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Abstract: The optimal control problem of a switching DC-DC converter is considered in this
paper. An LQ (Linear Quadratic) type performance index of the error between the current state
variables and the target working point is defined. The feedback control on the decision variable
of the duty cycle frequency is then formulated as a minimization of an appropriate Hamiltonian
function of which suboptimal solutions are proposed. These are based on a detailed study of the
average model of the system, obtained from the desired steady state solution. This paper focuses
on a particular converter (the Buck-Boost converter), but the results are easily extensible to all
single switch-cell converters.

Keywords: Control of switched systems; Non-smooth and discontinuous optimal control
problems; Industrial applications of optimal control.

1. INTRODUCTION

Power converters are widely used in industry, and in par-
ticular in variable speed DC motor drives, computer power
supplies, cell phones, and cameras. They are electrical
circuits controlled by switches (transistors, diodes), used
to adapt the energy supplied by a power source to a
load. A notable subclass of power converter is the DC-DC
converter, which aims to supply to a generic load a con-
stant voltage/current level. Aiming at reducing switching
losses and EMI (Electromagnetic Interference) of power
converters a lot of soft switching techniques are developed
to trade off high efficiency with commercial needs. These
circuits are designed so that the switching action does not
provoke discontinuity in nominal conditions.

Several control techniques and stability analysis have been
proposed in literature for the DC-DC converters. Rele-
vant practical applications use Pulse-Width-Modulation
(PWM), which relies on the approximation of the switch-
ing behavior of the converter with a continuous averaged
model (Lehman and Bass, 1996). An average model may
be obtained by numerical or symbolic appropriate pack-
ages (Sun and Grotstollen, 1997). Continuous control ap-
proaches are then used, among which passivity-based con-
trol (Sira-Ramirez, 1991) and sliding mode control (Sira-
Ramirez, 1987; Tan et al., 2006). The implementation of a
fuzzy controller is studied in Gupta et al. (1997), where the
authors analyze the difficulties of the real-time operation
of the converter. A stability analysis for the single inductor
DC-DC converter is carried out by Benadero et al. (2006).

⋆ Research supported by the European 6th Framework Network of
Excellence “HYbrid CONtrol: Taming Heterogeneity and Complex-
ity of Networked Embedded Systems (HYCON)”, contract number
FP6-IST-511368, the BSIK project “Next Generation Infrastructures
(NGI)”, the STW project “Multi-agent control of large-scale hybrid
systems” (DWV.6188), and an NWO Van Gogh grant (VGP 79-99).

In that paper the authors analyze the stability in terms of
power stage and control parameters in a PWM converter
with a double proportional integral feedback. It is also
relevant to consider the stability conditions for a multi-
converter power system (like cars, air and space craft,
submarines), as in Del Ferraro and Capponi (2005).

Recently these devices have been studied within the hybrid
modeling framework and in particular they are cast in
the subclass of switched systems (without jumps), which
have received significant attention in the last decades (Sun
and Ge, 2005; Liberzon, 2003). A control technique, based
on the study of a common Lyapunov function for the
switched system, can be found in Buisson et al. (2005).
In addition, optimal control strategies have been used by
Geyer et al. (2004); another possible approach, based on
dynamic programming, is used in Corona et al. (2007) to
achieve regulation by means of an LQ type cost function
minimization. A vast analysis of optimal-control-based
approaches for the switching power converters appears
in Midya and Krein (1992), where the performance in-
dex used is the quadratic error to the target trajectory,
and an initial investigation of the switching behavior is
tackled. The LQR (linear quadratic regulator) scheme,
parameterized in terms of the sole decision variable of the
duty cycle ratio, has been studied by Fujioka et al. (2007),
where the linear quadratic cost function approximates the
nonlinearities emerging from the inter-sampling behavior.
Regarding the control problem as an LQR offers also the
advantage of being general to all PWM types of switching
DC-DC converters (Leung et al., 1991).

In this paper we attempt to derive analytically the switch-
ing manifold of the converter that optimally stabilizes the
state x̄ = [i, v]T to a desired working point x̄p = 0 1 .

