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Influencing Long-Term Route Choice by Traffic

Control Measures – A Model Study ⋆

M. van den Berg ∗ A. Hegyi ∗ B. De Schutter ∗ J. Hellendoorn ∗

∗ Delft University of Technology, Delft, The Netherlands (email:
{monique.vandenberg,a.hegyi,j.hellendoorn}@tudelft.nl, b@deschutter.info)

Abstract: Currently used traffic control measures, such as traffic signals, variable speed limits, ramp
metering installations etc., are often not designed to influence the route choice of drivers. However,
traffic control measures do influence the travel times that are experienced in the network. Since route
choice is, at least for a part, based on experienced travel times, the control measures thus also influence
the long-term route choice. This influence can be seen as a side-effect of the control measures, but in
this paper we will investigate the possibilities to explicitly and actively use the influence of the traffic
control measures to change the long-term route choice. Using basic traffic flow and route choice models
we investigate how outflow and speed limit control can affect the final equilibrium turning fractions.
As an example we consider a case study for a simple network with two routes and use a simple linear
outflow controller, which makes the analytical investigation of the effects of the controller possible, but
the results can be extended to more sophisticated control methods.

1. INTRODUCTION

In road networks locations are often connected by more than
one route, which means that drivers who want to go from an
origin to a destination have to choose which route to take. When
all drivers make such a route choice this results in a traffic
assignment that is preferred according to the preferences of
the drivers. A traffic assignment gives the number of drivers
that have selected each route. Such an assignment resulting
from the preferred route choice of the drivers may lead to
large traffic flows on narrow or dangerous roads, to socially
undesired situations (e.g. too many vehicles in residential areas
or near primary schools), or to too large flows near national
parks causing pollution and noise. To prevent negative effects
of large traffic flows, road administrators can try to influence
the route choice of the drivers, to reach a traffic assignment with
less traffic on some roads.

Different methods are available to influence the route choice.
At this moment, much attention is payed to providing informa-
tion, either pre-trip, en-route, or post-trip. Furthermore, some
experiments with traffic control measures have shown that these
measures can influence the route choice (Haj-Salem and Papa-
georgiou, 1995; Taale and van Zuylen, 1999). This has led to
the theoretical development of methods to incorporate the effect
of existing traffic control measures on route choice (Bellemans
et al., 2003; Karimi et al., 2004; Wang and Papageorgiou,
2002). In this paper however, we investigate how we can change
the settings of the traffic control measures so as to steer the
traffic flows towards different, desired equilibria. Route choice
is in equilibrium when no driver can change its route without in-
creasing its costs, as described by Wardrop (1952). This means
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that all routes which are used have equal costs, while the costs
of unused routes are larger.

In this paper we consider control methods that can be used
for the upper layer controller of a multi-layer control system.
We describe an upper layer controller which tries to achieve a
desired traffic assignment. This will result in desired settings
for the mean outflow capacity of the links in the network,
and desired mean speeds on these links. We assume that the
lower level controllers use these desired settings as targets, and
optimize the local situation in such a way that these desired
capacities and speeds are obtained. In our approach the upper
level controller uses a basic static route choice model. This
allows for analytical descriptions of the behavior of traffic
flows, and for formulating intuitive explanations. We assume
that the experienced travel time is the most important factor
in route choice, which is also argued for by Bogers et al.
(2005). We also assume that we can influence the travel time
by changing the outflow of the links, and the speed on these
links.

To describe the properties of traffic that are useful for influenc-
ing route choice, two models are required: a route choice model
and a travel time model. Since the main goal of this paper is
to gain insight in the mechanisms regarding control of route
choices, we select simple models and controllers, to be able
to provide analytical descriptions of the behavior of the traffic
flows, and to formulate intuitive explanations.

