
Delft University of Technology
Delft Center for Systems and Control

Technical report 07-030

Continuous-state reinforcement learning
with fuzzy approximation∗

L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška

If you want to cite this report, please use the following reference instead:
L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Continuous-state re-
inforcement learning with fuzzy approximation,” in Adaptive Agents and Multi-
Agent Systems III. Adaptation and Multi-Agent Learning (K. Tuyls, A. Nowé, Z.
Guessoum, and D. Kudenko, eds.), vol. 4865 of Lecture Notes in Computer Sci-
ence, Berlin, Germany: Springer, ISBN 978-3-540-77947-6, pp. 27–43, 2008.
doi:10.1007/978-3-540-77949-0_3

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/07_030.html

https://doi.org/10.1007/978-3-540-77949-0_3
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/07_030.html

Continuous-State Reinforcement Learning

with Fuzzy Approximation

Lucian Buşoniu1, Damien Ernst2, Bart De Schutter1, and Robert Babuška1

1 Delft University of Technology, The Netherlands
2 Supélec, Rennes, France

i.l.busoniu@tudelft.nl, damien.ernst@supelec.fr,

b@deschutter.info, r.babuska@tudelft.nl

Abstract. Reinforcement Learning (RL) is a widely used learning para-
digm for adaptive agents. There exist several convergent and consistent
RL algorithms which have been intensively studied. In their original form,
these algorithms require that the environment states and agent actions
take values in a relatively small discrete set. Fuzzy representations for
approximate, model-free RL have been proposed in the literature for the
more difficult case where the state-action space is continuous. In this
work, we propose a fuzzy approximation architecture similar to those
previously used for Q-learning, but we combine it with the model-based
Q-value iteration algorithm. We prove that the resulting algorithm con-
verges. We also give a modified, asynchronous variant of the algorithm
that converges at least as fast as the original version. An illustrative
simulation example is provided.

1 Introduction

Learning agents can tackle problems that are difficult to solve with pre-program-
med solutions. Reinforcement learning (RL) is a popular learning paradigm for
adaptive agents, thanks to its mild assumptions on the environment (which can
be a nonlinear, stochastic process), and thanks to its ability to work without an
explicit model of the environment [1,2]. At each time step, an RL agent perceives
the complete state of the environment and takes an action. This action causes
the environment to move into a new state. The agent then receives a scalar
reward signal indicating the quality of this transition. The agent’s objective is
to maximize the cumulative reward over the course of interaction. There exist
several convergent and consistent RL algorithms which have been intensively
studied [1–3]. Unfortunately, these algorithms apply in general only to problems
having discrete and not too large state-action spaces since, among others, they
require to store estimates of cumulative rewards for every state or state-action
pair. For problems with discrete but large state-action spaces, or continuous
state-action spaces, approximate algorithms have to be used.

In this paper, we analyze the convergence of some model-based reinforce-
ment learning algorithms exploiting a fuzzy approximation architecture. Our
algorithms deal with problems for which the complexity comes from the state

2 Buşoniu, Ernst, et al.

space, but not the action space, i.e., where the state space contains an infinite
or extremely large number of elements and the action space is discrete and mod-
erate in size. Most of our results also hold in the case where the action space
is large or continuous, but in that case require a discretization procedure that
selects a moderate number of representative actions. A significant number of
related fuzzy approximators have been proposed, e.g., for Q-learning [4–6] or
actor-critic algorithms [6–10]. However, most of these approaches are heuristic
in nature, and their theoretical properties have not been investigated. Notable
exceptions are the actor-critic algorithms in [8, 9].

On the other hand, a rich body of literature concerns the theoretical analysis
of approximate RL algorithms, both in a model-based setting [11–14] and when
an a priori model is not available [15–19].3 While convergence is not ensured for
an arbitrary approximator (see [11, 14] for examples of divergence), there exist
approximation schemes that do provide convergence guarantees. These mainly
belong to the family of linear basis functions, and are encountered under several
other names: kernel functions [15, 16], averagers [13], interpolative representa-
tions [17]. Some authors also investigate approximators that alter their struc-
ture during learning in order to better represent the solution [16, 20, 21]. While
some of these algorithms exhibit impressing learning capabilities, they may face
convergence problems [16].

Here, we consider an approximator that represents the Q-function using a
fuzzy partition of the state space. While similar representations have previously
been used in fuzzy Q-learning, in this paper the fuzzy approximator is combined
with the model-based Q-value iteration algorithm. The resulting algorithm is
shown to converge. Afterwards, we propose a variant of this algorithm, which
we name asynchronous fuzzy Q-iteration, and which we show converges at least
as fast as the original version. Asynchronous Q-iteration has been widely used
in exact RL , but its approximate counterpart has not been studied before.

The remainder of this paper is structured as follows. Section 2 describes
briefly the RL problem and reviews some relevant results from the dynamic pro-
gramming theory. Section 3 introduces the approximate Q-iteration algorithm,
which is an extension of the classical Q-iteration algorithm to cases where func-
tion approximators are used. Section 4 presents the proposed fuzzy approxima-
tor. The properties of synchronous and asynchronous approximate Q-iteration
using this approximator are analyzed in Section 5. Section 6 applies the algo-
rithms introduced to a nonlinear control problem with four continuous state vari-
ables, and compares the performance of the algorithms with that of Q-iteration
with radial basis function approximation. Section 7 describes possible extensions
of the algorithm for stochastic tasks and online learning. Section 8 outlines ideas
for future work and concludes the paper.

