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Abstract.

Traffic jams are an economic and environmental problem in many countries. When traffic demand exceeds

the freeway capacity, shock waves can be caused by small disturbances in the traffic flow. Since it is not

always desirable or feasible to add more lanes on freeways to overcome capacity problems, alternative

methods have been developed to reduce and to dissolve traffic jams. One of these methods is using model-

based traffic control.

The model-based methods use traffic flow models, in which the speeds are typically space mean

speeds, while the measured speeds on a freeway are often time mean speeds (measured by loop detectors).

The difference between using space mean speeds and time mean speeds for model-based methods has not

yet been addressed in literature. In this paper, we investigate the possible performance loss caused by using

another mean speed type than the space mean speed for model-based traffic control.

Methods for approximating the space mean speed based on local measurements are discussed, to-

gether with the time mean speed and geometric mean speed. The suitability of six mean speed types is

investigated using microscopic simulation. Next, the three most suitable mean speed types for model-based

traffic control are used to determine dynamic speed limits on a freeway using a model predictive control

approach. All three types of mean speeds result in the resolution of the congestion in the test scenario and

lead to a performance improvement of about 14%.
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1 INTRODUCTION

In many countries, the demand on freeways exceeds the capacity almost every day, which can lead to traffic

jams due to disturbances in the traffic flow. Increasing the number of lanes on a freeway is one approach

to address this problem. However, if this solution is infeasible or not desired, more advanced solutions

are necessary. A potential solution is model-based traffic control, which is capable of reducing or even

dissolving upstream propagating shock waves.

In the literature, two control approaches using speed limits can be found. The first approach is

based on homogenization of the traffic flow (1–3), and the second approach focuses on flow limitation to

solve traffic jams (4–6). The basic idea for homogenization is the reduction of speed differences, thereby

increasing the stability (and safety) of the traffic flow. Using flow limitation, the traffic is slowed down

upstream of a traffic jam, thereby reducing the inflow of the traffic jam, which will reduce the length of the

traffic jam. We use the second approach, since it is more suitable for reducing shock waves. In simulation

studies (6, 7) it has been shown that a shock wave can be resolved by holding back the upstream traffic (via

dynamic speed limits) that is feeding it.

Loop detectors are used to measure the traffic state on the freeway, typically counting the number

of passing vehicles, and determining the mean speed over a certain time. There are many ways to determine

mean speeds. For traffic on freeways, usually the time mean speed and space mean speed are used. Assuming

the freeway is equipped with the necessary sensors and measurement equipment, the time mean speed can

be calculated using the arithmetic mean of the measured vehicle speed on a given location. The space mean

speed can be estimated using the harmonic mean of the measured vehicle speeds on a given location. In

addition, this paper introduces the geometric mean of the vehicle speeds, which complements the arithmetic

and harmonic mean as the third ‘classic’ Pythagorean mean (8).

When it is possible to measure speeds instantaneously (e.g., by using cameras), the space mean

speed for a time interval can be obtained by using the average space mean speed over multiple measurements.

Since often it is not possible to obtain instantaneous vehicle speeds, we focus on mean speeds obtained by

using spot measurements (e.g., by using loop detectors). The space mean speed is based on instantaneous

vehicle speeds, and an approximation method is needed. We discuss several approximation methods for

obtaining space mean speeds, based on local measurements. In total, six methods for calculating mean

speeds are discussed, as well as their suitability for use in model-based traffic control.

In this paper Model Predictive Control (MPC) is used to determine dynamic speed limits on a part

of the Dutch freeway A12. The objective of the traffic controller is to reduce the travel time. If the traffic

jams are solvable, this will result in resolved shock waves, since the lowest travel times are obtained when

the congestion is resolved on the freeway (7). The advantage of MPC for this application is that due to the

receding horizon strategy of MPC, the controller can take actions that increase the travel time for a short

period (slowing vehicles down), when this is beneficial over a large period (reducing the shock wave). The

current traffic state is used as initial value to predict the future traffic states.

This paper is organized as follows. In Section 2 six ways of calculating mean speeds are discussed.