This paper is organized as follows. In the next section we
first introduce the small network with two routes that we use
for our exposition and for illustrating how traffic control can
affect long-term route choice. Note however, that the models
introduced in this paper can easily be extended to more com-
plex situations with multiple, possibly overlapping routes. In
Section 3 we present a model that describes the experienced
travel times, and a model that relates these experienced travel
times to route choices. In Section 4 we look at the equilibrium
turning fractions that are the result of the selected model, net-
work, and traffic demands when no control is applied. Next, we
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Fig. 1. Network with two routes

investigate the possibilities of outflow control and speed limit
control in Section 5. In Section 6 we illustrate the proposed
approach using a simple linear outflow controller. At last, some
conclusions about the possibilities of route choice control with
existing control measures are drawn in Section 7.

2. A BASIC ROUTE CHOICE NETWORK

To obtain simple and intuitive results, we require a simple
network. When working with route choice, a network with two
routes between an origin and a destination is the most simple, as
shown in Figure 1. Such a network contains all features that are
required for route choice, but is small enough to make intuitive
understanding possible. We will use this network during the
remainder of the paper. We assume that drivers enter this
network at the origin and make their route choice immediately.
Then they experience a travel time during their trip through the
network and leave the network at the destination.

We will look at the day-to-day evolution of the traffic flows in
particular period of the day, e.g. the morning peak. The length
of the period is denoted by T (h). During this period we assume
that the traffic demand Qtot (veh/h) in the network is constant.
The demand is distributed over the two routes according to the
turning fraction β (d), which gives the fraction of the vehicles
that select route 1 on day d. The turning fraction is computed
with the route choice model described in Section 3.2. Each
route r (r ∈ {1,2}) is characterized by its length lr (km) and its
outflow capacity Cr (veh/h). Another characteristic of a route
is the free-flow travel time, which describes the time that a
vehicle needs to travel a route when there is no delay (i.e., no
congestion). The free-flow travel time on route r is given by:

θ free
r =

lr

vmax
r

(1)

where vmax
r denotes the maximum speed (km/h) on route r.

3. BASIC ROUTE CHOICE MODEL

In this section we describe how the travel time experienced on
a given route on a particular day affects the route choice on the
following day(s). More specifically, we will first formulate the
travel time model, and next describe the resulting route choice
model.

3.1 Travel time model

Recall that we assume that travel time is the most important
factor that influences route choice (Bogers et al., 2005). So to
describe the route choice, we thus need a model that describes
the experienced travel time when a driver selects a given route.
Travel times can be computed in two different ways: either
by simulation or analytically. Traffic flow models that can be
used for the first approach are described in (Quadstone, 2002;
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Fig. 2. Queue length on a link during one day

Barceló and Ferrer, 1997; Messmer and Papageorgiou, 1990;
Daganzo, 1994). The second approach uses travel time models
which are described in e.g. (Fisk, 1980), and of which an
overview is given in (Carey and Ge, 2003). We will determine
the travel times analytically based on the number of vehicles in
the link and Cr.

In our model, the queues are assumed to be vertical 1 . This
means that the vehicles drive the whole route without delay,
experiencing the free-flow travel time. At the end of the route,
the vehicles enter the vertical queue and wait in this queue until
they can leave the route. As a consequence, the travel time on
given route consists of two components: the free-flow travel
time and the time spent in the queue (which is taken to be 0
if no queue is present):

θr(d) = θ free
r +θ queue

r (d) . (2)

The free-flow travel time θ free
r is defined in (1). The time in the

queue depends on the number of vehicles in the queue. Let us
first consider route r = 1. During one peak period, the queue
at the end of route 1 grows as shown in Figure 2. Recall that
the length of the peak period is denoted by T and that β (d)Qtot

gives the flow on route 1. Let N(t) be the number of vehicles in
the queue at time t. When the free-flow travel time has passed,
the first vehicles reach the end of the route and the queue starts
to build up if the demand exceeds the capacity of the route.
In Figure 2 the queue length is plotted for different demands.
When the demand on route 1 is less than the capacity of route
1, i.e., β (d)Qtot ≤ C1, no queue appears. When the demand is
larger than the outflow limit a queue starts to grow, with rate
β (d)Qtot −C1.