3 Some authors use ‘model-based RL ’ when referring to algorithms that build a model
of the environment from interaction. We use the term ‘model-learning’ for such
techniques, and reserve the name ‘model-based’ for algorithms that rely on an a

priori model of the environment.

Fuzzy Q-iteration with Continuous States 3

2 Reinforcement Learning

In this section, the RL task is briefly introduced and its optimal solution is
characterized. The presentation is based on [1, 2].

Consider a deterministic Markov decision process (MDP) with the state
space X, the action space U , the transition function f : X × U → X, and the
reward function ρ : X × U → R.4 As a result of the agent’s action uk in state
xk at the discrete time step k, the state changes to xk+1 = f(xk, uk). At the
same time, the agent receives the scalar reward signal rk+1 = ρ(xk, uk), which
evaluates the immediate effect of action uk, but says nothing about its long-term
effects.5

The agent chooses actions according to its policy h : X → U , using uk =
h(xk). The goal of the agent is to learn a policy that maximizes, starting from the
current moment in time (k = 0) and from any state x0, the discounted return:

R =
∞∑

k=0

γkrk+1 =
∞∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1) and xk+1 = f(xk, uk) for k ≥ 0. The discounted return com-
pactly represents the reward accumulated by the agent in the long run. The learn-
ing task is therefore to maximize the long-term performance, while only receiving
feedback about the immediate, one-step performance. This can be achieved by
computing the optimal action-value function.

An action-value function (Q-function), Qh : X × U → R, gives the return of
each state-action pair under a given policy h:

Qh(x, u) = ρ(x, u) +
∞∑

k=1

γkρ(xk, h(xk)) (2)

where x1 = f(x, u) and xk+1 = f(xk, h(xk)) for k ≥ 1. The optimal action-value
function is defined as Q∗(x, u) = maxh Q

h(x, u). Any policy that picks for every
state the action with the highest optimal Q-value:

h∗(x) = argmax
u

Q∗(x, u) (3)

is optimal, i.e., it maximizes the return (1).
A central result in RL , upon which many algorithms rely, is the Bellman

optimality equation:

Q∗(x, u) = ρ(x, u) + γmax
u′∈U

Q∗(f(x, u), u′) ∀x, u (4)

4 Throughout the paper, the standard control-theoretic notation is used: x for state, X
for state space, u for control action, U for action space, f for environment dynamics.
We denote reward functions by ρ, to distinguish them from the instantaneous rewards
r and the return R. We denote policies by h.

5 A stochastic formulation is possible. In that case, expected returns under the prob-
abilistic transitions must be considered.

4 Buşoniu, Ernst, et al.

This equation can be solved using the Q-value iteration algorithm. Let the set
of all Q-functions be denoted by Q. Define the Q-iteration mapping T : Q → Q,
which computes the right-hand side of the Bellman equation for any Q-function:

[T (Q)](x, u) = ρ(x, u) + γmax
u′∈U

Q(f(x, u), u′) (5)

Using this notation, the Bellman equation (4) states that Q∗ is a fixed point of
T , i.e., Q∗ = T (Q∗). The following result is also well-known.

Theorem 1. T is a contraction with factor γ < 1 in the infinity norm, i.e., for
any pair of functions Q and Q′, it is true that ‖T (Q)− T (Q′)‖∞ ≤ γ ‖Q−Q′‖∞.

The Q-value iteration (Q-iteration, for short) algorithm starts from an arbi-
trary Q-function Q0 and in each iteration κ updates the Q-function using the
formula Qκ+1 = T (Qκ). From Theorem 1, it follows that T has a unique fixed
point, and since from (4) this point is Q∗, the iterative scheme converges to Q∗

as κ→∞.
Q-iteration uses an a priori model of the task, in the form of the transition and

reward functions f , ρ. There also exist algorithms that do not require an a priori
model. Model-free algorithms like Q-learning work without an explicit model,
by learning directly the optimal Q-function from real or simulated experience
in the environment. Model-learning algorithms like Dyna estimate a model from
experience and use it to derive Q∗ [1].

3 Q-iteration with Function Approximation

In general, the implementation of Q-iteration (5) requires that Q-values are
stored and updated explicitly for each state-action pair. If some of the state
or action variables are continuous, the number of state-action pairs is infinite,
and an exact implementation is impossible. Instead, approximate solutions must
be used. Even if the number of state-action pairs is finite but very large, exact
Q-iteration might be impractical, and it is useful to approximate the Q-function.

The following mappings are defined in order to formalize approximate Q-
iteration (the notation follows [17]).

1. The Q-iteration mapping T , defined by equation (5).
2. The approximation mapping F : Rn → Q, which for a given value of the

parameter vector θ ∈ R
n produces an approximate Q-function Q̂ = F (θ). In

other words, the parameter vector θ is a finite representation of Q̂.
3. The projection mapping P : Q → R

n, which given a target Q-function Q
computes the parameter vector θ such that F (θ) is as close as possible to Q
(e.g., in a least-squares sense).

The notation [F (θ)](x, u) refers to the value of the Q-function F (θ) for the
state-action pair (x, u). The notation [P (Q)]l refers to the l-th component in the
parameter vector P (Q).

Fuzzy Q-iteration with Continuous States 5

Approximate Q-iteration starts with an arbitrary (e.g., identically 0) param-
eter vector θ0 and at each iteration κ updates it using the composition of the
mappings P , T , and F :

θκ+1 = PTF (θκ) (6)

Unfortunately, the approximate Q-iteration is not guaranteed to converge for
an arbitrary approximator. Counter-examples can be found for the related value-
iteration algorithm (e.g., [11]), but they apply directly to the Q-iteration algo-
rithm, as well. One particular case in which approximate Q-iteration converges
is when the composite mapping PTF is a contraction [11,13]. This property will
be used below to show that fuzzy Q-iteration converges.