These mean speeds will be used to describe the states of the traffic flow. We examine which mean speed

variant is the most suitable for model-based traffic control, for reducing shock waves on the freeway. Shock

waves are the topic of Section 3, where it is also discussed how dynamic speed limits can reduce shock

waves. In Section 4 we explain how MPC can be used to determine speed limits, such that shock waves

will be reduced. The resulting traffic control approach is discussed in Section 5, where the criteria for the

suitability of the mean speed variants are given. The prediction model used for MPC is discussed in Section

6, together with the program used to simulate the traffic network. Details of the experiment are given in

Section 7, followed by the results of the experiment in Section 8. The conclusions are discussed in Section

9.
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2 VARIOUS MEAN SPEEDS

In the field of freeway traffic modelling, two mean speeds are often used: time mean and space mean

speeds (9, 10). Time mean speeds are based on measurements on a given location, and are averaged over

a certain time span. These speeds can be measured by, e.g., loop detectors. Space mean speeds are based

on measurements over a certain length of the freeway, at a given time instant. Video images can be used to

obtain space mean speeds (11).

Macroscopic traffic flow models use space mean speeds, while in practice, the vehicle speeds are in

general measured by loop detectors. These are unable to deliver exact space mean speeds, and estimations

are needed.

To the authors’ best knowledge, no literature discussing the performance of different mean speeds

for model-based traffic control is available. In the research reported in this paper, loop detectors are used

to obtain the traffic state. The loop detectors measure individual vehicle speeds uL, at a location xmsr over a

sample time period Ts, where the subscript L is used to indicate that the measurement is done locally. These

measurement moments at location xmsr,2 are visualized in the time-space diagram in Figure 1, using circles.

x

t

Lm

Ts

uL,1 uL,2 uL,3 uL,4

uI,1

uI,2

uI,3

uI,4xmsr,1

xmsr,2

ksTs (ks +1)Ts

FIGURE 1 Time-space diagram, containing the measurement area, and vehicle trajectories (dashed

lines).

The space mean speed can be determined by averaging the individual vehicle speeds uI, measured

at a time instant ksTs, where the subscript I indicates that the measurement is done instantaneously. This is

shown in Figure 1 at sample step ks, where the squares are the measurement locations.

Using loop detectors, the outflow of the traffic at location xmsr,2 can be obtained by dividing the

number of observed vehicles N(ks) leaving the freeway segment [xmsr,1,xmsr,2] in the time interval [ksTs,

(ks+1)Ts), by the sampling time interval Ts. Hence, the average outflow for the time interval [ksTs, (ks+1)Ts)

can be determined using

q(ks) =
N(ks)

Ts

. (1)

The density follows from the outflow q(ks), the space mean speed v(ks), and the number of lanes λm on a

freeway link m, as

ρ(ks) =
q(ks)

v(ks)λm

(2)



Burger, Hegyi, De Schutter 5

The space mean speed can be approximated using six different methods, which are discussed below. These

methods will be used to calculate the mean speed. Together with the density, which is computed using (1)

and (2), these variables will be used to describe the state of the traffic flow.

2.1 Time Mean Speed

The time mean speed is calculated using the arithmetic mean of the N(ks) individual vehicle speeds uL,l

measured over an interval [ksTs,(ks +1)Ts) (where Ts is the sampling period) as (9)

vtms(ks) =
1

N(ks)

N(ks)

∑
l=1

uL,l (3)

In the time-space diagram shown in Figure 1, the measurements of the vehicle speeds are shown as circles.

Loop detectors typically provide the time mean speed.

2.2 Estimated Space Mean Speed

For obtaining the estimated space mean speed, the harmonic mean of the locally measured vehicle speeds

is used by (9), given as

v̂sms(ks) =

(

1

N(ks)

N(ks)

∑
l=1

1

uL,l

)−1

(4)

This equation gives the exact space mean speed when the speed distribution over time and space is homo-

geneous. In practice this never holds exactly, and the equation yields an estimate of the actual space mean

speed.

