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Comparison of a Linear and a Hybrid

Adaptive Cruise Controller for a SMART

Daniele Corona and Bart De Schutter

Abstract— An adaptive cruise controller (ACC) is a device
used in modern automotive applications that aims to achieve
the tracking of a leading vehicle, allowing safety, comfort
driving and overall improvement of traffic streams. Through
appropriate modeling and design it permits also to address
other tasks such as energy saving, environmental protection
and reduction of the mechanical stress. For a type of small
car, a SMART, we propose the design of an ACC using control
methods based on tuned proportional-integral (PI) action and
on model predictive control (MPC), developed for linear and
piecewise affine (PWA) systems. We implement these controllers
and compare the main properties and strong/weak points of
each method, collecting the comparison keys in a table. The
trade-off between complexity and accuracy of the solutions is
also discussed.

I. INTRODUCTION

An adaptive cruise controller (ACC) is a modern device

embedded in several vehicles branches that aim to increase

the road safety and passenger comfort. Some authors [1]

claim that it can aid in maximizing the throughput of a

road section, thus improving the traffic flow. It can also

contribute to less constraining, yet not less relevant, issues

such as fuel consumption (related to economy and pollution)

and reduction of the long-term mechanical stress. A natural

way to meet these expected behaviors is to chose a control

strategy based on constrained optimization processes like

MPC schemes [2].

The purpose of this paper is to present some of the results

we have obtained within a wide comparison study [3] of

possible control methods for an ACC of a 6 gears, 37 kW

gasoline SMART. This study considers the ACC design as a

benchmark problem for existing MPC-PWA methods. The

engine torque, the air drag nonlinearities and the event-

driven gearbox, as well as the presence of design constraints,

make the task suitable for the MPC framework. In this paper

we compare three different representative control schemes.

The first exploits the hybrid behavior of the gearbox and a

PWA approximation [4] of the air drag, leading to a control

problem with mixed integer control variables [5]. We propose

a PWA representation of the system and of its corresponding

MLD (mixed logical dynamics [5]) model, which allows to

transform the MPC into a sequence of online MILPs (mixed

integer linear programs).

The second method is MPC-based as well, but it uses

a less accurate prediction model, aiming to trade off the

accuracy of the solution for a faster controller. In particular
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it approximates the nonlinear air drag force with affine gain

scheduled modes and the engine traction force is taken to

be a constant averaged value over all gears. Moreover we

give the explicit solution over the design parameters and we

calculate offline a polyhedral partition as in [6].

The third method designs the ACC as it is currently

done in industry [7]. It is a PI (proportional integral) based

approach, where the coefficients are Gaussian-like functions

of the current tracking error [7]. The three parameters of

the Gaussian functions are computed offline minimizing the

same performance index as for the first two methods under

a standard nominal scenario.

The paper is organized as follows: we first describe,

in Section II the simulation model, involving the engine

and friction nonlinearities and the event-driven gearbox, the

specific constraints and the control goals. Then, in Sec-

tion III, we provide a short description of three different

control methods. The target is to highlight the major ad-

vantages/disadvantages of each control law. To this purpose

we perform, in Section IV, numerical simulations under a

specific nominal scenario and establish a comparison table

that collects the results on some key aspects of the control

design, of the complexity and of the quality of the solution.

II. MODEL AND PROBLEM DESCRIPTION

A. Set-up

The ACC controls the traction/brake dynamics, aiming to

keep a minimal separation and a speed adaptation with a

preceding vehicle. Two relevant realizations of the device

can be distinguished. One is for the platooning [7], [8], with

large use in freight road transportation, and the other is a

stand-alone version, mainly oriented as a private usage of

the vehicle. In the first case a communication protocol is

established among the vehicles and the local controllers are

aware of the operating conditions of the others. In the second

case the vehicle is autonomous and, based on measurements

taken or received from the environment, it will take its own

decision. This study is focused on the first scenario, where

one car (a SMART) is aiming to track another vehicle, as in

Figure 1.

B. Model

In the case we consider (see also Figure 1), it is allowed

to restrict the attention to the rear vehicle, modeled by the

following differential equation:

ms̈(t) + (cṡ2(t) + µmg)sgn(ṡ(t)) =
b(j, ṡ)u(t)−mg sin(ξ(s)),

(1)
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Fig. 1. ACC set-up.