The route choice model that we will describe in Section 3.2
requires the mean travel time for each day. To obtain this mean
travel time, we first have to compute the average number of
vehicles Nmean

1 (d), if any, in the queue for day d. The average
number of vehicles is given by the area below the graph of
Figure 2 divided by the period in which the queue exists:

Nmean
1 (d) =

(β (d)Qtot −C1)(T −θ free
1 )

2
if β (d)Qtot ≥C1 ,

and is equal to 0 otherwise.
The travel time in the queue is given by the time that a vehicle
needs to reach the downstream end of the queue starting from
the time instant that the vehicle enters at the upstream end of
the queue. Since C1 vehicles are leaving the queue each hour,
this time is given by:

θ
queue
1 (d) =

Nmean
1 (d)

C1
=

(β (d)Qtot −C1)(T −θ free
1 )

2C1

1 A vertical queue is a virtual queue that has no physical length but stores the

vehicles just in front of the bottleneck.



if β (d)Qtot ≥ C1. Since θ
queue
1 (d) equals 0 if there is no queue

(i.e., if β (d)Qtot < C1) and since we may assume without loss

of generality that θ free
1 ≤ T , we can combine both situations:

θ
queue
1 (d) = max

(

0,
(β (d)Qtot −C1)(T −θ free

1 )

2C1

)

. (3)

Similar computations can be done for route 2. Note however
that the traffic that enters route 2 is given by (1− β (d))Qtot,
which results in

θ
queue
2 (d) = max

(

0,
((1−β (d))Qtot −C2)(T −θ free

2 )

2C2

)

. (4)

3.2 Route choice model

There exist different models for describing how many drivers
select a route. Traffic assignment models (Daganzo and Sheffi,
1977; Bliemer, 2000; Peeta and Mahmassani, 1995) compute
an equilibrium traffic assignment for the whole network. Route
choice models (Bogers et al., 2005; Mahmassani et al., 2003;
Ben-Akiva et al., 1991) describe the route choice of drivers at
locations where a route must be selected. Below we develop a
route choice model that requires little computational effort and
that is very intuitive.

We assume that the route choice only depends on previously
experienced travel times (Bogers et al., 2005). The mean ex-
perienced travel times are assumed to be known by all drivers,
which leads to the assumption that all the drivers are completely
informed, meaning that they know the travel times on both
routes (e.g., via travel information services), independent of the
route they have selected.

We use the following model to update the turning fractions from
one day to the next based on the difference in travel times on
the two routes:

β (d +1) = β (d)+κ(θ2(d)−θ1(d)) .

The factor κ expresses the number of drivers that will change
their route based on the travel time difference, combined with
a learning factor that describes how fast the drivers will change
their behavior.

Now we combine this route choice model with the model for
the travel time described in (3) and (4). The total route choice
model is then given by:

β (d +1) = β (d)+ (5)

κ
(

max(0,
((1−β (d))Qtot −C2)(T −θ free

2 )

2C2
)

−max(0,
(β (d)Qtot −C1)(T −θ free

1 )

2C1
)+θ free

2 −θ free
1

)

.

4. EQUILIBRIUM TURNING FRACTIONS

In this section we describe the long-term evolution of the
turning fractions when no control is applied. Depending on the
particular demand Qtot, driver route choice rate κ , the initial
turning fraction β (0), and capacities C1 and C2 of the routes,
either oscillations could occur, or the turning fractions could
converge to an equilibrium. Oscillations can happen when, e.g.,
drivers react too strongly on travel time differences or when the
capacity of one of the roads is relatively low. In the remainder
we will now focus on the equilibrium case.

To compute the equilibrium turning fractions we set β (d+1) =
β (d). The value of the equilibrium turning fraction depends on

the free-flow times θ free
1 and θ free

2 of the two routes, and on the
traffic demand Qtot. Note that we use a fixed demand, which
together with the selected travel time model results in a static
traffic assignment when the equilibrium is reached. This allows
for the use of basic analytical methods to describe the resulting
equilibria. Note that in general the equilibrium turning fraction
does not depend on the parameter κ . This means that the time
constant (or learning rate) does not influence the equilibrium
that is reached.