In Figure 1, this estimated space mean speed calculation is shown graphically. Assuming the lo-

cally measured vehicle speeds uL measured at xmsr,2 are constant, the vehicle trajectories can be extended as

straight lines, where the slope equals the speed. The measurements that would be ideally used for determin-

ing the space mean speed are shown as the squares at sample step ks.

2.3 Geometric Mean Speed

Besides the arithmetic and harmonic mean, there is a third Pythagorean mean, namely the geometric mean

(8). This mean can be calculated as

vgeo(ks) =
N(ks)

√
√
√
√

N(ks)

∏
l=1

uL,l (5)

The geometric mean is often used in economics, but an interpretation of the value for traffic has not

been found in literature. In general, the relation between the harmonic mean H(x), geometric mean G(x),
and arithmetic mean A(x) is H(x)≤ G(x)≤ A(x) for a array x of positive numbers, where equality is reached

if, and only if all numbers in x are equal (8). For traffic, this means that the geometric mean speed is always

larger than or equal to the space mean speed, and smaller than or equal to the time mean speed.

2.4 Estimated Space Mean Speed Using Instantaneous Speed Variance

A method for estimating the space mean speed, based on instantaneous speeds, is proposed in (12). It uses

the relation between time mean speed vtms (as given by (3)), and the space mean speed vsms:

vtms(ks) =
σ2

sms(ks)

vsms(ks)
+ vsms(ks) (6)
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where σ2
sms(ks) is the speed variance for the instantaneously measured vehicle speeds. From this equation

the space mean speed can be determined as

vsms(ks) =
1

2

{

vtms(ks)+
√

v2
tms(ks)−4σ2

sms(ks)

}

Since the instantaneous speed variance σ2
sms(ks) cannot be determined by local measurements, an estimation

is used, given by

σ̂2
sms(ks) =

1

2N(ks)

N(ks)

∑
l=1

v̂sms(ks)

uL,i
(uL,l+1 −uL,l)

2

where v̂sms(ks) is the harmonic mean speed (4), and the estimated space mean speed becomes

v̂sms,I(ks) =
1

2

{

vtms(ks)+
√

v2
tms(ks)−4σ̂2

sms(ks)

}

(7)

2.5 Estimated Space Mean Speed Using Local Speed Variance

In (13), an estimate of the space mean speed is proposed, based on the local mean speed and the local speed

variance of the measured speeds. The estimated space mean speed is determined by

v̂sms,L(ks) = vtms(ks)−
σ2

tms(ks)

vtms(ks)
(8)

where vtms(ks) is calculated using (3), and

σ2
tms(ks) =

1

N(ks)

N(ks)

∑
l=1

(uL,l − vtms(ks))
2 =

1

N(ks)

(
N(ks)

∑
l=1

u2
L,l

)

− v2
tms(ks) (9)

2.6 Time Average Space Mean Speed

Now we consider a finer sampling of with a sample period Tt such that Tt = Ts/Mt for some positive integer

Mt. Using, e.g., video images, it is possible to obtain the space mean speed vsms(kt) on a freeway segment

for every sample step kt in the interval [ktTt,(kt +Mt)Tt) = [ksTs,(ks + 1)Ts) (11). Since the space mean

speed is defined on a certain time instant over a certain freeway stretch, and the previous five mean speed

measures are defined on a certain position on the freeway over a given time period, the mean speed types

are not directly comparable. In the latter cases a time average of the space mean speed is used to represent

the actual space mean speed. Therefore, we now define a mean speed that is a time average of the obtained

space mean speeds in the time period [ktTt, (kt+Mt)Tt):

v̄sms(ks) =
1

Mt

kt+Mt−1

∑
κ=kt

vsms(κ) (10)

where kt = Mtks.

3 SHOCK WAVES

Shock waves are upstream propagating traffic jams on freeways, which often emerge from on-ramps and

other types of bottlenecks. The outflow of a shock wave is typically around 70% of the freeway capacity

(14), and resolving these shock waves can greatly improve the freeway traffic flow. Since the vehicle speeds
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in the shock wave are low, travel times are higher than in the free flow situation. Shock waves also cause

potentially dangerous situations due to speed differences, and air pollution is increased by slowly driving

and frequently accelerating and braking vehicles.