1 The choice of x̄p = 0 is not restrictive; in fact it is always possible
to consider a reference system centered in x̄p.
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Fig. 1. Circuit scheme of the buck-boost converter.

The results in Corona et al. (2007) have showed that
the optimal strategy consists in remaining in a particular
initial mode for a given time t, and then to slide along a
switching manifold f(x̄) = 0 towards the target point x̄p.
From this result we show that some suboptimal strategies
prove to be very efficient in terms of computational effort
and accuracy ratio. We provide in Section 2 a model
description for a particular application under study (the
buck-boost converter). The suboptimal strategies are then
described in Sections 3 and 4. Some illustrative numerical
simulations are presented in Section 5.

2. MODEL DESCRIPTION

In order to derive models for DC-DC converters, differ-
ent energy-based approaches, such as circuit theory, bond
graphs, Euler Lagrange, Hamiltonian approach can be
used. For switching systems, extensions of the Hamilto-
nian approach (Escobar et al., 1999), of the bond graph
approach (Buisson et al., 2002) or the complementarity
modeling framework (van der Schaft and Schumacher,
1998) have been proposed. In most of these systems, one
physical switch is controlled (e.g. a transistor), while the
other is not (e.g. a diode).

A simple circuit representation of the ideal buck-boost
converter is depicted in Figure 1. The continuous source E
has a negligible internal resistance and infinite power. No
energy is lost in the inductor L nor in the capacitor C. The
diode has no voltage drop in conducting mode and switches
exactly at zero voltage level. In a normal operating mode
of an ideal converter both the controlled and uncontrolled
switches occur simultaneously.

The converter theoretically has four possible operating
modes. We label them with the variable ρ and we denote,
as in Figure 1, by v the voltage on the capacitor and by i
the inductor current. The four modes are: (I) switch closed,
diode blocked (ρ = 0), (II) switch open, diode conducting
(ρ = 1), (III) switch open, diode blocked (ρ = 2), (IV)
switch closed, diode conducting (ρ = 3).

In nominal behavior only modes (I) and (II) are involved.
The nominal working area of the space state is N ≡
{(i, v) ∈ R

2 : i ≥ 0, v ≤ E} depicted in Figure 2 in the
dark-shaded area (right-bottom area of the Figure). The
four modes are represented by the nodes of the oriented
graph in Figure 3. The arcs indicate the discrete transi-
tions from one mode to another; the controlled switches
are solid lines, while the diode switches, depending on the
state of the system, are represented by dashed lines.

In mode (I) the voltage source transfers energy into the
inductor while, on the load side, the capacitor is feeding
the load. After some time the switch is opened and the
system goes to mode (II) where the energy stored in the
inductor can now flow towards the load and the capacitor.
Then the controller may close the switch again to mode (I)
and so on. If the duration in mode (II) is protracted all the
magnetic energy is transferred to the load and the buck-
boost converter switches to the discontinuous conduction
mode (III) (Hart, 1997). This state is reached when the
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Fig. 2. Partition of the state space for the modes of the converter.

condition i = 0, v < 0 is attained. In this mode the current
remains equal to zero and the capacitor is feeding the load.
From (III) it is possible to switch to (I) by closing the
switch.

Let us denote by x̄ = [i, v]T the state. The differ-
ential equations corresponding to each location of the
graph in Figure 3, are the following. In location (I) we

have ˙̄x =

[

0 0

0 −
1

RC

]

x̄ +

[

E

L
0

]

, in location (II) ˙̄x =







0
1

L

−
1

C
−

1

RC






x̄, in location (III) ˙̄x =

[

0 0

0 −
1

RC

]

x̄.

Let us observe that mode (IV) is in fact critical, because
it imposes two different voltage levels in the same point
(v on the anode and E on the cathode of the diode
in conducting mode). If for some reason the voltage v
overtakes E when the switch is closed, a safe controller
must immediately open the switch leading to mode (II), in
order to prevent harmful current peaks across the diode.
Mode (IV) is, to some extent, a fault mode. Under this
consideration the attention may be focused on a model
that only contains three states and whose dynamics are
given above. Furthermore, we assume that the controller
of the switch is fast enough to keep the converter in
the continuous conduction mode. This allows to disregard
the third dynamics. An approach for the control of the
converter in the discontinuous conduction mode requires
to include guards in the model. This is a topic for future
research.