4 Fuzzy Q-iteration

In this section, we propose a fuzzy approximation architecture similar to those
previously used in combination with Q-learning [4,6], and apply it to the model-
based Q-iteration algorithm. The theoretical properties of the resulting fuzzy
Q-iteration algorithm are investigated in Section 5.

In the sequel, it is assumed that the action space is discrete. We denote it
by U0 = {uj |j = 1, . . . ,M}. For instance, this discrete set can be obtained from
the discretization of an originally continuous action space. The state space can
be either continuous or discrete. In the latter case, fuzzy approximation is useful
when the number of discrete states is large.

The proposed approximation scheme relies on a fuzzy partition of the state
space into N sets Xi, each described by a membership function µi : X → [0, 1].
A state x belongs to each set i with a degree of membership µi(x). In the sequel
the following assumptions are made:

1. The fuzzy partition has been normalized, i.e.,
∑N

i=1
µi(x) = 1, ∀x ∈ X.

2. All the fuzzy sets in the partition are normal and have singleton cores, i.e.,
for every i there exists a unique xi for which µi(xi) = 1 (consequently,
µi(xi) = 0 for all i 6= i by Assumption 1). The state xi is called the core
(center value) of the set Xi. This second assumption is required here for
brevity in the description and analysis of the algorithms; it can be relaxed
using results of [11].

For two examples of fuzzy partitions that satisfy the above conditions, see
Figure 1, from Section 6.

The fuzzy approximator stores an N ×M matrix of parameters, with one
component θi,j corresponding to each core-action pair (xi, uj).

6 The approxima-
tor takes as input a state-action pair (x, uj) and outputs the Q-value:

Q̂(x, uj) = [F (θ)](x, uj) =

N∑

i=1

µi(x)θi,j (7)

6 The matrix arrangement is adopted for convenience of notation only. For the the-
oretical study of the algorithms, the collection of parameters is still regarded as a
vector, leading e.g., to ‖θ‖

∞
= maxi,j |θi,j |.

6 Buşoniu, Ernst, et al.

Algorithm 1 Synchronous fuzzy Q-iteration

1: θ0 ← 0; κ← 0
2: repeat

3: for i = 1, . . . , N, j = 1, . . . ,M do

4: θκ+1,i,j ← ρ(xi, uj) + γmaxj

∑N

i=1
µi(f(xi, uj))θκ,i,j

5: end for

6: κ← κ+ 1
7: until ‖θκ − θκ−1‖

∞
≤ δ

This is a linear basis-functions form, with the basis functions only depending
on the state. The approximator (7) can be regarded asM distinct approximators,
one for each of the M discrete actions.

The projection mapping infers from a Q-function the values of the approxi-
mator parameters according to the relation:

θi,j = [P (Q)]i,j = Q(xi, uj) (8)

Note this is the solution θ to the problem:

∑

i=1,...,N,j=1,...,M

|[F (θ)](xi, uj)−Q(xi, uj)|
2
= 0

The approximator (7), (8) shares some strong similarities with several classes
of approximators that have already been used in RL : interpolative representa-
tions [11], averagers [13], and representative-state techniques [19].

The Q-iteration algorithm using the approximation mapping (7) and projec-
tion mapping (8) can be written as Algorithm 1. To establish the equivalence
between Algorithm 1 and the approximate Q-iteration in the form (6), observe

that the right-hand side in line 4 of Algorithm 1 corresponds to [T (Q̂κ)](xi, uj),

where Q̂κ = F (θκ). Hence, line 4 can be written θκ+1,i,j ← [PTF (θκ)]i,j and
the entire for loop described by lines 3–5 is equivalent to (6).

Algorithm 2 is a different version of fuzzy Q-iteration, that makes more effi-
cient use of the updates by using the latest updated values of the parameters θ
in each step of the computation. Since the parameters are updated in an asyn-
chronous fashion, this version is called asynchronous Q-iteration (in Algorithm 2
parameters are updated in sequence, but they can actually be updated in any
order and our results still hold). Although the exact version of asynchronous
Q-iteration is widely used [1, 2], the asynchronous variant has received little at-
tention in the context of approximate RL . To differentiate between the two
versions, Algorithm 1 is hereafter called synchronous fuzzy Q-iteration.

5 Convergence of Fuzzy Q-iteration

In this section, the convergence of synchronous and asynchronous fuzzy Q-
iteration is established, i.e., it is shown that there exists a parameter vector
θ∗ such that for both algorithms, θκ → θ∗ as κ→∞. In addition, asynchronous

Fuzzy Q-iteration with Continuous States 7

Algorithm 2 Asynchronous fuzzy Q-iteration

1: θ0 ← 0; κ← 0
2: repeat

3: θ ← θκ
4: for i = 1, . . . , N, j = 1, . . . ,M do

5: θi,j ← ρ(xi, uj) + γmaxj

∑N

i=1
µi(f(xi, uj))θi,j

6: end for

7: θκ+1 ← θ

8: κ← κ+ 1
9: until ‖θκ − θκ−1‖

∞
≤ δ

fuzzy Q-iteration is shown to converge at least as fast as the synchronous version.
The distance between F (θ∗) and the true optimum Q∗, as well as the subopti-
mality of the greedy policy in F (θ∗), are also shown to be bounded [11,13]. The
consistency of fuzzy Q-iteration, i.e., the convergence to the optimal Q-function
Q∗ as the maximum distance between the cores of adjacent fuzzy sets goes to 0,
is not studied here, and is a topic for future research.