Shock waves can be reduced or dissolved by applying dynamic speed limits (7). Traffic upstream

of the shock wave can be slowed down, thereby limiting the inflow to the shock wave. This will reduce

the length of the shock wave, and using dynamic speed limits can even dissolve the shock wave (depending

on the traffic demand and length of the freeway stretch where dynamic speed limits are used). The settings

for the dynamic speed limits can, e.g., be determined using MPC (6), which is also used in the research

discussed in this paper.

4 MODEL PREDICTIVE CONTROL

Let Tc denote the control sample period and let kc be the corresponding control sample counter.

We use the MPC scheme to solve the problem of optimal coordination of dynamic speed limits, as

shown in Figure 2. MPC uses a model to describe the physical system. This model allows to predict future

states of the system, and it takes the effect of applying control actions into account. Using an optimization

method, the values of the control variables resulting in the best performance are determined. The future

states are predicted up to a prediction horizon of Np controller steps ahead. Often a control horizon of Nc

steps is used, where Nc < Np. The control variables are then optimized up to the control horizon, and after

the control horizon the control variables vctr remain constant. The control horizon is mostly used to reduce

the amount of variables to optimize, thereby reducing the calculation time for the optimization.

Once the optimal values for the objective are computed, the control actions for the first controller

step kc are applied to the physical system, and the optimization is repeated for the next controller step kc+1.

This method of shifting the horizon for which control variables are optimized, is often called receding

horizon.

traffic demand

control input:

speed limits

expected demand

traffic system

rolling horizon

controller

optimization

traffic state:

speed, flow,

density

prediction

vctr,m,i(kc)

(Np,Nc)

(each kc)

J(kc)

FIGURE 2 Schematic overview of the model predictive traffic control structure.

In this paper, the controlled system is the traffic network, from which measurements are taken. The

obtained mean speeds, flows, and densities are sent to the controller at each controller step kc. The controller

uses a macroscopic traffic model to predict the future traffic states over a prediction horizon of Np controller

steps. Using numerical optimization, the optimal speed limits vctr,m,i are determined up to a control horizon
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of Nc controller steps, where m is the link index, and i is the segment index on that link (see Section 6 for

more details).

5 APPROACH

We investigate the effect of using different mean speeds instead of space mean speeds in the MPC prediction

model. The control goal is to reduce shock waves, by applying dynamic speed limits on a freeway. A mi-

croscopic traffic simulator is used as traffic network, which allows us to measure individual vehicle speeds,

and to calculate the various mean speeds discussed in Section 2.

5.1 Objective for Dynamic Speed Limit Control

The desired effect of applying control is reducing shock waves on freeways. We use MPC, with the mini-

mization of the total time vehicles spend in the area of the traffic network under consideration as an objective.

The Total Time Spent (TTS) for one control sample period Tc can be calculated as the sum of vehicles per

segment (ρm,i(κ)λm,iLm), plus the amount of vehicles wo(κ) that were unable to enter the area under consid-

eration due to congestion. The numerical optimization is searching for a minimum value for the Total Time

Spent (TTS) by the vehicles over the prediction horizon Np in the controlled area of the network:

JTTS(kc) = Tc

kc+Np−1

∑
κ=kc

{

∑
(m,i)∈M

ρm,i(κ)λm,iLm + ∑
o∈O

wo(κ)

}

(11)

where M is the set of links and segments, O is the set of origins for the measured areas, ρm,i(κ) is the

average density in segment i of link m at controller step κ , and wo(κ) is the number of vehicles waiting in a

queue to enter the freeway at controller step κ , due to congestion.

In order to avoid large speed limit differences between adjacent segments, a second objective func-

tion is also taken into account. It calculates the average of the sum of the squared difference between two

speed limits vctr, for the entire prediction horizon Np:

JSLD(kc) =
1

NmNp

Nm

∑
m=1

1

Nctr,m −1

kc+Np−1

∑
κ=kc

Nctr,m−1

∑
i=1

(vctr,m,i+1(κ)− vctr,m,i(κ))
2

(12)

where Nm is the number of links, Nctr,m is the number of controlled segments on link m, and vctr,m,i(κ) is the

dynamic speed limit applied in segment i of link m at controller step κ .