In the following subsections, we investigate situations where
route 1 has the lowest free flow travel time, where route 2 has
the lowest free flow travel time, and where both routes take
equally long. For each of these situations, we examine a low
demand that leads to no queues at all, a demand that leads to a
queue on one route, and a demand that leads to a queue on both
routes.

4.1 Route 1 has lowest free flow travel time

When θ free
1 < θ free

2 route 1 will in general be the most desired
route. When the total demand is lower than the capacity of route
1, all the traffic will take it: β eq = 1 if Qtot ≤ C1, where β eq is
the turning fraction during the equilibrium.

When the demand is larger than the capacity of route 1, but is
smaller than the total capacity C1 +C2, most of the traffic will
take route 1, which will result in a queue on this route. When
the travel time on route 1 exceeds the free-flow travel time on
route 2, a part of the traffic will use route 2. In this case, (5) can
be reduced to:

β (d +1) =β (d)+ (6)

κ
(

−
(β (d)Qtot −C1)(T −θ free

1 )

2C1
+θ free

2 −θ free
1

)

since there is only a queue on route 1 and not on route 2. Setting
β (d + 1) = β (d) = β eq leads to the following equilibrium
turning fraction:

β eq =
C1

Qtot
+
(θ free

2 −θ free
1 )2C1

Qtot(T −θ free
1 )

if Qtot ≥C1 and Qtot ≤C1 +C2.

When the demand is larger than the total capacity, the traffic
is divided over the two routes. On both routes a queue forms.
Equation (5) can then be rewritten as:

β (d +1) =β (d)+κ
( ((1−β (d))Qtot −C2)(T −θ free

2 )

2C2

−
(β (d)Qtot −C1)(T −θ free

1 )

2C1
+θ free

2 −θ free
1

)

which at equilibrium, with β (d +1) = β (d) = β eq leads to

β eq =
C1Qtot(T −θ free

2 )+3C1C2(θ
free
2 −θ free

1 )

Qtot(C1(T −θ free
2 )+C2(T −θ free

1 ))
(7)

if Qtot >C1 +C2 .

4.2 Route 2 has lowest free flow travel time

In this case θ free
1 > θ free

2 , and thus route 2 is most desired
route for the drivers. The possible equilibria are computed using
similar equations as in Section 4.1. In particular, when the
demand is larger than the capacity of the second route, this
gives:



β eq =
Qtot −C2

Qtot
+

2C2(θ
free
2 −θ free

1 )

Qtot(T −θ free
2 )

(8)

if Qtot ≥C2 and Qtot ≤C1 +C2 .

The other equations can be obtained in a similar way from the
equations in Section 4.1.

4.3 The routes are equally long: θ free
1 = θ free

2

When both routes have the same free-flow travel time, the
equilibrium turning fractions can depend on the initial turning
fraction, β 0. This is because drivers in this case will only
change their route when a queue is formed.

A queue on a route is formed when the initial turning fraction
results in a flow larger than the capacity on this route: β 0Qtot >
C1 for route 1 or (1−β 0)Qtot > C2 for route 2. In these cases
the equilibrium turning fraction is such that the flow on a route
equals the capacity flow of this route:

β eq =
C1

Qtot
if β 0 ≥

C1

Qtot
and Qtot >C1 and Qtot ≤C1 +C2

when a queue is formed on route 1, and

β eq =
Qtot −C2

Qtot
if β 0 ≤ 1−

C2

Qtot

and Qtot ≥C2 and Qtot ≤C1 +C2

when a queue is formed on route 2.

When no queue is formed, so when β 0Qtot ≤ C1 and (1 −
β 0)Qtot ≤ C2 with Qtot ≤ C1 +C2, the equilibrium turning

fraction lies in the interval
[

1− C2
Qtot

, C1
Qtot

]

:

β eq = β 0 if β 0 ∈ [1−
C2

Qtot
,

C1

Qtot
] and Qtot ≤C1 +C2 .