TABLE I

Definitions and values of the entries of (1).

Parameter Description Value

m Mass of vehicle 800 kg
R Average wheel radius 0.28 m
c Viscous coefficient 0.5 kg/m
µ Coulomb friction coeff. (dry asphalt) 0.01

g Gravity acceleration 9.8 m/s2

ξ Slope of the road 0 rad
wmin Minimum engine rotational speed 105 rad/s
wmax Maximum engine rotational speed 630 rad/s

where s(t) is the position of the rear vehicle at time t and

b(j, ṡ) is the traction force coefficient of the normalized

throttle/brake input u(t), ξ is the slope of the road; the terms

on the left-hand side indicate the inertia, the air drag and the

road-tire Coulomb friction. The numerical values of m, c,
µ, ξ and g are listed in Table I. The value of the function

sgn(·) is equal to 1, 0 or −1 when its argument is positive,

zero or negative respectively. The traction force coefficient

b(j, ṡ) is the engine torque curve, in the rotational velocity

range w ∈ [wmin, wmax], transmitted through the gearbox

and acting in the contact area between road and tires. More

specifically we have b(j, ṡ) = Te(w)p(j)
R

with ṡ = wR
p(j) ,

where Te(w) is the engine torque, R is the average radius

of the wheels, p(j)s are the gear ratios, given in Table II.

From [9] the engine torque is constant (Te,max = 80Nm)

for w ∈ [200, 480] rad/s. In Table II we give the values of

p(j) and b(j) in this specific range. The function b(j, ṡ) in

the full range of velocity is depicted in Figure 2.

Braking will be simulated by applying a negative throttle.

Due to friction behavior in motion inversion [10], model (1)

is valid as long as the ground speed ṡ is different from
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Fig. 2. Traction force per gear transmitted to the wheel at the
maximum throttle.

TABLE II

Values of the transmission rate, the maximum traction force and

the switching condition per gear.

Gear j p(j) b(j) (N ) vL (m/s) vH (m/s)

I 14.203 4057 0 9.46
II 10.310 2945 5.43 13.04
III 7.407 2116 7.56 18.15
IV 5.625 1607 9.96 23.90
V 4.083 1166 13.70 32.93
VI 2.933 838 19.10 45.84

TABLE III

Values of the parameters specifying the constraints.

Parameter Description Numerical value Unit

x1,min Minimum position 0 m
x1,max Maximum position 3000 m
x2,min Minimum velocity 2.0 m/s
x2,max Maximum velocity 40.0 m/s
dsafe Security pos. overshoot 10.0 m
aacc Comfort acceleration 2.5 m/s2

adec Comfort deceleration 2.0 m/s2

umax Maximum throttle/brake 1 —

zero, hence we impose ṡ to be above a nonzero minimum

velocity (3).

A state space representation of system (1) is:

ẋ = f(x) +B(j, x)u, (2)

where x , [s, ṡ]T = [x1, x2]
T, and

f(x) =

[

x2

− c
m
x2
2 − µg

]

B(j, x) =

[

0

− b(j,x2)
m

]

.

This model is nonlinear because of the quadratic term of the

friction and of the traction force, and hybrid, because of the

gears.

C. Constraints

Safety, comfort and economy or environmental issues, as

well as limitations on the model, result in defining operating

constraints. We consider constraints on the state x, on the

control input u, and on the gear j. Numerical values for

the parameters appearing in these constraints are listed in

Table III.

(i) State constraints: given η , [η1, η2]
T the reference

position and velocity of the reference, we should have,

x2,min ≤ x2(t) ≤ x2,max

x1(t) ≤ η1(t) + dsafe ∀t ≥ 0
adec ≤ ẋ2(t) ≤ aacc.

(3)

The above equations express, respectively, the operational

range of the speed, the collision avoidance with a given

tolerance dsafe (Figure 1), and bounds on the acceleration.

Without loss of generality we shall consider an additional

non-operational constraint on the position, x1,min ≤ x1(t) ≤
x1,max, for all t ≥ 0, which is necessary to implement the

first control method.

(ii) Input constraints: |u(t)| ≤ umax, for all t ≥ 0.



(iii) Gear shift constraints: given j ∈ {1, . . . , 6} the gear

shift position should satisfy, for all t ≥ 0, 1 ≤ j(t) ≤ 6
and |j(t+ dt)− j(t)| ≤ 1, where dt is a finite small time

interval. The latter forbids jumps of gears, which would

provoke non-optimal fuel consumption in up-shifting and

mechanical stress in down-shifting.