Proposition 1. Synchronous fuzzy Q-iteration (Algorithm 1) converges.

Proof. The proof follows from the proof of convergence of (synchronous) value
iteration with averagers [13], or with interpolative representations [11]. This is
because fuzzy approximation is an averager by the definition in [13], and an
interpolative representation by the definition in [11]. The main idea of the proof
is that PTF is a contraction with factor γ < 1, i.e., ‖PTF (θ)− PTF (θ′)‖∞ ≤
γ ‖θ − θ′‖∞, for any θ, θ′. This is true thanks to the non-expansive nature of P
and F , and because T is a contraction. �

It is shown next that asynchronous fuzzy Q-iteration (Algorithm 2) con-
verges. The convergence proof is similar to that for exact asynchronous value
iteration [2].

Proposition 2. Asynchronous fuzzy Q-iteration (Algorithm 2) converges.

Proof. Denote n = N · M , and rearrange the matrix θ into a vector in R
n,

placing first the elements of the first row, then the second etc. The element at
row i and column j of the matrix is now the l-th element of the vector, with
l = (i− 1) ·M + j.

Define for all l = 0, . . . , n recursively the mappings Sl : R
n → R

n as:

S0(θ) = θ, [Sl(θ)]l =

{
[PTF (Sl−1(θ))]l if l = l

[Sl−1(θ)]l if l ∈ {1, . . . , n} \ l

In words, Sl corresponds to updating the first l parameters using approxi-
mate asynchronous Q-iteration, and Sn is a complete iteration of the approx-
imate asynchronous algorithm. Now we show that Sn is a contraction, i.e.,

8 Buşoniu, Ernst, et al.

‖Sn(θ)− Sn(θ
′)‖∞ ≤ γ ‖θ − θ′‖∞, for any θ, θ′. This can be done element-by-

element. By the definition of Sl, the first element is only updated by S1:

|[Sn(θ)]1 − [Sn(θ
′)]1| = |[S1(θ)]1 − [S1(θ

′)]1|

= |[PTF (θ)]1 − [PTF (θ′)]1|

≤ γ ‖θ − θ′‖∞

The last step follows from the contraction mapping property of PTF .
Similarly, the second element is only updated by S2:

|[Sn(θ)]2 − [Sn(θ
′)]2| = |[S2(θ)]2 − [S2(θ

′)]2|

= |[PTF (S1(θ))]2 − [PTF (S1(θ
′))]2|

≤ γ ‖S1(θ)− S1(θ
′)‖∞

= γmax{|[PTF (θ)]1 − [PTF (θ′)]1| ,

|θ2 − θ′2| , . . . , |θn − θ′n|}

≤ γ ‖θ − θ′‖∞

where ‖S1(θ)− S1(θ
′)‖∞ is expressed by direct maximization over its elements,

and the contraction mapping property of PTF is used twice. Continuing in this
fashion, we obtain |[Sn(θ)]l − [Sn(θ

′)]l| ≤ γ ‖θ − θ′‖∞ for all l, and thus Sn is a
contraction. Therefore, asynchronous fuzzy Q-iteration converges. �

This proof is actually more general, showing that approximate asynchronous
Q-iteration converges for any approximation mapping F and projection map-
ping P for which PTF is a contraction. It can also be easily shown that syn-
chronous and fuzzy Q-iteration converge to the same parameter vector; indeed,
the repeated application of any contraction mapping will converge to its unique
fixed point regardless of whether it is applied in a synchronous or asynchronous
(element-by-element) fashion.

We now show that asynchronous fuzzy Q-iteration converges at least as fast
as the synchronous version. For that, we first need the following monotonicity
lemma. In this lemma, as well as in the sequel, vector and function inequalities
are understood to be satisfied element-wise.

Lemma 1 (Monotonicity of PTF). If θ ≤ θ′, then PTF (θ) ≤ PTF (θ′).

Proof. It will be shown in turn that F , T , and P are monotonous. To show that
F is monotonous we show that, given θ ≤ θ′, it follows that for all x, uj :

[F (θ)](x, uj) ≤ [F (θ′)](x, uj) ⇔

N∑

i=1

µi(x)θi,j ≤

N∑

i=1

µi(x)θ
′
i,j

The last inequality is true by the assumption θ ≤ θ′.
To show that T is monotonous we show that, given Q ≤ Q′, it follows that:

[T (Q)](x, u) ≤ [T (Q′)](x, u)

⇔ ρ(x, u) + γmax
u′∈U

Q(f(x, u), u′) ≤ ρ(x, u) + γmax
u′∈U

Q′(f(x, u), u′)

⇔ max
u′∈U

Q(f(x, u), u′) ≤ max
u′∈U

Q′(f(x, u), u′)

Fuzzy Q-iteration with Continuous States 9

The last inequality is true because Q(f(x, u), u′) ≤ Q′(f(x, u), u′) for all u′,
which follows from the assumption Q ≤ Q′.