This shows that when no queue is formed there is no need for
the drivers to change their route choice, because without queue
the travel times on the routes are equal. When the demand is
so low that no queue can be formed at all, i.e. Qtot < C1 and
Qtot <C2, the equilibrium turning fraction is equal to the initial
turning fraction β 0, and can have all values in the interval [0,1].

A queue will be formed when the demand is larger than the
total capacity. In this case the route choice depends on the ratio
between the capacities of the two routes, since the free-flow
travel times are equal and thus the capacities determine the
queue lengths:

β eq =
C1

C1 +C2
if Qtot >C1 +C2 .

5. INFLUENCING LONG-TERM ROUTE CHOICE VIA
TRAFFIC CONTROL

In this section we will consider two methods to influence the
long-term route choice via traffic control measures. Traffic
can be controlled in different ways, and the traffic control
system can have many different goals, e.g. improve throughput,
reduce travel time, decrease the delay, reduce queue lengths,
etc. Note that the long-term route choice that is reached without
intervention may not always correspond to the desired situation.
Goals directly related to route choice are e.g. reducing pollution
in specified areas, creating traffic diversions around accidents
or maintenance works, or reducing traffic flows in densely
populated areas.

We consider outflow control and speed control. With outflow
control the flow on a given route is limited to a certain maxi-
mal value. Such outflow control can be effectuated using e.g.
mainstream metering installations or traffic signals. For speed
control the speed limit on a given route is lowered to a certain
value and communicated to the drivers via variable speed limit
signs.

We assume that the outflow limit and speed limit can change
each day and for route r it is characterized by the following
notations:

Qr(d) applied outflow limit at day d (veh/h)
vr(d) applied speed limit at day d (km/h)

Qmin
r minimum outflow limit (veh/h)

Qmax
r maximum outflow limit (veh/h)

vmin
r minimum speed limit (km/h)

vmax
r maximum (static) speed limit (km/h)

The outflow limit Qr(d) gives the maximum number of vehicles
per hour that is allowed to leave the route. This outflow limit is
bounded from above by a maximal value 2 Qmax

r . The minimum

value Qmin
r can be selected to prevent total closure of the road

when outflow control is applied. The speed limit vr(d) gives
the maximum speed that is allowed. We assume that this speed
limit is enforced, so all drivers have a speed that is lower than
or equal to the speed limit. The speed limit is bounded from
below by vmin

r and from above by vmax
r , where vmin

r is used to
prevent total closure of the road (which will happen when the
speed limit equals zero), and where vmax

r is selected based on
safety considerations.

If we apply outflow or speed control the travel time model of
Section 3.1 has to be adapted as follows.

Outflow control With outflow control we reduce the effective
capacity of a given route. As a consequence, the capacities C1

and C2 in (3) and (4) for the time spent in the queue and in (5)
for the evolution of the turning fraction have to be replaced by
the effective or controlled capacities Cctrl

1 and Cctrl
2 respectively,

with

Cctrl
r (d) = min(Qr(d),Cr) ,

which in case Qmax
r ≤Cr reduces to Cctrl

r = Qr(d).

Speed control Speed control changes the free-flow travel time
for the routes, and in this way it changes the route choice. As a
consequence the free-flow travel time θ free

r in equations (2), (3)
and (4) has to be replaced by the effective or controlled free-

flow travel time θ free,ctrl
r (d) with

θ free,ctrl
r (d) =

lr

min(vr(d),vmax
r )

which reduces to θ
free,ctrl
r (d) =

lr

vr(d)
since vr ≤ vmax

r .

6. ANALYSIS FOR A SIMPLE LINEAR CONTROLLER
FOR OUTFLOW CONTROL

In this section we illustrate for the two-route network how
outflow control can be used to reach a desired flow Qdesired

1 .
Note that speed limit control can also be used, but due to the
limited amount of space we will only present outflow control.
To keep the analysis simple, we select a basic controller which

2 Note that we can assume without loss of generality that Qmax
r ≤Cr .



can only change the outflow limit Q1(d) of route 1. The outflow
limit for route 2 is kept constant, i.e. Q2(d) =C2. Our controller

aims at steering the flow on route 1 to a desired flow Qdesired
1 .

