A and C matrices

can be transformed into block lower-triangular forms. If the partition exists, it might
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not be unique. Consider, for instance, the system

x1(k) = x1(k − 1) + x3(k − 1) y1(k) = x1(k)

x2(k) = x2(k − 1) + x3(k − 1) y2(k) = x2(k)

x3(k) = u(k − 1)

This system is observable, and there are two possible ways to partition it: by using

as the first subsystem

x1(k) = x1(k − 1) + x3(k − 1) y1(k) = x1(k)

x3(k) = u(k − 1)

or, by using as the first subsystem

x2(k) = x2(k − 1) + x3(k − 1) y2(k) = x2(k)

x3(k) = u(k − 1)

both being observable.

Given the above partitioning, state estimators can be designed for the two subsys-

tems separately, with the second observer using the results of the first observer.

Such a structure is depicted in Figure 1.

y1

u

y2

O2

x1^

x2^
O1

Fig. 1. Cascaded observers.

Although the framework is presented for linear, time-invariant systems, the pro-

posed distributed observer approach is applicable also for cascaded general non-

linear systems. In general, the distributed estimation approach is applicable when

the system considered can be represented by a directed acyclic graph structure,

where each node corresponds to an observable subsystem. In many cases, these

subsystems are much simpler than the global system (e.g., some subsystems may

be linear). Therefore, simpler observer can be designed.

Currently, a general analysis of the joint performance (convergence, convergence

speed, optimality) of the cascaded observers and a centralized observer designed

for a cascaded system does not exist. In the remainder of the paper we study the

conditions under which Kalman-type filters can be designed for the two subsystems

of the form (2)–(3), so that the performance of the cascaded filters is the same as

that of a single Kalman filter for system (1).
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3 Kalman Filter

The Kalman filter addresses the problem of estimating the state x ∈ R
n of a linear

discrete-time process:

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)
(4)

with x0 (initial state) and P0 (initial covariance of the states) known or previously

estimated.

The inputs w and v are random variables, representing the process and measurement

noise, respectively. These random variables are assumed to be independent, white

and with normal probability distributions w(k) ∼ N (0, Q) and v(k) ∼ N (0, R).
In general, the process and measurement noise covariance matrices (Q and R),

the state transition matrix A and the measurement matrix C can change at every

time step; however, here, they are assumed constant to simplify the notation. The

objective is to recursively estimate or filter the state xk based on the available mea-

surements.

The Kalman filter works in two steps: prediction:

x̂(k|k − 1) = Ax(k − 1) + Bu(k − 1)

P (k|k − 1) = AP (k − 1)AT +Q
(5)

and update or correction:

x̂(k) = x̂(k|k − 1) +K(k)(y(k)− Cx̂(k|k − 1))

P (k) = (I −K(k)C)P (k|k − 1)(I −K(k)C)T +K(k)RKT (k)
(6)

where x̂(k) (P (k)) refers to the estimate of the states (covariance) obtained by using

all the measurements up to k. The Kalman gain K(k) is computed at each step k

so that it minimizes the error covariance P (k). This is obtained by minimizing the

trace of P (k) at every step:

∂(tr(P (k)))

∂K(k)
= −2CP (k|k − 1) + 2(CP (k|k − 1)CT +R)KT (k) = 0

=⇒ K(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1

(7)

Then, assuming that at step k − 1 the error covariance is P (k − 1), the covariance

and the Kalman gain at step k can be expressed as:

P (k) = (I −K(k)C)(AP (k − 1)AT +Q)(I −K(k)C)T +K(k)RKT (k)

K(k) = (AP (k − 1)AT +Q)CT (C(AP (k − 1)AT +Q)CT +R)−1
(8)
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A generic Kalman filter algorithm is summarized in Algorithm 1.