To show that P is monotonous we show that, given Q ≤ Q′, it follows that
for all i, j:

[P (Q)]i,j ≤ [P (Q′)]i,j ⇔ Q(xi, uj) ≤ Q′(xi, uj)

The last inequality is true by assumption. Therefore, the composite mapping
PTF is monotonous. �

Proposition 3. If a parameter vector θ satisfies θ ≤ PTF (θ) ≤ θ∗, then:

(PTF)k(θ) ≤ Sk(θ) ≤ θ∗ ∀k ≥ 1

Proof. This follows from the monotonicity of PTF , and can be shown element-
wise, in a similar fashion to the proof of Proposition 2. Note that this result is
an extension of Bertsekas’ result on exact value iteration [2]. �

In words, Proposition 3 states that k iterations of asynchronous fuzzy Q-
iteration move the parameter vector at least as close to the convergence point
as k iterations of the synchronous algorithm.

The following bounds on the sub-optimality of the convergence point, and of
the policy corresponding to this point, follow from [11,13].

Proposition 4. If the action space of the original problem is discrete and all
the discrete actions are used for fuzzy Q-iteration, then the convergence point θ∗

of asynchronous and synchronous fuzzy Q-iteration satisfies:

‖Q∗ − F (θ∗)‖∞ ≤
2ε

1− γ
(9)

‖Q∗ −Qĥ∗

‖∞ ≤
4γε

(1− γ)2
(10)

where ε = minQ
∥∥Q∗ −Q

∥∥
∞

is the minimum distance between Q∗ and any fixed

point Q of the composite mapping FP , and Qĥ∗

is the Q-function of the approx-

imately optimal policy ĥ∗(x) = argmaxu[F (θ∗)](x, u).

For example, any Q-function that satisfies Q(x, uj) =
∑N

i=1
µi(x)Q(xi, uj)

for all x, j is a fixed point of FP . In particular, if the optimal Q-function has
this form, i.e., is exactly representable by the chosen fuzzy approximator, the
algorithm will converge to it, and the corresponding policy will be optimal (since
in this case ε = 0).

In this section, we have established fuzzy Q-value iteration as a theoretically
sound technique to perform approximate RL in continuous-variable tasks. In
addition to the convergence of both synchronous and asynchronous fuzzy Q-
iteration, it was shown that the asynchronous version converges at least as fast
as the synchronous one, and therefore might be more desirable in practice. When
the action space is discrete, the approximation error of the resulting Q-function
is bounded (9) and the sub-optimality of the resulting policy is also bounded (10)
(the latter may be more relevant in practice). These bounds provide confidence
in the results of fuzzy Q-iteration.

10 Buşoniu, Ernst, et al.

6 Example: 2-D Navigation

In this section, fuzzy Q-iteration is applied to a two-dimensional (2-D) simulated
navigation problem with continuous state and action variables. A point-mass
with a unit mass value (1kg) has to be steered on a rectangular surface such that
it gets close to the origin in minimum time, and stays there. The state x contains
the 2-D coordinates of the point mass, cx and cy, and its 2-D velocity: x =
[cx, cy, ċx, ċy]

T. The motion of the point-mass is affected by friction, which can
vary with the position, making the dynamics nonlinear. Formally, the continuous-
time dynamics of this system are:

[
c̈x
c̈y

]
=

[
ux

uy

]
− b(cx, cy)

[
ċx
ċy

]
(11)

where the control input u = [ux, uy]
T is a 2-D force (acceleration), and the scalar

function b(cx, cy) is the position-dependent damping coefficient (friction). All the
state and action variables are bounded. The bounds are listed in Table 1, along
with the meaning and units of all the variables.

Table 1. Variables for the navigation problem.

Symbol Parameter Domain; Unit

cx, cy horizontal, vertical coordinate [−5, 5]m
ċx, ċy horizontal, vertical velocity [−2, 2]m/s
ux, uy horizontal, vertical control force [−1, 1]N
b damping coefficient R

+ kg/s

To obtain the transition function f for RL , time is discretized with a step
of Ts = 0.2 s, and the dynamics (11) are numerically integrated between the
sampling instants.7 The goal of reaching the origin in minimum time is expressed
by the following reward function:

ρ(x, u) =

{
10 if ‖x‖∞ ≤ 0.2

0 otherwise
(12)

This means that the coordinates and the velocities along each axis have to be
smaller than 0.2 in magnitude for the agent to get a non-zero reward.

The control force is discretized into 9 discrete values: U0 = {−1, 0, 1} ×
{−1, 0, 1}. These correspond to full acceleration into the 4 cardinal directions,
diagonally, and no acceleration at all. Each of the individual velocity domains
is partitioned into a triangular fuzzy partition with three fuzzy sets centered at
{−2, 0, 2}, as in Figure 1, left. Since the triangular partition satisfies Assump-
tions 1, 2, the set of cores completely determines the shape of the membership
functions. Triangular partitions are also used for the position coordinates. Dif-
ferent partitions of the position variables are used for each of the two damping
landscapes considered in the sequel.

7 The numerical integration algorithm is the Dormand-Prince variant of Runge-Kutta,
as implemented in the MATLAB 7.2 function ode45.

Fuzzy Q-iteration with Continuous States 11

1

0.5

−2
0

−1 0 1 2

ċx

µ
ċ
x
,i
3
(ċ

x
)

Fig. 1. Left: triangular fuzzy partition for ċx ∈ [−2, 2]. Each membership function is
plotted in a different line style. The partition for ċy is identical. Right: composition of
the fuzzy partitions for ċx, ċy, yielding the two-dimensional fuzzy partition for [ċx, ċy]

T.
Each membership surface is plotted in a different style. The original single-dimensional
fuzzy partitions are highlighted in full black lines.