The two objective functions are combined as

J(kc) = JTTS(kc)+ζ JSLD(kc) (13)

where ζ is a weighting factor.

5.2 Performance Criterion for Model Calibration

Since the model parameters in a traffic model are different for each traffic network, model calibration is

necessary. This is done by offline numerical optimization using an objective function given by

Jcal(θ) =
Ks−McNp

∑
ks=1

Jcal(ks,θ) (14)
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where θ is the set of model parameters, Ks is the number of sample steps ks for which measurement data is

available, Mc is a positive integer value relating the controller steps and sample steps as ks = Mckc (and thus

Tc = McTs), and Jcal(ks,θ) is given by

Jcal(ks,θ) =

[

1

McNp

ks+McNp−1

∑
κ=ks

∑
(m,i)∈M

{(
vm,i(κ)− ṽm,i(κ,θ)

v̄(ks)

)2

+

(
ρm,i(κ)− ρ̃m,i(κ,θ)

ρ̄(ks)

)2
}] 1

2

(15)

where v̄(ks) and ρ̄(ks) are the average speed and flow of the measured data from simulation step ks to

ks+McNp. A lower value of the objective function (14) implies a better fit of the predicted states {ṽm,i(·,θ),
ρ̃m,i(·,θ)} by a macroscopic model on the measured states {vm,i,ρm,i}. Since the traffic controller will

be optimizing on the TTS, also the difference in measured and predicted TTS is determined, to judge the

performance of the parameter values. The error is given by

ETTS(θ) =
1

Kc −Np

Kc−Np

∑
kc=1

J̃TTS(kc,θ)− JTTS(kc)

JTTS(kc)
(16)

which gives the average percentage of mismatch between the TTS of the measured data JTTS(kc) and the

predicted data J̃TTS(kc,θ) for the parameter set θ , where Kc is the total number of control steps kc in the

simulation.

The six variants for calculating the mean speed vm,i(k) (equations (3)-(10)) are used to calibrate a

macroscopic model. Using (14) we can determine how well the model can predict future states (mean speeds

and densities), using the different mean speed variants. Using (16), the difference between the measured

and predicted TTS can be determined.

To increase the reliability of the results, the calibration is done using a multi-start optimization

approach for the values of the model parameter vector σ . From this calibration, the parameter set resulting

in the lowest value of Jcal(θ) is used for determining both Jcal(θ) and ETTS(θ) on 5 data sets, each created

with a different random seed, to account for the stochasticity of the microscopic simulation model. The

same data sets are used for all mean speed types to have a fair comparison of the results. From these 5

values of Jcal(θ) and ETTS(θ), the average values J̄cal(θ) and ĒTTS(θ) are used to compare the performance

of the different mean speeds.

6 TRAFFIC FLOW MODELLING

6.1 Prediction Model

For the prediction of future traffic states, a macroscopic traffic model is used to reduce computation time.

Any macroscopic traffic model can be used for the prediction. For the research we report on in this paper, the

METANET traffic flow model is used, which is described in e.g. (15). Here we will give a brief description

of the model, including the extensions proposed by Hegyi et al. (6).

The METANET model divides a freeway network into multiple links m. A link is divided into

multiple segments i, for which the state is given in terms of the density ρm,i(k), space mean speed vm,i(k),
and outflow qm,i(k) of the segment. Here k denotes the simulation step, with simulation time interval T . The

relation between the simulation time interval T and sampling time interval Ts is assumed to be given by

Ts = MsT (17)

where Ms is a positive integer.

Figure 3 shows a link m which is divided into Nm segments. Each segment has a length Lm, and a

number of lanes λm, which are constant for all segments in a link m.



Burger, Hegyi, De Schutter 10

travel direction
freeway link m

. . .. . .segment 1 segment i
︸ ︷︷ ︸

Lm

segment Nm

qm,i(k) →

ρm,i(k)

vm,i(k)

FIGURE 3 In the METANET model, a freeway link is divided into segments.