Algorithm 1 Kalman filter

Input: u, y, Q, R, A, B, C, x0, P0

Output: x̂, P

for k = 1, 2, . . . do

Prediction:

x̂(k|k − 1) = Ax(k − 1) + Bu(k − 1) {predict states}

P (k|k − 1) = AP (k − 1)AT +Q {predict covariance}

Update:

K(k) = P (k|k−1)CT (CP (k|k−1)CT +R)−1 {compute Kalman gain}

x̂(k) = x̂(k|k − 1) +K(k)(y(k)− Cx̂(k|k − 1)) {correct states}

P (k) = (I−K(k)C)P (k|k−1)(I−K(k)C)T +K(k)RKT (k) {correct

covariance}

end for

4 Distributed Kalman Filters

Consider the linear system (4), corrupted with zero-mean Gaussian noise and as-

sume that the system can be written in the following form:




x1(k)

x2(k)


 =



A11 0

A21 A22







x1(k − 1)

x2(k − 1)


+



B1

B2


 u(k − 1) +




w1(k − 1)

w2(k − 1)







y1(k)

y2(k)


 =



C11 0

C21 C22







x1(k)

x2(k)


+




v1(k)

v2(k)




(9)

i.e., as two cascaded subsystems. Our goal is to design separate observers for

the two subsystems, so that the cascaded observers have the same performance

(error covariance) as the Kalman filter designed for the joint system. Note that

for the system to be cascaded without losing available information (e.g. cross-

covariances of states belonging to different subsystems), it is also necessary that the

covariance matrices are block-diagonal, i.e., Q =



Q1 0

0 Q2


 and R =



R1 0

0 R2


.

While this condition appears restrictive, in practice one rarely knows the true cross-

covariances and it is often assumed that the covariance matrix is diagonal (Hue

et al., 2002; Aja-Fernandez et al., 2003).
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Since our goal is to design separate observers for the two subsystems, but still

minimize the error covariance, it is logical to use separate Kalman filters, one for

each subsystem. The first subsystem can be expressed as:

x1(k) = A11x1(k − 1) + B1u(k − 1) + w1(k − 1)

y1(k) = C11x1(k) + v1(k)
(10)

which is a linear system, with w1(k) ∼ N (0, Q1) and v1(k) ∼ N (0, R1) and the

deterministic input u. In order to minimize the error covariance for this subsystem,

the Kalman filter presented in Section 3 is used. Then, for the first subsystem (with

the deterministic input u), the covariance and the gain at each time step can be

written as:

P1(k) = (I −K1(k)C11)(A11P1(k − 1)AT
11
+Q1)(I −K1(k)C11)

T +K1(k)R1K
T
1
(k)

K1(k) = (A11P1(k − 1)AT
11
+Q1)C

T
11
(C11(A11P1(k − 1)AT

11
+Q1)C

T
11
+R1)

−1

(11)

The second subsystem can be expressed as:

x2(k) = A22x2(k − 1) + B2u(k − 1) + A21x1(k − 1) + w1(k − 1)

y2(k) = C22x2(k) + C21x1(k) + v2(k)
(12)

with w2(k) ∼ N (0, Q2) and v2(k) ∼ N (0, R2), the deterministic input u and the

stochastic variable x1. In a multi-agent setting, agents may communicate only the

state estimate, and not the covariance. In such a case, x1 can also be considered as

a deterministic input. Thus, two cases can be distinguished.

Case 1: Use x1 as another deterministic input besides u for the second subsystem.

This will be the case in a multi-agent system, if the agent entirely trusts the estimate

of another agent, considering it correct and not taking into account possible errors,

or a distribution of the estimate. In this case, the Kalman filter can be used also for

this subsystem, and the expression for covariance the and the gain are:

P2(k) = (I −K2(k)C22)(A22P2(k − 1)AT
22
+Q2)(I −K2(k)C22)

T +K2(k)R2K
T
2
(k)

K2(k) = (A22P2(k − 1)AT
22
+Q2)C

T
22
(C22(A22P2(k − 1)AT

22
+Q2)C

T
22
+R2)

−1

(13)

However, in this case, the computed error covariance is not equal to the true error

covariance for the second subsystem.