A bounded range of velocities is valid per each gear,

hence,

vL(j) ≤ x2(t) ≤ vH(j), ∀t ≥ 0. (4)

where the values of vL(j), vH(j) are given in Table II.

For the sake of simplicity we propose a linearized approx-

imation of (4)

v0 + v1j ≤ x2(t) ≤ v0 + v1(j + 1), ∀t ≥ 0, (5)

where the values of v0 and v1 are obtained as

(v0, v1) , arg min
v0,v1

6
∑

j=1

(

γL
(

vL(j)− (v0 + jv1)
)2
+

γH
(

vH(j)− (v0 + (j + 1)v1)
)2
)

,

subject to v0+v1 ≥ x2,min. The choice of the weights γL, γH
was preferred towards the higher velocities (γL = 1, γH =
100), where the engine works with higher efficiency.

Although some of these constraints may be violated

without causing major damages, i.e., collision or engine

breakdown, we decided to consider all of them as hard.

D. Control problem

A more natural way of considering the problem deals with

the discrete time sampling. In this application, in fact, the

measurements and the data flow from the front vehicle take

place in a given time period T . For this reason we will

consider, from now on, a discrete time version of the problem

with time variable k. In this set-up the measured output x(k),
possibly affected by disturbances Ω(k), is plugged into the

controller, which also receives the prediction of the reference

η(k). According to these values, the controller computes the

next control input that is fed into the simulation model.

The main goal is to design a control signal u(k) and a

gear shift sequence j(k) that trade off the reduction of the

tracking error ε(k) , x(k) − η(k) for the variation of the

continuous input ∆u(k) , u(k)− u(k− 1) and the number

of gears switchings ∆j(k) , j(k) − j(k − 1), within the

constraints described above.

III. DESIGN METHODS

Three different representative controllers are selected to

perform the comparison: two of them are MPC based (an

online and an offline one) with different prediction models,

the third one is adopted from the industrial realization of

ACC devices and it is a specifically tuned PI:

• Online PWA MPC: MLD-on (Section III-A);

• Basic gain scheduling approximation: BGS (Section III-

B);

• Optimized proportional-integral (PI) controller (Sec-

tion III-C);

In the first method we implement an MPC controller

using as a prediction model a PWA approximation of the

system. This permits to transform the problem into an online

mixed integer linear program based on the equivalent MLD

formulation. The MPC approach is largely used to design

the control actions of constrained systems and in particular

PWA systems (see e.g. [5], [11], [12]). In the second case

we use a very simple prediction model, obtained via a gain

scheduling of the nonlinear air drag. The gear shift action

is not considered and the traction force Bj is averaged

over j. For this method we propose the parametric offline

solution. The third method tunes a PI-based controller whose

parameters depends on the position and velocity errors. The

PI coefficients are determined offline in order to meet a

specific optimization criterion.

For the first two methods we provide the expression of

a norm 1 MPC performance index. The control signal u(k)
is designed by solving a receding horizon constrained finite

time optimal control problem. The prediction or acquisition

of Np samples ahead of the front vehicle trajectory is used

to compute the optimal control law u(k) by solving

min
ũ(Np),̃(Np)

J(θ(k), ũ(Np), ̃(Np)) ,

Np
∑

i=1

||Qxε(k + i)||1+

||Q∆u∆u(k + i− 1)||1 + ||Q∆j∆j(k + i− 1)||1,
(6)

subject to a prediction model and the given constraints. Here

ũ(Np) , [u(k), . . . , u(k + Np − 1)]T is the sequence of

control inputs, ̃(Np) , [j(k), . . . , j(k + Np − 1)]T the

gear shift sequence, Qx, Q∆u and Q∆j are weight matrices,

θ(k) , [x(k)T, u(k − 1), j(k − 1), η(k + 1)T, . . . , η(k +
Np)

T]T is a set of parameters. A shorter control horizon

Nc < Np may also be considered, i.e., ∆u(k + i) = 0,

i = Nc, . . . , Np−1, ∆j(k+i) = 0, i = Nc, . . . , Np−1. This

choice has the general advantage of reducing the number of

variables and of providing a smoother solution. Nevertheless

here we only consider Np = Nc as it is out of the scope of

this paper to investigate the behavior of the same controller

for different tunings.