The reduced modeling framework we adopt in this paper
is relevant when the working point of the converter admits
an invariant region 2 completely included in the nominal
working area in Figure 2. The existence of such region is
reasonable for converters composed of passive components.

These considerations lead to restrict the model in Figure 3
to the one depicted in Figure 4 with dynamics:

˙̄x =





0
ρ

L
−ρ

C
−

1

RC



 x̄+

[

1− ρ

L
E

0

]

= Āρx̄+ b̄ρ, (1)

2 For each initial point taken in such region there exists a controlled
switching sequence that keeps the state within the invariant region.
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where ρ ∈ {0, 1} is the switching control signal aiming
to stabilize x̄ to an operating point x̄p. In this formula-
tion, called ‘port controlled Hamiltonian with dissipation’
(Buisson et al., 2005), the matrices can be expressed in the
form Āρ = Ā0 + (Ā1 − Ā0)ρ and b̄ρ = b̄0 + (b̄1 − b̄0)ρ.

Additionally for any given load voltage x̄p,2 there exists a
unique value of ρ = ρm ∈ [0, 1], solution of Āρx̄p + b̄ρ = 0
at the equilibrium, called average ρ. The corresponding
matrices Āρm

and b̄ρm
define the average dynamics of the

converter. The duty cycle mode (Hart, 1997) is a specific
stable limit cycle where the permanence times δ0 and δ1
in modes ρ = 0 and ρ = 1 respectively are constant. In
this mode the average ρm is the ratio between δ1 and the
period of the duty cycle δ0+ δ1. Note that in the reference
system where x̄p = 0, it holds that b̄ρm

= 0 and that Āρm

is a strictly Hurwitz matrix.

In a sliding mode behavior, where the switching occurs

at infinite rate, the instant ratio ρ(t) = δ1(t)
δ0(t)+δ1(t)

is a

continuous function defined in the interval [0, 1]. For the
previous consideration on the duty cycle the terminal value
ρ(+∞) must converge to ρm.

3. PROBLEM DEFINITION

In a previous paper (Corona et al., 2007) the switching
control signal ρ was obtained by applying to the described
model a procedure based on optimal control and dynamic
programming. The results proved that the optimal solution
consists of two terms. One is a transient term in the initial
mode ρ(0) until the state x hits a sliding surface f(x) = 0.
The other term corresponds to the evolution along the
sliding surface, switching at infinitely high rate between
the two nominal modes. The objective of this paper is
to investigate alternative ways to compute this optimal
sliding surface. Some suboptimal solutions at reduced time
and computation efforts are also proposed.

Without loss of generality it is more convenient to consider
the modeling of the affine system (1) in the augmented

state space. Therefore, an additional dummy variable xn

can be added to the space x̄ so that the new state space
is x = [x̄T, xn]

T, with xn(0) = 1. In this augmented
state space, the evolution is described by the autonomous
differential equation ẋ = Aρx, where Aρ = A0+(A1−A0)ρ

and Aρ =

[

Āρ b̄ρ
0 0

]

. In order to identify the sliding surface

f(x) = 0, the solution of the following problem is searched.
Given an initial point (x(0), ρ(0)) solve:

J(x(0), ρ(0)) = min
ρ(t)∈[0,1]

∫

∞

0

xTQρ(τ)xdτ

s.t. ẋ = Aρ(t)x,
(2)

with Qρ =

[

Q̄ρ 0
0 0

]

, Q̄ρ = Q̄0 + (Q̄1 − Q̄0)ρ, and Q̄0 > 0,

Q̄1 > 0. Being Aρ = A0 + (A1 − A0)ρ, this nonlinear
optimal control problem may be tackled by means of
the Pontryagin maximum principle. This requires the
introduction of the Hamiltonian function

H(x, p, ρ, t) , xTQρx+ pTAρx. (3)