Case 2: If the covariance of the estimates is also available, then x1 can be consid-

ered as a stochastic input, with computed covariance P1(k), for the second subsys-

tem. For this case, a Kalman-type gain can be computed by minimizing the trace

of the error covariance for the second subsystem, assuming that x1 is a stochastic
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variable with a known covariance matrix P1:

0 = −2C22(A22P2(k − 1)AT
22
+ A21P1(k − 1)AT

21
+Q2)+

2(C22(A22P2(k − 1)AT
22
+ A21P1(k − 1)AT

21
+Q22)C

T
22
+R2)K2(k)

T+

2C21P1(k − 1)CT
21
KT

2
(k)

K2(k) = (C22(A22P2(k − 1)AT
22
+ A21P1(k − 1)AT

21
+Q2))

T · ((C22(A22P2(k − 1)AT
22
+

A21P1(k − 1)AT
21
+Q22)C

T
22
+R2 + C21P1(k − 1)CT

21
)−1)T

(14)

The solution of the above equation leads to the following expression of P2(k):

P2(k) = (I −K2(k)C22)(A22P2(k − 1)AT
22
+ A21P1(k − 1)AT

21
+

Q2)(I −K2(k)C22)
T +K2(k)R2K

T
2
(k) +K2(k)C21P1(k − 1)(K2(k)C21)

T

(15)

and P2(k) is the true covariance obtained for the states of the second subsystem.

In both cases, the observer gain and the covariance matrix for the whole system are

expressed as:

K =



K1 0

0 K2


 P =



P1 0

0 P2


 (16)

However, only in the second case (if x1 is considered a stochastic input), the co-

variance matrix for the joint system equals the true covariance obtained by the

observers.

Proposition 1: The cascaded setting achieves the same error covariance as the cen-

tralized Kalman filter if and only if the subsystems are independent, i.e., in (9),

A21 = 0, C21 = 0, R12 = 0 and Q12 = 0.

Proof: Assume that the joint form of the cascaded Kalman filters is equivalent to

that of the centralized Kalman filter. If this assumption holds, then it is also possible

to decompose the error system and the Kalman gain obtained for the joint system.

In order to study this possibility, let

P (k|k − 1) =



P11 P12

P21 P22


 (17)

Then,

CP (k|k − 1)CT +R =

=




C11P11C
T
11
+R11 C11P11C

T
21
+ C11P12C

T
22
+R12

C21P11C
T
11
+ C22P21C

T
11
+R21 C21(P11C

T
21
+ P12C

T
22
) + C22(P21C

T
21
+ P22C

T
22
) +R22
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The conditions for the observer to be partitioned without losing optimality, are:

P11C
T
11

= K1(k)(C11P11C
T
11
+R11)

P21C
T
21
+ P22C

T
22

= K2(k)(C21(P11C
T
21
+ P12C

T
22
) + C22(P21C

T
21
+ P22C

T
22
) +R22)

P11C
T
21
+ P12C

T
22

= K1(k)(C11P11C
T
21
+ C11P12C

T
22
+R12)

P21C
T
11

= K2(k)(C11P11C
T
21
+ C11P12C

T
22
+R12)

T

(18)

Moreover,

P (k|k − 1) =



P11 P12

P T
12

P22




=




A11P11(k − 1)AT
11
+Q11 A11P11(k − 1)AT

21
+ A11P12(k − 1)AT

22
+Q12


A11P11(k − 1)AT

21
+

+A11P12(k − 1)AT
22
+Q12)

T







A21(P11(k − 1)AT
21
+ P12(k − 1)AT

22
)

+A22(P21(k − 1)AT
21
+ P22(k − 1)AT

22
) +Q22







(19)

and it is also required that P21 = P T
12

= 0 (due to the form of the covariance matrix

obtained in (16)). Under these conditions, the requirements expressed by (18) will

only be fulfilled if the two subsystems are independent, i.e. A21 = 0, C21 = 0,

R12 = 0 and Q12 = 0. Only in this case, the cross-covariances P12(k|k − 1) and

P12(k) and their transpose will also be zero. ✷

Since the distributed filters obtain the same performance as the Kalman filter if and

only if the subsystems are independent, in general, the distributed observers will not

minimize the joint covariance. However, in practice, the performance of the cen-

tralized and distributed observers is comparable, as demonstrated in the following

sections.