6.1.1 Basic METANET Model

The METANET model equations are given by the fundamental relationship between space mean speed,

density and outflow of a segment

qm,i(k) = ρm,i(k)vm,i(k)λm, (18)

the law of conservation of vehicles

ρm,i(k+1) = ρm,i(k)+
T

Lmλm

(qm,i−1(k)−qm,i(k)) , (19)

and a heuristic relationship for the speed dynamics

vm,i(k+1) = vm,i(k)+
T

τ
(V (ρm,i(k))− vm,i(k))+

T

Lm

vm,i(k)(vm,i−1(k)− vm,i(k))

−
ηT

τLm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
(20)

V (ρm,i(k)) = vfree,m exp

[

−
1

am

(
ρm,i(k)

ρcrit,m

)am
]

(21)

where vfree,m is the free flow speed in link m, ρcrit,m is its critical density (threshold between free and con-

gested traffic flow), and τ , η , κ and am are model fitting parameters.

Origins are modelled using a simple queue model. The queue length wo(k+1) at the next time step

equals the previous length, plus the demand do(k) minus the outflow qo(k) during the time interval T :

wo(k+1) = wo(k)+T (do(k)−qo(k)) (22)

where the outflow is given by

qo(k) = min

{

do(k)+
wo(k)

T
, Qo

ρmax −ρm,1(k)

ρmax −ρcrit,m

}

(23)

where Qo is the on-ramp capacity under free flow conditions, ρmax is the maximum density occurring during

a traffic jam, and m is the index of the link to which the on-ramp is connected.

6.1.2 Extended METANET Model

In (6), three extensions to the basic METANET model are proposed. A brief description of these extensions

is given next.
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The first extension adds the effect of using dynamic speed limits to the METANET model. The

desired speed V (ρm,i)(k) in (20) is replaced by

Vext(ρm,i(k)) = min{(1+α)vctr,m,i(k), V (ρm,i)(k)} (24)

where α is the non-compliance factor to the speed limits, and vctr,m,i(k) is the applied speed limit on segment

i of link m at time step k.

The second extension is introduced to model the inflow of traffic at mainstream origins. The origin

o of link m is limited by either the demand, or the maximum inflow, given as

qo(k) = min

{

do(k)+
wo(k)

T
, qlim,m,1(k)

}

(25)

where the maximum inflow qlim,m,1(k) is dependent on the limiting speed in the first segment of link m:

qlim,m,1(k) =

{

γqspd,m(k) if vlim,m,1(k)<V (ρcrit,m)

γqcap,m if vlim,m,1(k)≥V (ρcrit,m)

where γ is a model fitting parameter, and

qcap,m = λmVext(ρcrit,m)ρcrit,m

qspd,m(k) = λmvlim,m,1(k)ρcrit,m
am

√

−am ln

(
vlim,m,1(k)

vfree,m

)

and

vlim,m,1(k) = min{vctr,m,1(k), vm,1(k)}

When the origin is an on-ramp, (23) is used.

The third extension improves the modelling of shock waves travelling upstream on the link. The

anticipation behavior of drivers may be different at the head and tail of a traffic jam. The anticipation

constant η in (20) is replaced by the density-dependent parameter

ηm,i(k) =

{

ηhigh if ρm,i+1(k)≥ ρm,i(k)

ηlow if ρm,i+1(k)< ρm,i(k)
(26)

in order to account for these anticipation differences.