A. Method 1: Piecewise affine MPC (MLD-on)

In order to give the PWA representation of the model

described in Section II-B we approximate the function

b(j, x2), the second component of the vector B(j, x) in (2),

as follows. We assume it is linear dependent from the gear j
and independent from the velocity x2. This last assumption

is acceptable in a wide velocity range as shown in Figure 2.

Hence

b(j, x2) ≈ b(j) ≈ bj , β0 + jβ1 (7)

where j ∈ {1, . . . , 6} is the gear, {b(1), . . . , b(6)} are the

maxima in Figure 2, listed in Table II, and

(β0, β1) , arg min
β0,β1

6
∑

j=1

(

b(j)− (β0 + jβ1)
)2
.

This approximation is shown in Figure 3.
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TABLE IV

Encoding of the value of the gear j via three binary variables δi,

with i = 1, 2, 3.

Gear j δ1 δ2 δ3
I 0 0 0
II 1 0 0
III 0 1 0
IV 1 1 0
V 0 0 1
VI 1 0 1

The integer value of the gear can be encoded using three

binary variables, δi ∈ {0, 1}, with i = 1, 2, 3, as listed in

Table IV.

With this abstraction the traction force (7) becomes

bj = (β0 + β1) + β1δ1 + 2β1δ2 + 4β1δ3, (8)

which integrates continuous (u) and logic variables (δi) as

in [5].

With similar arguments we approximate the function

− c
m
x2
2, the second component of the vector f(x) in (2),

with two affine modes, as depicted in Figure 4. The PWA

representation of the system is therefore

x(k + 1) =

{

A1x(k) + F1 +Bju(k), if x2(k) < α
A2x(k) + F2 +Bju(k), if x2(k) ≥ α,

(9)

where the matrices A1, A2, F1, F2 are derived using the data

shown in Figure 4, and Bj = [0, bj ]
T.

To complete the MLD transformation we use an additional

binary variable that indicates the mode in 9. After some

manipulations, similar to the ones in [5], the equivalent MLD

0

cṡ2max

ṡmaxα = ṡmax

2

β =
3cṡ2max

16

V (ṡ)

ṡ

Fig. 4. Nonlinear friction (solid), PWA approximation (dashed).

model takes the form of

x(k + 1) = Ax(k) +Bv(k) + F, (10)

where the vector v(k) has binary and continuous compo-

nents. Plugging this model on the MPC norm 1 performance

index and in the constraints we obtain a MILP problem of

the form

J(θ(k))∗ = min
ỹ

cTỹ

s.t. Eỹ ≤ G+ Eθθ(k),
(11)

where ỹ contains the prediction of the control variable ṽ and

some additional auxiliary variables. The matrices E, G and

Eθ constrain the search space of the optimization problem

in order to meet the physical and the logic constraints

introduced by the MLD transformation.

B. Method 2: Basic gain scheduling approximation (BGS)

In this method the nonlinear curve depicted in Figure 4, is

approximated into 6 linear models mi, i = 1, . . . , 6 in point

to point secant approximation1. Additionally the function

b(j, x2) is approximated with its average values over all

gears, thus the problem becomes linear as better detailed

in [3].

For each affine model mi we solve an offline mpLP [6],

[13] problem with a similar structure as (11), but with

differently defined entries ỹ, c, E,G,Eθ; in particular, the

variable ỹ is purely continuous. The offline solution of this

problem constructs a polyhedral partition of the parameter

space. Each region Ri of the partition stores an affine

controller ui(k) = Kiθ(k) + Hi. During the simulation

the region Ri is selected according to the current value

of the parameters θ(k), and the corresponding controller

ui(k) = Kiθ(k) +Hi is plugged into the system. The gear

is selected using (5).

C. Method 3: Proportional-integral action (PI)

The third method is based on a proportional-integral (PI)

action. This is the technique mostly used in practice [7]. The

controller first computes a desired acceleration

ad(k) = kIε1(k) + kP ε2(k), (12)

where kP , kI are the proportional and integral coefficients

and ε(k) = x(k) − η(k) is the tracking error at step k.

The actuators regulate the throttle, the gear and the braking

action in order to better achieve the desired value of the

acceleration.