Although the framework was presented for linear time-invariant Gaussian systems,

the proposed distributed filtering approach is also applicable also the system con-

sidered can be cascaded so that the subsystems are linear time-varying. Therefore,

the deterministic version of the proposed cascaded Kalman filter can be applied

even for a class of nonlinear systems, where the individual subsystems are linear

time-varying. When only two subsystems are considered, the nonlinear system has

to be bilinear, so that the states present in the bilinear terms are contained in dif-

ferent subsystems. A real-world application example to illustrate this feature, is

presented in Section 8.
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5 Examples

In the previous sections, the basic form of the Kalman filter and the proposed dis-

tributed version were given. Here, three examples are presented to compare the

performance of the distributed and centralized observers, both in open-loop and

closed-loop control.

1 Distributed Kalman Filter in Open-Loop

Consider the following, randomly generated discrete-time system:

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)

with

A =




−0.2034 0 0

−0.8520 −0.3182 −1.2951

0.0218 0.5776 0.9522




B =




1

0

0




C =



1 0 0

0 1 0




w(k) ∼ N (0, Q) v(k) ∼ N (0, R)

Q =




0.6818 0.2244 0.0577

0.2244 0.2796 0.1039

0.0577 0.1039 0.2263




R =



0.1679 0.0616

0.0616 0.1204


 (20)

It can be easily seen that the deterministic part of the system can be cascaded. Two

cases are distinguished:

a) Approximate noise covariance: Since the cascaded filters do not take into ac-

count the cross-covariance between the subsystems, in order to ensure the exact

same conditions for both types of filters, consider for both the Kalman filter and

the cascaded filters the following approximate noise covariances:

Q̄ =




0.6818 0 0

0 0.2796 0.1039

0 0.1039 0.2263




R̄ =



0.1679 0

0 0.1204


 (21)

The input signal is presented in Figure 2. Using the centralized Kalman filter,
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after 300 steps, we obtain:

P =




0.1349 0.0004 0.0015

0.0004 0.1091 −0.0438

0.0015 −0.0438 0.4804




K =




0.8036 0.0036

0.0026 0.9060

0.0090 −0.3640




while for the cascaded subsystems:

Pc =




0.1350 0 0

0 0.1078 −0.0461

0 −0.0461 0.4646




Kc =




0.8037 0

0 0.8982

0 −0.3921




if x1 is considered to be a deterministic input (Case 1) and

Pc =




0.1350 0 0

0 0.1091 −0.0438

0 −0.0438 0.4812




Kc =




0.8037 0

0 0.9059

0 −0.3921




if x1 is considered to be a stochastic input (Case 2).

0 50 100 150 200 250 300
−5

0

5

10

Discrete time steps

u

Fig. 2. Input used for the distributed filters in open-loop.

Histograms of the residuals obtained for x3 (the state which is not measured)

with the centralized Kalman filter, and for both cases of the distributed filters are

presented in Figure 3. The statistics of the distributions of the residuals for all

states and observers are given in Table 1. It can be seen that the performance

of the cascaded observers is comparable with that obtained with the centralized

observer.
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Table 1

Statistics of the residuals when the centralized and distributed observers use the same co-

variance matrix.

State Method Mean Standard deviation

x1 centralized −0.0032 0.1890

cascaded −0.0033 0.1889

x2 centralized −0.0105 0.1246

cascaded deterministic −0.0103 0.1262

cascaded stochastic −0.0113 0.1318

x3 centralized 0.0420 0.4022

cascaded deterministic 0.0397 0.4035

cascaded stochastic 0.0420 0.4024

b) True noise covariance: The Kalman filter uses the true noise covariances (20),

while the cascaded filters neglect the cross covariance between the subsystems

and consider only (21). The same input is used as in the previous case. The

centralized filter performs slightly better than the cascaded one.

The histogram of the residuals obtained for x3 is presented in Figure 4. The

statistics of the distributions of the residuals for all states and observers are given

in Table 2.

For this case, the final covariance and the Kalman gain obtained after 300 steps

by the centralized Kalman filter are

P =




0.1350 0.0496 0.0098

0.0496 0.1074 −0.0359

0.0098 −0.0359 0.4214




K =




0.8036 0.0002

−0.0399 0.9126

0.2064 −0.4036




while those obtained by the cascaded observers are the same as in item 1.