6.2 Traffic simulation

The physical traffic network is simulated using a microscopic simulation program. Any traffic microscopic

simulation program can be used. For the research discussed in this paper, Paramics v5.1 by Quadstone

(16) is used to represent the traffic network. A plug-in is created to gather data from loop detectors in

the simulation, and to compute the mean speeds discussed in Section 2. The speed limits on the controlled

segments are changed, according to the results of the traffic controller. The resulting speed limits are rounded

to the nearest multiple of 10 between 40 and 120 [km/h].
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7 EXPERIMENT

7.1 Traffic Network Layout

For the traffic network, a part of the Dutch freeway A12 is implemented in Paramics. The stretch of interest

is the part between Veenendaal and Maarsbergen, which is a freeway stretch without on-ramps and off-

ramps. The loop detectors in the micro-simulator are placed at the locations of the existing loop detectors on

the freeway. Since the distance between subsequent loop detectors is varying, the model consists of multiple

links m, all containing one segment. The links are chosen such that the detectors are near the downstream

boundary, in order to obtain accurate measurements of the outflow q of the links. The link lengths vary

between 545 [m] and 810 [m], and the total length of the measured area is 17422 [m]. Links are grouped in

freeway sections of about 2 [km], where the dynamic speed limits are assumed to be the same.

7.2 Traffic Scenario

The traffic demand qdem on the freeway is assumed to be known, and to be constant, equalling 4400[veh/h].
This is chosen such that the shock wave will remain existent when no control is applied. A shock wave is

introduced by simulating an incident downstream of the controlled area. One vehicle is stopped for a period

of 5 minutes, during which one of the two lanes is blocked. This creates a traffic jam, which expands while

the lane is blocked, and the resulting shock wave moves upstream when both lanes are accessible again.

FIGURE 4 Traffic condition without control.

Figure 4 shows the measurements on the network. On the horizontal axis, the time is shown, and on

the vertical axis, the segment indices are given. The traffic flows from bottom to top. The first subplot shows

the speed limits, which are all 120 [km/h], since no control is applied. In the second subplot, the measured

mean speeds are given, obtained using (5). Lighter colours represent higher mean speeds. The shock wave
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is clearly shown as the waves travelling upstream. Also in the density plot (the third subplot), the shock

wave is clearly visible as the light-colored wave representing high densities. The final subplot shows the

flow, where it can be seen that due to the shock wave, the flow decreases. The waves travelling downstream,

are caused by the differences in desired speeds between individual vehicles.

To obtain a fair comparison of the different mean speeds, the same random seed for each type of

mean speed is used in the simulations.

7.3 Prediction Model

For the MPC approach, as discussed in Section 4, a prediction model is needed. Here the Metanet model

as discussed in Section 6 is used, where the demand do in (22) is set to 4400 [veh/h]. Typically traffic

prediction models have multiple parameters. Model calibration is needed to obtain values for the parameters

that fit to the traffic situation of the network of interest. For the calibration of the prediction model, (14)

is minimized. The minimization is a nonlinear, non-convex optimization problem. Some methods to solve

these types of problems are sequential quadratic programming, genetic algorithms, and pattern search (17).

A multi-start approach is needed, since the optimization problem has many local minima. For each of the

six mean speed calculation methods, 100 optimization runs are performed, using the MATLAB function

fmincon (18), which uses sequential quadratic programming.

7.4 Traffic Controller

Shock waves on freeways can be reduced and dissolved by using model predictive traffic control. The

control scheme as shown in Figure 2 is used. The traffic state is updated with a sampling time interval of

Ts=60 [s].
The controller uses the METANET model (19)-(20), including the extensions (24)-(26), to predict

the future traffic states, using a simulation time interval of T =10 [s]. The controller time interval equals

Tc=60 [s], the control horizon is Nc=10 controller time intervals, and the prediction horizon equals Np=15

controller time intervals. The weighting factor ζ = 0.01 in the objective function (13).

The on-line optimization for the dynamic speed limits is done using a multi-start approach. At each

controller time step kc, 10 distinct initial value sets are used. The MATLAB function fmincon is used to

perform the optimization of (13).