The fuzzy partition of the state space X = [−5, 5]2 × [−2, 2]2 is then de-
fined as follows. One fuzzy set is computed for each combination (i1, i2, i3, i4)
of individual sets for the four state components: µcx,i1 ; µcy,i2 ; µċx,i3 ; and µċy,i4 .
The membership function of each composite set is defined as the product of the
individual membership functions, applied to their individual variables:

µ(x) = µcx,i1(cx) · µcy,i2(cy) · µċx,i3(ċx) · µċy,i4(ċy) (13)

where x = [cx, cy, ċx, ċy]
T. It is easy to verify that the fuzzy partition computed

in this way still satisfies Assumptions 1, 2. This way of building the state space
partition can be thought of as a conjunction of one-dimensional concepts corre-
sponding to the fuzzy partitions of the individual state variables. An example of
such a composition for the two velocity variables is given in Figure 1, right.

6.1 Uniform Damping Landscape

In a first, simple scenario, the damping was kept constant: b(cx, cy) = b0 =
0.5 kg/s. Identical triangular fuzzy partitions were defined for cx and cy, with
the cores in {−5,−2,−0.3,−0.1, 0, 0.1, 0.3, 2, 5}. Asynchronous and synchronous
fuzzy Q-iteration were run with the discount factor γ = 0.98 and the threshold
δ = 0.01 (see Algorithms 1 and 2). The parameters γ and δ are set somewhat
arbitrarily, but their variation around the given values does not significantly
affect the computed policy. The asynchronous algorithm converged in 339 iter-
ations; the synchronous one in 343. Therefore, in this particular problem, the
speed of convergence for the asynchronous algorithm is close to the speed for
the synchronous one (i.e., the worst-case bound). The policies computed by the
two algorithms are similar.

A continuous policy was obtained by interpolating between the best lo-
cal actions, using the membership degrees as weights: ĥ∗(x) =

∑N

i=1
µi(x)uj∗

i
,

where j∗i is the index of the best local action for the core state xi, j∗i =
argmaxj [F (θ∗)](xi, uj) = argmaxj θ

∗
i,j .

12 Buşoniu, Ernst, et al.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

cx

c y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

R=236

R=236

R=295

R=236

cx

c y
Fig. 2. Left: The policy for constant damping, when ċx = ċy = 0. The direction and
magnitude of the control force in a grid of sample points (marked by dots) is indicated
by lines. Thick, black lines indicate exact policy values in the cores of the fuzzy sets
(marked by thick, black dots). Right: A set of representative trajectories, each given
in a different shade of gray. The initial velocity is always zero. The position of the
point-mass at each sample is indicated by dots. The closer the dots, the smaller the
velocity is. The accumulated discounted return is displayed alongside each trajectory,
rounded off toward zero.

Figure 2 presents a slice through the computed policy for zero velocity,
ĥ∗(cx, cy, 0, 0), and plots some representative trajectories. The zero-velocity slice
is clearly different from the optimal continuous-action policy, which would steer
the agent directly towards the goal zone from any position. Also, since the ac-
tions are originally continuous, the bound (10) does not apply. Nevertheless, the
zero-velocity slice presented in the figure is close to the best that can be achieved
with the given action quantization.

6.2 Varying Damping Landscape

In the second scenario, to increase the difficulty of the problem, the damping
(friction with the surface) varies as an affine sum of L Gaussian functions:

b(cx, cy) = b0 +

L∑

i=1

bi exp

[
−
(cx − gx,i)

2

σ2
x,i

−
(cy − gy,i)

2

σ2
y,i

]
(14)

The chosen values were: b0 = 0.5, L = 2, b1 = b2 = 8, gx,1 = 0, gy,1 = −2.3,
σx,1 = 2.5, σx,2 = 1.5, and for the second Gaussian function: gx,2 = 4.7, gy,2 = 1,
σx,2 = 1.5, σy,2 = 2. So, the damping is largest (around 8.5 kg/s) at positions
(0,−2.3) and (4.7, 1). The damping variation can be observed in Figure 3, where
the surface is colored darker when the damping is larger.

The fuzzy set cores for the position partition are marked by thick black dots
in Figure 3, left. They were chosen based on prior knowledge about the position

Fuzzy Q-iteration with Continuous States 13

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

cx

c y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

R=209 R=161

R=261
R=222

R=193

cx

c y
Fig. 3. Left: The policy for varying damping (14), when ċx = ċy = 0. Darker areas
indicate larger damping. The direction and magnitude of the control force in a grid of
sample points is indicated. The thick, black lines indicate exact policy values in the
cores of the fuzzy partition. Right: A set of representative controlled trajectories with
the associated returns.

of the high-friction areas. The cores include representative points around these
areas, and some points near the goal. Asynchronous and synchronous fuzzy Q-
iteration were run with the same settings as before, and converged in the same
number of iterations. Figure 2 presents a slice through the resulting policy for
zero velocity, ĥ∗(cx, cy, 0, 0), together with several sample trajectories. It can be
clearly seen how the policy steers around the high-friction areas, and how the
interpolation helps in providing meaningful commands between the fuzzy cores.

6.3 Comparison with RBF Q-iteration

There exist other approximators than fuzzy partitions that could be combined
with Q-iteration to yield convergent algorithms. These approximators are usually
restricted classes of linear basis functions, satisfying conditions related to (but
different from) Assumption 2 of Section 4. As space limitations do not allow for
an extensive comparison of fuzzy Q-iteration with such algorithms, this section
compares it with one of them, namely Q-iteration with normalized radial basis
function (RBF) approximation.