The statistics of the residuals confirm that the cascaded filters are suboptimal. How-

ever, the difference between the residuals is minimal, even if x1 obtained from the

first subsystem is considered as a deterministic input, and the computed covariance

is not the correct one.
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(a) Residuals for x3 with the centralized

Kalman filter.
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(b) Residuals for x3 with the cascaded

Kalman filter and deterministic input

(case 1).
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(c) Residuals for x3 with the cascaded

Kalman filter and stochastic input (case 2).

Fig. 3. Results when the centralized and cascaded filters use the same covariance matrix.

2 Distributed Kalman Filter in Closed-Loop

In this section, two examples are presented to compare the performance of the

distributed and centralized observers, in closed-loop control. For this purpose, a

state-feedback control is designed based on the system model. However, not all

the states are measured, and the control input is computed based on the estimated

states. Such a setting is depicted in Figure 5.

Example 2: Consider the following, randomly generated discrete-time system:

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)
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Table 2

Statistics of residuals with the cascaded Kalman filter disregarding the cross-covariance.

State Method Mean Standard deviation

x1 centralized −0.0077 0.2058

cascaded −0.0076 0.2058

x2 centralized −0.0074 0.1406

deterministic −0.0106 0.1444

stochastic −0.0106 0.1522

x3 centralized −0.0070 0.3757

deterministic 0.0072 0.4393

stochastic 0.0077 0.4365

A =




1.1274 0 0

0.0639 0.9091 0.0391

0.1381 −0.2306 1.0020




B =




0.1

0

0




C =



1 0 0

0 1 0




w(k) ∼ N (0, Q) v(k) ∼ N (0, R)

Q =




0.0097 0.0026 0.0032

0.0026 0.0066 0.0002

0.0032 0.0002 0.0128




R =



0.0035 0.0078

0.0078 0.0118




for which a state feedback control with constant gain L = [9.3853 16.2397 3.2858]
has been computed.

The deterministic part of the system is decomposed. The cascaded filters do not

take into account the noise covariances between the subsystems. Now the control

is applied for four different cases:

(1) the states are known, and the controller is applied directly;

(2) the first two states are measured, and the control input is computed based on

the estimate given by a centralized Kalman filter;

(3) the first two states are measured, and the control input is computed based on

the estimate given by a cascaded Kalman-type filter, with the second subsys-

tem considering the estimates of the first subsystem as stochastic inputs;

(4) the first two states are measured, and the control is computed based on the

estimate given by a cascaded Kalman-type filter, with the second subsystem

14



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

#
 s

a
m

p
le

s
x

3

(a) Residuals for x3 with centralized Kalman

filter.
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(b) Residuals for x3 with cascaded

Kalman filter and deterministic input

(Case 1).
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(c) Residuals for x3 with cascaded

Kalman filter and stochastic input

(Case 2).

Fig. 4. Results with discarded cross-covariances.
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Fig. 5. Cascaded observers in closed-loop.

considering the estimates of the first subsystem as deterministic inputs.

The results obtained can be seen in Figure 6. The estimation error for the first two

states, which are measured, is very small. However, for the third state the estimate

of the centralized observers converges more slowly than the estimate of the cas-

caded one.
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Fig. 6. Example 2 state estimates in closed-loop with different observers (state feedback

without observer, Kalman, stochastic cascaded, deterministic cascaded).

Example 3: Consider the following, randomly generated discrete-time system:

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1)

y(k) = Cx(k) + v(k)

A =




1.1137 0 0

0.0087 1.0829 0.0117

0.0170 −0.0009 1.0909




B =




0.1

0

0




C =



1 0 0

0 1 0




for which a state feedback control with constant gain L = [5.1743 298.9764 −
106.2475] has been computed. The state and measurement noises have the same

covariance as in the previous example. Note that the closed-loop system with the

centralized Kalman filter becomes unstable.

The estimates of the states using the distributed observers can be seen in Figure

7. While the estimate is noisy, and this noise is also reflected in the control law,

the system does not become unstable. A possible explanation of this result is the

following: though the Kalman filter is optimal, its convergence is not guaranteed,
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in particular when it is used in closed loop with a linear state feedback controller.