In industrial versions of the device the coefficients kP , kI
depend on the current value of the state x(k) (position and

velocity) and of the tracking error signal ε(k), according to

specifically designed bell-shaped curves [7]. The parameters

of these curves (offset, peak and standard deviation) are

tuned empirically to obtain high comfort in acceleration and

high security in braking for a variety of scenarios. In this

study we tune these parameters so that the total cost of the

evolution, at a nominal scenario, is minimized. The gear is

selected using (5).

1Without loss of generality, the number of models is chosen equal to the
number of gears.



TABLE V

General implementation data and initial conditions for the

simulation.

Description Numerical value

State weight matrix Qx

[

1 0
0 0.1

]

Input weight matrix Q∆u 0.1
Shift weight matrix Q∆j 0.01

Prediction horizon Np 2
Control horizon Nc 2

Sampling time T 1 s
Simulation time 75 s

Throttle initial position 0
Initial gear I

State initial condition [0, 5]T

Leading vehicle speed 15 m/s

IV. NUMERICAL COMPARISON

A. General experimental set-up

We consider a reference trajectory η(t) where the front

vehicle is driving at the constant velocity. This choice permits

to study the behavior of the controllers in a nominal driving

scenario, on a horizontal, extra-urban road with low traffic

density. The general data common to all experiments are

summarized in Table V. We will also consider disturbances.

Modern technology (differential GPS, laser sensors and ex-

tended Kalman filters [14]) provides fast and highly accurate

measurements, up to one meter error in positioning and to

0.1 m/s in velocity. These values will be used to characterize

the disturbances.

In these experiments the reference (the leading vehicle) is

moving with a constant speed of 15 m/s, (54 km/h). The

controller measures x, η, and for methods 1 and 2 receives

the reference in the next Np−1 future samples. On the basis

of the value of the gear and control at the previous time

sample it evaluates the new control input and gear, that will

be plugged in the simulation model described in Section II-

B, integrated with Matlab ode45.

The three methods were implemented in Matlab 7,

Linux 2.4.22 OS on an INTEL Pentium 4, 3GHz

processor. The online MILP is solved with Cplex un-

der TOMLAB v5.1; the multi-parametric problem (BGS)

is solved with the multi-parametric toolbox MPT

v2.6 [15] and the optimal choice of coefficients for the

PI are obtained via the nonlinear programming subroutine

fmincon of the Matlab optimization toolbox.

B. Comparison issues and results

The comparison issues are listed in Table VI, and for each

line of the table the worst entry is indicated in bold, while

the best case is in italic. The comparison is divided into four

groups.

1) Computational features: The computational aspects of

the problem should give the reader insight into the time

and memory demands and complexity of the method. We

use the acronym NP-H (P) to indicate Non-Polynomial Hard

(Polynomial) complexity. The maximum and average online

times along the whole simulation period are collected. Note

that the linear methods (BGS and PI) are really competitive.

We remark here that the sampling time T = 1 s is longer than

in common ACC devices, where measurements are taken at

the frequency of 5 to 10 Hz [2], [16] (i.e., T = 0.1−0.2 s).

Nevertheless this is not restrictive; in fact all methods require

an online computation time shorter than 0.1 s.

The major advantage of the offline methods is that they do

not require the optimizer on-board, but merely an efficient

data-base browser and enough space to store the solution.

In a real-life application this is highly preferable, since

the performance of an on-board platform is unquestionably

poorer than of a desktop computer. Moreover, the optimizers

require extra memory (indicated in Table VI with “+opt.”)

and may have a license cost impact.

The Max tractable Np, only applicable for MPC methods,

is the biggest Np such that the online computational time is

smaller than the sampling time T = 1 s; for the offline MPC

this is the biggest Np such that the required online memory

is smaller than 128 Mb, the memory capacity of an on-board

chip.

The item Number (#) of regions of the partition is appli-

cable only for the BGS method and it gives an indication of

the complexity of the look-up table.

2) Programming features: This group refers to the pro-

gramming features, such as basic data of the optimization

problem, and in particular the size of the problem. The num-

ber of variables (real and integer), the number of constraints,

and the number of parameters (i.e., the dimension of θ(k))
are listed. This group shows that the more the accurate the

model, the bigger is the size of the problem. In this section

of the table we also recall whether the method is online (Y

= ’Yes’, N = ’No’).