Define a set of N normalized RBF s ϕi : X → R, i = 1, . . . , N , as follows:

ϕi(x) =
ϕ
i
(x)

∑N

i′=1
ϕ
i′
(x)

, ϕ
i
(x) = exp

(
−

d∑

d′=1

(xd′ − xi,d′)2

σ2
i,d′

)
(15)

where ϕ
i
are (unnormalized) Gaussian axis-oriented RBF s, xi is the d-dimensional

center of the i-th RBF , and σi is its d-dimensional radius. Axis-oriented RBF s
were selected for a fair comparison, because the triangular fuzzy partitions are
also defined separately for each variable and then combined.

14 Buşoniu, Ernst, et al.

Denote ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T. Assume that x1, . . . , xN are all distinct
from each other. Form the matrix ϕ = [ϕ(x1), . . . , ϕ(xN)] ∈ R

N×N , which is
invertible by construction. Define also a matrix Q ∈ R

N×M that collects the Q-
values of the RBF centers: Qi,j = Q(xi, uj). RBF Q-iteration uses the following
approximation and projection mappings:

[F (θ)](x, uj) =

N∑

i=1

ϕi(x)θi,j , P (Q) = (ϕ−1)TQ (16)

The convergence of RBF Q-iteration to a fixed point θ∗ can be guaranteed
if:

N∑

i′=1,i′ 6=i

ϕi′(xi) <
1− γ/γ′

2
(17)

for all i and some γ′ ∈ (γ, 1). Equation (17) restricts the sum of the values that
the other RBF s take at the center of the i-th RBF . This is an extension of the
result in [11] for normalized RBF s (the original result is given for unnormalized
basis functions).

For a fair comparison with fuzzy Q-iteration, the number of RBF s is set
equal to the number of fuzzy membership functions, and their centers are iden-
tical to the cores of the fuzzy membership functions. In order to have a set
of radii ensuring convergence, that is a set of radii satisfying the inequalities
(17), a problem involving linear constraints has been solved. The details of this
procedure are left out due to space constraints.

When used with the same reward function and action quantization as fuzzy
Q-iteration, RBF Q-iteration was unable to learn an appropriate solution. To
help the algorithm, a finer quantization of the action space was provided: U =
{−1,−0.2, 0, 0.2, 1}× {−1,−0.2, 0, 0.2, 1}, and the reward function was changed
to include a quadratic term in the state:

ρ(x, u) = −x′T diag(0.2, 0.2, 0.1, 0.1)x′ +

{
10 if ‖x‖∞ ≤ 0.2

0 otherwise
(18)

where x′ = f(x, u) and diag(·) denotes a square matrix with the elements given
as arguments on the diagonal, and zeros elsewhere.

The results for varying damping are presented in Figure 4 (compare with
Figure 3). A discrete policy was used, because it gave better results than the
interpolated policy. To make the comparison with fuzzy Q-iteration easier, the
original reward function (12) was used to compute the returns. Comparing the
returns of the respective trajectories, the performance of the policy computed
with RBF Q-iteration is worse than for fuzzy Q-iteration. From some of the
initial states considered the RBF policy is not able to reach the goal region at
all. In the left part of Figure 4, it can be seen that the RBF policy is incorrect
on an entire vertical band around cx = 1. Also, there is no sign that the high-
damping regions are considered in the policy.8

8 In the uniform damping case, the goal region is reached by the RBF policy from all
the considered initial states, but in a longer time than using the fuzzy policy.

Fuzzy Q-iteration with Continuous States 15

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

cx

c y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

R=62 R=0

R=218
R=0

R=0

cx

c y

Fig. 4. Left: The discrete policy for RBF Q-iteration and varying damping. Right: A
set of representative system trajectories when controlled with the RBF policy, with the
associated returns.

A possible reason for the worse results of RBF approximation is that the
Q-functions obtained by RBF interpolation are less smooth than those obtained
with triangular fuzzy partitions (which lead essentially to multi-linear interpola-
tion). This effect becomes more pronounced due to the convergence constraints
(17) imposed on the RBF radii.

7 Possible Extensions

Although the results above were given for deterministic MDP s, fuzzy Q-iteration
can be extended to stochastic problems. For instance, the asynchronous update
in line 5 of Algorithm 2 becomes in the stochastic case θi,j ← E

{
ρ(xi, uj , x

′) +

γmaxj
∑N

i=1
µi(x

′)θi,j
}
. Here, x′ is sampled from the density function f(xi, uj , ·)

of the next state given xi and uj . If this expectation can be computed exactly
(e.g., there is a finite number of possible successor states), our results apply.
In general, Monte-Carlo estimation can be used to compute the expectation.
Asymptotically, as the number of samples grows to infinity, the estimate con-
verges to the true expectation and our results can again be applied. When the
number of samples is finite, [12] provides error bounds for the value iteration
algorithm. These bounds could be extended to the Q-value iteration algorithm.

Fuzzy approximation can also be used online and without a model, with
an arbitrary (but fixed) exploration policy, by applying the results of [17]. The
same paper provides an adaptive multi-stage algorithm that converges to the
true optimum as the basis functions (fuzzy membership functions, in this case)
become infinitely dense in the state space.

16 Buşoniu, Ernst, et al.

An intermediate step is to use an offline algorithm, but with arbitrary state
samples that might be different from the fuzzy cores. For this case, the dynamics
and reward function of a discrete MDP with the state space equal to the set of
fuzzy cores can be computed as in [19]. A solution to this discrete MDP can be
computed with a model-based algorithm, and from this an approximate solution
to the original problem can be derived.