This is why the systems may become unstable.
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Fig. 7. Example 3 state estimates in closed-loop with different observers (state feedback

without observer, stochastic cascaded, deterministic cascaded). The system using the cen-

tralized Kalman filter is unstable in this case, and the results are not shown.

Based on theoretical considerations, the situation when the centralized system is

stable and the distributed one is unstable is also possible. However, simulations

indicate that in most cases, if the cascaded system becomes unstable, then also

the centralized does. To quantify the occurrences, batches of simulations were run,

using randomly generated system matrices. Two cases were studied:

(1) the Kalman filter uses the full covariance matrix: the centralized filter failed

in 2327 cases out of 3000 cases, while the cascaded only in 69. Both filters

failed simultaneously in 69 cases.

(2) exactly the same covariance matrices are used: the failure rate for the central-

ized Kalman filter is 882/3000, versus 78/3000 for the cascaded filters, and

both fail simultaneously in 77 cases, which means than in only one case from

3000 the centralized Kalman filter is stable while the cascaded is not.

The system matrices were independently generated in each case. It can be seen that
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the centralized Kalman filter becomes unstable more often than the cascaded filter.

A possible explanation is that the error for the states in the two subsystems is not

the same for the centralized and cascaded case. For instance, a large overshoot of

the error for a state from the second subsystem does not influence the states of the

first subsystem in the cascaded setting. However, this can also be a shortcoming

in cases, when the second subsystem could be used to dampen the error of the

first subsystem. This is why, in one trial the centralized system is stable while the

cascaded is not.

6 Cascaded Kalman Filtering for a Water Treatment Plant

This example demonstrates the application of the proposed Kalman filter approach

to a linear large-scale system. Since the process consists of several treatment stages,

separate observer design is convenient in this application.

Drinking water is usually collected from a natural water source, such as a river

or a lake and undergoes several treatment stages to remove chemicals and organic

materials.

A simple model of a treatment plant describes the effect of different chemical

dosages and reactions through the so-called M and P numbers (concentrations),

related to the pH. These numbers need to be estimated through 12 treatment steps:

coagulation, mixing, HCl dosage, rapid sand filtration, transportation, ozonization,

second HCl dosage, activated carbon filtration, NaOH dosage, slow sand filtration

and storage before distribution. In each treatment step, the dynamic model can be

expressed as:

Ṁ =
F

V
(Mprev −M) +

F

V
fM(rin)−RM(M,P, r, τ)

Ṗ =
F

V
(Pprev − P ) +

F

V
fP (rin)−RP (M,P, r, τ)

ṙ =
F

V
(rin − r)−Rr(M,P, r, τ)

where F is the flow, V is the water volume in the corresponding process step,

r is the reactant, RM , RP and Rr are the reaction kinetics in the treatment step,

dependent of the temperature τ , fM and fP are the instantaneous changes in M and

P due to the dosage of chemicals and Mprev and Pprev are the M and P numbers

from the previous treatment step.

In this paper, we consider fM and fP are linear in rin, and RM , RP and Rr as known

linear combinations of M , P and r. The parameters of these functions also change

in each treatment step, depending on the reaction type. The measurements are linear
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combinations of M , P and r, different for each treatment step. For estimation pur-

poses, the model was first discretized with the Euler method, using a sample period

of T = 0.01 s, to preserve the accuracy of the simulation. The model was simulated

using randomly generated reactant data, and both the states and the measurements

were corrupted by zero-mean, Gaussian noises. We compare the estimates of the

centralized Kalman filter and a cascaded deterministic Kalman filter (case 1). The

total number of states is 36 (3 in each stage), and in each stage a different linear

combination of the states is measured.

The histogram of the residuals for the 12th step for the state M and two types of

filters are presented in Figure 8, a section of the true and estimated trajectories

are given in Figure 9, while the means and standard deviations of all the states,

computed for 1000 time steps, are given in Table 3. Based on the data presented,

one can easily see, that though the standard deviations obtained by the cascaded

filter are indeed slightly larger than those obtained by the centralized Kalman filter,

the difference is minimal.
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Fig. 8. Histograms of the residuals of M using centralized and cascaded Kalman filters.
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Fig. 9. Section of the trajectory of M , estimated by centralized and cascaded Kalman filters.
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Table 3

Statistics of residuals of the states.