The control law is as follows:

Q1(d +1) = max
(

Qmin
1 ,min

(

Qmax
1 ,

Q1(d)+P(Qdesired
1 −β (d)Qtot)

)

)

(9)

where P > 0 is the integration gain.

When a controller is applied, the uncontrolled equilibrium traf-
fic assignments described in the previous section can change.
We again look at the different combinations of free-flow times
and demands, and determine the equilibrium turning fractions
β eq and the corresponding values for the outflow limit Q1(d).

6.1 Route 1 has the lowest free flow travel time

When the demand is lower than the desired flow, Qtot ≤Qdesired
1 ,

the outflow limit Q1(d) has no influence on the route choice,
and so the controller also has no influence. This means that all
the traffic enters route 1, so β eq = 1. Since the desired flow is
not reached the controller keeps increasing the outflow limit,
which ends up at its maximum value:

Q
eq
1 = Qmax

1 =C1 if Qtot ≤ Qdesired
1 . (10)

When the demand is larger than the desired flow but smaller
than Qdesired

1 +C2, the capacity is changed until the desired flow
on route 1 is reached. This equilibrium value is reached when
Q1(d +1) = Q1(d) = Q

eq
1 . Together with (9) this gives

P(Qdesired
1 −β (d)Qtot) = 0, β (d)Qtot = Qdesired

1 ,

which can be substituted in Equation 6, and then results in:

Q
eq
1 =

Qdesired
1 (T −θ free

1 )

(T −θ free
1 )+2(θ free

2 −θ free
1 )

(11)

if Qtot > Qdesired
1 and Qtot ≤ Qdesired

1 +C2 . (12)

The resulting flow on route 1 is exactly equal to Qdesired
1 which

results the following equilibrium turning fraction:

β eq =
Qdesired

1

Qtot
if Qtot > Qdesired

1 and Qtot ≤ Qdesired
1 +C2 .

When the demand exceeds the sum of the desired flow and
C2, the controller decreases Q1(d) in such a way that a long
queue appears at route 1, which results in most drivers taking
route 2, and so the desired flow on route 1 can still be attained.
This leads to the desired equilibrium turning fraction β eq =
Qdesired

1 /Qtot, so Qdesired
1 = β eqQtot, which can be substituted in

(7). This gives the corresponding value for Q1(d):

Q
eq
1 =

Qdesired
1 (T −θ free

1 )

(Qtot−Qdesired
1 )(T−θ free

2 )
C2

+3(θ free
2 −θ free

1 )
(13)

if Qtot > Qdesired
1 +C2 .

6.2 Route 2 has the lowest free flow travel time

Here route 1 is only used when Qtot ≥C2. When the demand is
lower than C2, β eq = 0 and Q

eq
1 = Qmax

1 as in (10).

When the demand exceeds C2 but not the total capacity
Qdesired

1 +C2, the controller has also no influence, and the same
turning fraction of (8) is reached. The desired flow is still not

reached, and the controller increases the outflow limit on route
1 to its maximum value.

A demand that is larger than Qdesired
1 +C2 leads to a turning

fraction of β eq = Qdesired
1 /Qtot, with an outflow limit as in (13).

6.3 The routes are equally long: θ free
1 = θ free

2

If the routes are equally long the drivers will not change their
route choice until the flow on a route reaches the outflow limit
of this route. This results in two different situations: the demand
is higher than the sum of the desired flow and the capacity of
route 2 (Qtot ≥ Qdesired

1 +C2), or the demand is lower than this
sum.

When Qtot ≥ Qdesired
1 +C2, the fact that the routes are equally

long has no influence. The turning fraction is given by β eq =
Qdesired

1 /Qtot, and the corresponding outflow limit by (13).