8 Conclusion and Future Work

In this work, we have considered a model-based reinforcement learning approach
employing parametric fuzzy approximators to represent the state-action value
functions. We have proposed two different ways for updating the parameters
of the fuzzy approximator, a synchronous and an asynchronous one. We have
shown that both updates lead to convergent algorithms, with the asynchronous
version converging at least as fast as the synchronous one. The algorithms per-
formed well in a nonlinear control problem with four continuous state variables.
Fuzzy Q-iteration also performed better than Q-iteration with normalized RBF
approximation.

There exist other approximators than fuzzy partitions and RBF that could
be combined with Q-iteration to yield convergent algorithms. These approxima-
tors are usually restricted classes of linear basis functions, satisfying conditions
related to (but different from) Assumption 2 of Section 4. It would certainly
be interesting to investigate which convergent approximator provides the best
performance when combined with approximate Q-iteration.

The fuzzy approximator plays a crucial role in our approach. It determines
the computational complexity of fuzzy Q-iteration, as well as the accuracy of the
solution. While we considered in this paper that the membership functions were
given a priori, we suggest as a future research direction to develop techniques
to determine for a given accuracy an approximator with a small number of
membership functions. The computational cost of these techniques should not
be larger than using a more complex, pre-designed approximator that ensures the
same accuracy. Another interesting direction would be to study the consistency
properties of fuzzy Q-iteration: whether the algorithm converges to the optimal
solution as the distance between fuzzy cores decreases to 0.

Acknowledgement: This research is financially supported by the BSIK-ICIS project

“Interactive Collaborative Information Systems” (grant no. BSIK03024), by the NWO

Van Gogh grant VGP 79-99, and by the STW-VIDI project “Multi-Agent Control of

Large-Scale Hybrid Systems” (DWV.6188).

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

2. Bertsekas, D.P.: Dynamic Programming and Optimal Control. 2nd edn. Volume 2.
Athena Scientific (2001)

3. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8 (1992) 279–292

Fuzzy Q-iteration with Continuous States 17

4. Glorennec, P.Y.: Reinforcement learning: An overview. In: Proceedings Euro-
pean Symposium on Intelligent Techniques (ESIT-00), Aachen, Germany (14–15
September 2000) 17–35

5. Horiuchi, T., Fujino, A., Katai, O., Sawaragi, T.: Fuzzy interpolation-based Q-
learning with continuous states and actions. In: Proceedings 5th IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE-96), New Orleans, US (8-11
September 1996) 594–600

6. Jouffe, L.: Fuzzy inference system learning by reinforcement methods. IEEE Trans-
actions on Systems, Man, and Cybernetics—Part C: Applications and Reviews
28(3) (1998) 338–355

7. Berenji, H.R., Khedkar, P.: Learning and tuning fuzzy logic controllers through
reinforcements. IEEE Transactions on Neural Networks 3(5) (1992) 724–740

8. Berenji, H.R., Vengerov, D.: A convergent actor-critic-based FRL algorithm with
application to power management of wireless transmitters. IEEE Transactions on
Fuzzy Systems 11(4) (2003) 478–485

9. Vengerov, D., Bambos, N., Berenji, H.R.: A fuzzy reinforcement learning approach
to power control in wireless transmitters. IEEE Transactions on Systems, Man,
and Cybernetics—Part B: Cybernetics 35(4) (2005) 768–778

10. Lin, C.K.: A reinforcement learning adaptive fuzzy controller for robots. Fuzzy
Sets and Systems 137 (2003) 339–352

11. Tsitsiklis, J.N., Van Roy, B.: Feature-based methods for large scale dynamic pro-
gramming. Machine Learning 22(1–3) (1996) 59–94

12. Szepesvári, C., Munos, R.: Finite time bounds for sampling based fitted value
iteration. In: Proceedings Twenty-Second International Conference on Machine
Learning (ICML-05), Bonn, Germany (7–11 August 2005) 880–887

13. Gordon, G.: Stable function approximation in dynamic programming. In: Pro-
ceedings Twelfth International Conference on Machine Learning (ICML-95), Tahoe
City, US (9–12 July 1995) 261–268

14. Wiering, M.: Convergence and divergence in standard and averaging reinforce-
ment learning. In: Proceedings 15th European Conference on Machine Learning
(ECML’04), Pisa, Italy (20–24 September 2004) 477–488

15. Ormoneit, D., Sen, S.: Kernel-based reinforcement learning. Machine Learning
49(2–3) (2002) 161–178

16. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research 6 (2005) 503–556

17. Szepesvári, C., Smart, W.D.: Interpolation-based Q-learning. In: Proceedings
Twenty-First International Conference on Machine Learning (ICML-04), Bannf,
Canada (4–8 July 2004)

18. Singh, S.P., Jaakkola, T., Jordan, M.I.: Reinforcement learning with soft state
aggregation. In: Advances in Neural Information Processing Systems 7 (NIPS-94),
Denver, US (1994) 361–368

19. Ernst, D.: Near Optimal Closed-loop Control. Application to Electric Power Sys-
tems. PhD thesis, University of Liège, Belgium (March 2003)

20. Munos, R., Moore, A.: Variable-resolution discretization in optimal control. Ma-
chine Learning 49(2-3) (2002) 291–323

21. Sherstov, A., Stone, P.: Function approximation via tile coding: Automating pa-
rameter choice. In: Proceedings 6th International Symposium on Abstraction,
Reformulation and Approximation (SARA-05). Volume 3607 of Lecture Notes in
Computer Science., Airth Castle, Scotland, UK (26–29 July 2005) 194–205