State Mean (centralized) Std (centralized) Mean (distributed) Std (distributed)

M -0.0047 0.0482 -0.0060 0.0483

P 0.0056 0.0506 0.0065 0.0509

r -0.0041 0.0407 -0.0051 0.0408

7 Cascaded Kalman Filtering for Estimating Overflow Losses in a Hopper

Dredger

Prior to stating the estimation problem, the principle of the dredging process is

briefly explained. The dredger is a large ship using a drag head to excavate soil

from the sea bottom. A mixture of soil and water is transported through a pipe to

the hopper, which is a large storage tank inside the ship (see Figure 10).

Pump

Overflow pipe

Drag head

Hopper

Fig. 10. Schematic drawing of a hopper dredger.

The soil gradually settles at the bottom of the hopper, while excessive water (in

fact low-density mixture) is discharged through an overflow pipe whose level can

be adjusted (see Figure 11). As the height of the settled sand bed rises, so does the

concentration of the overflow mixture and eventually the losses become so high

that it is no longer economical to continue dredging. The ship then sails back to

deliver the load. After the sand is discharged, the ship sails again to the dredging

location and the whole cycle repeats.

The efficiency of the sedimentation process heavily depends on the type of soil

and is influenced by the flow-rate and density of the incoming mixture and the

manner the overflow pipe is controlled. An important factor in the optimization of
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Fig. 11. The sedimentation process in the hopper.

the dredging performance is the minimization of the overflow losses.

Using nonlinear volume and mass balance equations, the losses can be estimated.

The discrete volume and mass balance equations can be written as :

Vt,k = Vt,k−1 + T (Qi,k−1 −Qo,k−1) (22)

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 −Qo,k−1ρo,k−1) (23)

where Vt and mt are the total volume and mass of the mixture in the tank, Qi is the

inflow rate, ρi is the density of the incoming mixture, Qo and ρo are the flow-rate

and the density of overflowing mixture and T = 5 s is the sampling period. To

estimate Qo and ρo, the state equations are augmented with a random-walk model

for Qo and ρo:

Qo,k = Qo,k−1 + ǫQ,k−1 (24)

ρo,k = ρo,k−1 + ǫρ,k−1 (25)

The augmented state, input and output vectors are:

x =




Vt

mt

Qo

ρo




, u =



Qi

ρi


 , y =



Vt

mt




The inputs Qi and ρi and the outputs Vt and mt are measured, Qo and ρo need to

be estimated. The corrupting noises are considered zero-mean Gaussians (ǫxi,k ∼
N (0, νxi)), and their standard deviations are determined experimentally.

The system (22)–(25) is nonlinear, therefore a centralized Kalman filter cannot be

used, and for an efficient estimation of Qo and ρo, a particle filter (Doucet et al.,

2000; Chen et al., 2005) is needed. However, the model can be decomposed into

two subsystems, and observers may be designed separately for the subsystems. The
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first observer uses the model

Vt,k = Vt,k−1 + T (Qi,k−1 −Qo,k−1) + ǫV,k−1

Qo,k = Qo,k−1 + ǫQ,k−1

(26)

where Vt is the measured output. The second observer uses the model

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 −Qo,k−1ρo,k−1) + ǫm,k−1

ρo,k = ρo,k−1 + ǫρ,k−1

(27)

where mt is the measured output and Qo was obtained by the first observer. The in-

dividual subsystems are linear time-varying and assumed to be corrupted by Gaus-

sian noise, and therefore, cascaded Kalman filters can be used.

To test the observer, the data were generated using the first-principle sedimentation

model described by Babuška et al. (2006), i.e., not the model used by the cascaded

Kalman filter. The results are presented in Figure 12. As can be seen, the cascaded

Kalman filter obtains a good estimate of both Qo and ρo, even better than the results

obtained by the particle filter, which requires extensive tuning and a considerable

computational power. However, when the data is measured, and the noise is no

longer Gaussian, a particle filter is beneficial.
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Fig. 12. Estimates of the overflow losses with different observers (particle filter, distributed

Kalman).