7.5 Evaluation Criterion for Traffic Conditions

The improvement in traffic conditions by using MPC is evaluated using the TTS over the simulation period

[0,KTs), where K is the last sample step in the scenario. Comparing the TTS based on the number of vehicles

in the area under consideration is not a good measure, since the controller does not only increase the outflow,

but also the inflow. The inflow increases, because when the shock wave is dissolved, it will not block the

incoming vehicles anymore. Therefore an equivalent formulation of the TTS is used, based on the demand

qdem(k) and the outflow qout(k):

J̃TTS = T N0K +T 2
K−1

∑
k=0

(K − k)(qdem(k)−qout(k)) (27)

where N0 is the initial number of vehicles in the given area. The first term gives the time spent by the number

of vehicles that are present in the area under consideration at the start of the simulation, and the second term

gives the summation of the time spent by the vehicles that want to enter the area (the traffic demand qdem(k)),
minus the vehicles that have passed the measured area (the outflow qout(k)) during simulation step k.
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8 RESULTS

8.1 Comparison of the Various Mean Speeds

The average values J̄cal(θ) and ĒTTS(θ) over 5 distinct data sets are determined for the different mean speed

types. It gives a measure on how well mean speed variant performs as ‘space mean speed’ in a macroscopic

traffic model. The results of using the different mean speed calculation methods are shown in Table 1, based

on the calibration of the Metanet model. The time averaged space mean speed J̄cal is used as the reference

value (100%), as this value approximates best the real space mean speed used in macroscopic traffic flow

models. The first column shows the average calibration errors, using (14). The second column shows the

calibration errors as a percentage of the reference value, where a lower percentage means a better fit of

the model to the measured data. The third column contains the average error between the measured and

predicted TTS obtained using (16). The fourth column shows the relative error based on the reference value,

where a lower percentage means a better prediction of the TTS.

TABLE 1 Mean speed performance

J̄cal % ĒTTS %

v̄sms (10) 42.5 100 6.0 100

vtms (3) 38.9 91.5 5.5 91.4

v̂sms (4) 42.0 98.8 5.6 93.1

vgeo (5) 39.4 92.7 5.1 85.4

v̂sms,I (7) 38.3 90.1 5.5 91.0

v̂sms,L (8) 42.3 99.5 6.5 107.9

Based on these results, it is concluded that for this case the geometric mean speed vgeo gives the

best result, followed by the estimated space mean speed v̂sms,I, and the time mean speed vtms. Although v̂sms,

v̂sms,L and v̄sms are approximations of the space mean speed, they give worse results than using the time

mean speed.

The three variants of calculating the mean speed that predict the TTS best (vgeo, v̂sms,I and vtms) are

now used in the model predictive traffic controller, to investigate which variant will give the best improve-

ment in traffic conditions.

8.2 Improvement in Traffic Conditions

For the comparison of improvement in traffic conditions, the TTS is used. A lower value of J̃TTS (27)

represents better traffic conditions, since on average vehicles then spend less time in a certain area, indicating

that the flow is higher. In the uncontrolled situation, as shown in Figure 4, the TTS is 1068.0 [veh·h].
Using an MPC-based traffic controller, the shock waves are dissolved, as shown in Figure 5. Us-

ing time mean speeds vtms as state variables for the controller gives the largest improvement compared

to the uncontrolled situation (JTTS=901.1 [veh·h], i.e., 15.6% improvement), followed by the estimated

space mean speed v̂sms,σ̂i
(JTTS=916.1 [veh·h], i.e., 14.2% improvement), and the geometric mean speed vgeo

(JTTS=928.0 [veh·h], i.e., 13.1% improvement). The average outflow of the network increases with 4.8%,

from 4218 to 4422 [veh/h].

9 CONCLUSIONS

The effect of using different approximations of the space mean speed has been investigated for the use with

Model Predictive Control. For the set-up in this paper the time mean speed leads to the best results in terms
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FIGURE 5 Traffic conditions when using controlled speed limits with time mean speed measurements

of Total Time Spent (TTS).

For the case study that involves a stretch of the A12 freeway in The Netherlands, we have shown

that using an MPC approach, the traffic jam can be resolved and the TTS can be reduced significantly.

Improvements of up to 15.6% compared to the uncontrolled situation are reached. Reducing the shock

waves also has a positive effect on the flow, which is increased by 4.8% using the time mean speed.

For statistically significant conclusions on which mean speed to use and the expected performance

improvements, more calibration and simulation runs are necessary. Based on the current research results it

seems that the differences between using time mean speeds and space mean speeds are small, and in practice,

the time mean speed can be used in model-based traffic control.
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