3) Solution features: This group provides a better insight

into the physical/mechanical aspects of the solution. The

first indicator is the total cost of the evolution in closed

loop. A high value of the cost means, broadly speaking,

a worst tracking of the reference. For this item the most

approximated methods behave better. On the other hand, it

can be seen in the following line, they violate the constraint

on the acceleration, due to a very aggressive initial action.

The PI controller, which is unconstrained, performs the poor-

est. The same general trend is for the other items. Next we

consider transient features: position and velocity overshoot,

the duration of the transient on the velocity tracking2 and the

number of gear switchings made to reach the steady state of

the velocity. In particular with position overshoot we show

of how many meters the vehicle overtakes the reference3.

4) Effect of disturbances: The same conclusion cannot be

drawn for the number of constraint violations, in the fourth

group of the table: in this case the bigger model mismatch

of the linear methods is the source of numerous constraint

violations. This shows once more the importance of the trade-

off in the MPC framework between the accuracy of the

prediction model and the quality of the solution. To better

highlight this aspect, the same computations were performed

2The time required by the controller to keep the velocity within a 5 %
band around the reference.

3Note that the hard constraint x1(k) ≤ η1(k) + dsafe is still satisfied.



TABLE VI

Benchmark problem: comparison issues for the 3 methods.

Method MLD-on BGS PI

Computational features

Complexity NP-H NP-H NP

Max online time (s) 0.0521 0.00048 0.00019

Avg. online time (s) 0.0478 0.00007 0.00013

Offline time (s) 0.057 630.52 2.11× 104

Online mem. (Mb) 0.46+opt. 4.09 ∼ 0
Offline mem. (Mb) 0.09 0.08+opt. ∼ 0
Max tractable Np 10 5 –

# regions – 630 –

Programming features

Program class MILP mpLP NLP

Online method Y N N

# variables 32 8 9

# constraints 102 44 –

# binary vars. 8 – –

# parameters – 7 –

Solution features

Cost of evolution 120.97 73.62 104.91

Max acc. (m/s2) 2.46 3.5 4.93

Max dec. (m/s2) 1.79 1.35 2.89

Max ∆u(k) 0.73 0.99 1.5

Min ∆u(k) -1.06 -1.07 -2

Pos. overshoot (m) 5.08 5.89 0.5

Vel. overshoot (m/s) 5.98 3.3 6.24

Transient at 5% (s) 15 6 10

# gear-switches 6 2 4

Effect of disturbances

# violations 0 3 6

# violations (meas. dist.) 2 3 27

# violations (mdl. var.) 0 4 6

# gear-switches (dist.) 6 2 38

in the presence of disturbances. In particular two cases

are reported: measurement disturbances (abbreviated meas.

dist.) on position and velocity (uniformly random distributed

error of 1m and 0.1m/s respectively) and model variation

(abbreviated mdl. var.). In the latter case a scenario with

wet asphalt (smaller friction coefficient µ = 0.005), loaded

vehicle (higher mass m = 900 kg), long driving (higher tire

pressure and bigger wheel radius R = 0.30m) is considered.

The data presented with these experiments indicate the

advantages and disadvantages of each method. In general it

appears that the first method, that uses better approximated

prediction model, gives less constraints violations, at the

price of a higher computation effort. The highlight of the

second method, offline, is the fast online computation time.

On the contrary it may be unreliable in driving scenarios

different than the nominal, like up-hill or down-hill driving,

overloaded vehicle, different road conditions and so on.

V. CONCLUSIONS

The design of an adaptive cruise controller for a SMART

is considered as a benchmark for a hybrid and linear MPC

and for a PI approach. We have modeled the system in a

significant level of details, including engine nonlinearities,

hydraulic friction, tire/ground static friction and the gear

shift. Constraints, arising from physical specifications were

also considered. The control goal may be achieved by means

of MPC-based techniques, for which we have used two ver-

sions (online and offline), with different prediction models. In

addition we have considered an ACC used in industry (based

on a PI method). The comparison results on numerical and

design issues are collected in a table, highlighting the main

advantages and disadvantages of each method.

An interesting extension is to perform the comparison

on a real field trial and driving cycles. We remark that,

for a possible embedded solution in a real SMART, several

technical issues should be regarded, like the sensor system,

the resources of the on-board electronics, the real-life distur-

bances and the actuators delays. Furthermore it is relevant

to investigate whether these results can be used for other

applications and extended to a more general class of systems.
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