8 Conclusions

We have proposed a distributed setting for state estimation. In many real-life appli-

cations, a complex process model can be decomposed into simpler subsystems, and

observers can be designed for these individual subsystems. This partitioning of a

process and observer leads to increased modularity and reduced complexity of the

estimation problem, with reduced computational costs and easier tuning.
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For cascaded systems, distributed, Kalman-like filters can be designed. The ob-

servers are optimal for the individual subsystems, and the error system will con-

verge to a zero-mean Gaussian. However, the overall filter will not necessarily

be optimal. The theoretical results show that the distributed Kalman filters can be

jointly optimal, if and only if the subsystems are independent. However, based on

several simulation examples, we conclude that the performance of the cascaded

Kalman filter is comparable to that of the centralized Kalman filter. Moreover, the

simulations show that for certain cases, especially in closed-loop, the cascaded ob-

servers perform better than the Kalman filter. Two application examples were pre-

sented to illustrate the distributed Kalman filters in a high dimensional and even

nonlinear system. The results were comparable with those obtained by the central-

ized observer, while obtaining increased modularity.

In our future research, we will investigate the conditions under which such a de-

composition of the process and the estimation problem is possible for other types

of observers while maintaining the performance (convergence, rate of convergence)

of the centralized one.
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Babuška, R., Lendek, Z., Braaksma, J., de Keizer, C., 2006. Particle filtering for

on-line estimation of overflow losses in a hopper dredger. In: American Control

Conference. pp. 5751–5756.

Caron, F., Duflos, E., Pomorski, D., Vanheeghe, P., 2006. GPS/IMU data fusion us-

ing multisensor Kalman filtering: introduction of contextual aspects. Information

Fusion 7, 221–230.

Chen, T., Morris, J., Martin, E., 2005. Particle filters for state and parameter esti-

mation in batch processes. Journal of Process Control 15, 665–673.

Dorfmüller-Ulhaas, K., May 2003. Robust optical user motion tracking using a

Kalman filter. Tech. Rep. 2003-6, Klaus Dorfmüller-Ulhaas, Augsburg Univer-

sity, mm-werkstatt.informatik.uni-augsburg.de/files/publications/38/squint2.pdf.

23



Doucet, A., Godsill, S., Andrieu, C., 2000. On sequential Monte Carlo sampling

methods for Bayesian filtering. Statistics and Computing 10, 197–208.

Hue, C., Cadre, J. L., Perez, P., 2002. Tracking multiple objects with particle filter-

ing. IEEE Transactions on Aerospace and Electronic Systems 38 (3), 791–812.

Kalman, R. E., 1960. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering 82, 35–45.

Lee, J. W., Kim, M. S., Kweon, I. S., 1995. A Kalman filter based visual tracking

algorithm for an object moving in 3D. In: IEEE/RSJ International Conference on

Intelligent Robots and Systems 95. Vol. 1. pp. 342–347.

McGinnity, S., Irwin, G., 1997. Nonlinear Kalman filtering using fuzzy local linear

models. In: Proceedings of the 1997 American Control Conference. Denver, CO,

pp. 3299–3300.

Simon, D., 2003. Kalman filtering for fuzzy discrete time dynamic systems. Ap-

plied Soft Computing 3 (3), 191–207.

van der Merwe, R., Wan, E., June 2003. Sigma-point Kalman filters for proba-

bilistic inference in dynamic state-space models. In: Workshop on Advances in

Machine Learning. Montreal.

Wang, H., Li, J., Niemann, D., Tanaka, K., 2000. T-S fuzzy model with linear rule

consequence and PDC controller: a universal framework for nonlinear control

systems. In: The Ninth IEEE International Conference on Fuzzy Systems, 2000.

FUZZ IEEE 2000. Vol. 2. pp. 549–554.

Welch, G., Bishop, G., 2002. An introduction to the Kalman filter. Tech. Rep. TR

95-041, Department of Computer Science, University of North Carolina, NC,

USA.

Zhang, S.-T., Wei, X.-Y., 2003. Fuzzy adaptive Kalman filtering for DR/GPS.

In: International Conference on Machine Learning and Cybernetics. Vol. 5. pp.

2634–2637.

24