When Qtot ≤ Qdesired
1 +C2 the initial flow on route 1 is impor-

tant. The initial flow can correspond to an equilibrium traffic
assignment or not.

An equilibrium traffic assignment is present when

(1−β 0)Qtot ≤C2 and β 0Qtot < Qdesired
1 and Qtot ≤ Qdesired

1 +C2

In this case the controller has no influence because the initial
flow on route 1 is lower than the desired flow. And because no
queue is formed on route 2, the flows on the two routes will
not change. In this case, the turning fraction does not change,
and the controller reaches the maximum value β eq = β 0 and

Q
eq
1 = Qmax

1 , with β 0 = β eq ∈ [max(0,1− C2
Qtot

),min(1, Q1(d)
Qtot

)].

The initial flow does not correspond to an equilibrium traffic
assignment in two cases:

• β 0 >
Qdesired

1
Qtot

and Qtot > Qdesired
1 and Qtot ≤ Qdesired

1 +C2

• β 0 ≤ 1− C2
Qtot

and Qtot >C2 and Qtot ≤ Qdesired
1 +C2 .

In these cases the controller tries to reach the equilibrium turn-
ing fraction β eq = Qdesired

1 /Qtot, but a specific property of the
controller results in a deviation of this value.

When β 0 >
Qdesired

1
Qtot

the controller decreases the outflow limit of

route 1, until the flow on this route is lower than the desired
flow. However, the controller can have undershoot. This means
that, depending on the value of P, the turning fraction may
become lower than the desired turning fraction.
The controller can only lower the flow on route 1, but not
increase it, and thus cannot correct for the undershoot, and the
flow stays too low. This means that the equilibrium turning
fraction will also be lower than Qdesired

1 /Qtot. This is illustrated
in Figure 3 which shows the desired turning fractions corre-
sponding to Qdesired

1 and the obtained equilibrium flow Q
eq
1 . The

value of the outflow limit, shown in the second graph in Figure
3, first decreases until the undershoot is at its minimum. At this
moment the controller will try to increase the flow on route 1
again, and so the outflow limit starts to increase. Since the turn-
ing fraction does not change as a reaction on this increase, the
controller keeps increasing the outflow limit until the maximum
value Qmax

1 is reached.

When β 0 ≤ 1− C2
Qtot

the initial flow on route 2 is higher than

the capacity of route 2. This means that the second day more

drivers will select route 1. This can result in β 0 >
Qdesired

1
Qtot

, which

situation is described above.
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Fig. 3. Obtained turning fractions, desired turning fractions, and the outflow limit on route 1 as function of days, for the situation
where the routes have the same free flow travel time and where the dynamics of the system lead to overshoot.

7. CONCLUSIONS

In this paper we have investigated how existing traffic control
measures can influence the route choice of the drivers. The
main goal of the paper was to get insight in the phenomena
that take place when conventional control methods are used
to influence route choice. To obtain this insight, we first have
selected simple models to describe the travel times on two
routes and the route choice behavior of the drivers. Then we
have determined the equilibrium route choices that are reached
when no control is applied. Next, we have presented possible
types of control to influence the long-term route choice: outflow
control and speed limit control. We have also illustrated the
effects of an outflow controller by performing a case study. On
a two route simulation network one basic linear controller was
placed, with as goal to reach a desired flow at the first route.
In all cases the controller could keep the flow on route 1 at the
desired level or lower.
The insight obtained with the simple models and controller
can be useful to interpret results of more advanced controller
methods, such as Model Predictive Control or adaptive control.
With more sophisticated controllers different control objectives
can also be used. Possible goals are e.g. minimizing the flow
on one route, minimizing the total travel time, minimizing the
queue length, achieving a desired assignment etc.
In our future work we will investigate the use of more advanced,
model-based predictive control methods. We will also look at
traffic control using more realistic traffic models, and more
advanced control measures, e.g. information panels, dedicated
lanes, etc. Attention will also be paid to investigating stability
regions, and to larger traffic networks.
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