If the function ρ(t) is extremal for the functional (2), then
it satisfies the following necessary conditions (Kirk, 1970):































ẋ =
∂H

∂p
= Aρ(t)x

ṗ = −
∂H

∂x
= −AT

ρ(t)p− 2Qρ(t)x

0 =
∂H

∂ρ
= xT(Q1 −Q0)x+ pT(A1 −A0)x,

(4)

where the function ρ(t) has boundary conditions ρ(0) ∈
{0, 1} and ρ(∞) = ρm. Additionally, being the expected
solution bounded by the admitted values for ρ(t) (i.e.,
ρ(t) ∈ [0, 1]), the solution of the problem has the following
structure:

ρ∗ =







0 if xT(Q1 −Q0)x+ pT(A1 −A0)x > 0
1 if xT(Q1 −Q0)x+ pT(A1 −A0)x < 0

ρ∗(t) if xT(Q1 −Q0)x+ pT(A1 −A0)x = 0,
(5)

where ρ∗(t) is the solution of the Hamiltonian system (4).
The first two terms of (5) certify that the minimum value
of the Hamiltonian function (3) is at the domain boundary
of the decision variable ρ.

4. PROPOSED SOLUTION

The description given above requires the solution of sys-
tem (4), which is not straightforward. Moreover, the so-
lution is not necessarily state feedback. Knowing that the
switching rate converges to ρm (Section 2), the following
suboptimal problem with only one switch is tackled:

J(x(0)) = min
T ≥ 0

ρ(0) ∈ {0, 1}

∫

∞

0

xTQρ(t)xdt

s.t. ẋ = Aρ(t)x

ρ(t) =

{

ρ(0) if t ∈ [0, T ]
ρm if t > T

(6)
where Aρm

is the matrix of the average dynamics.

For each initial condition x(0) the problem above gives the
value of the time T ∗ after which a switch to the average
model occurs, and such that it minimizes the criterion. The
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Fig. 5. Solution of problem (6). In green (left-bottom) the model
ρ = 0 and in blue (top-right) ρ = 1, and their corresponding
trajectories in red.

numerical result of problem (6) is depicted in Figure 5. In
order to locate its minimum we solve:

∂J(x(0), ρ(0), T )

∂T
= 0, (7)

where

J(x(0), ρ(0), T ) =

∫

∞

0

xTQρ(t)xdt

s.t. ẋ = Aρ(t)x

ρ(t) =

{

ρ(0) if t ∈ [0, T ]
ρm if t > T.

(8)

After some simple steps detailed in Appendix A, we get
the quadratic form

f(x(0), ρ(0), T ∗) = x(0)T
(

e
AT

ρ(0)T
∗

Qρ(0)e
Aρ(0)T

∗

+

AT
ρ(0)e

AT
ρ(0)T

∗

PeAρ(0)T
∗

+ e
AT

ρ(0)T
∗

PAρ(0)e
Aρ(0)T

∗)

x(0) = 0,

(9)

where P =

[

P̄ 0
0 0

]

and P̄ is the unique solution of the

Lyapunov equation

ĀT
ρm

P̄ + P̄ Āρm
= −Q̄ρm

(10)

of the average model.

Assuming that there exists a common sliding surface 3

X this surface will not depend on the initial mode ρ(0)
and it is the set of points such that T ∗ = 0, solution of
problem (6). Hence X ≡ {x : f(x, ρ, 0) = 0, ∀ρ}. Under
these considerations (9) becomes

f0(x, 0, 0) = xT
(

Qρm
+AT

0 P+PA0

)

x = xTF0x = 0, (11)

when ρ(0) = 0 or

f1(x, 1, 0) = xT
(

Qρm
+AT

1 P+PA1

)

x = xTF1x = 0, (12)

when ρ(0) = 1.

To complete this computation we now show that the sets
X0 ≡ {x : xTF0x = 0} and X1 ≡ {x : xTF1x = 0} are
equal. To this purpose we will prove the following property.

3 This assumption is not restrictive, in fact the power converters
with one commutation cell (like the Buck, the Boost, and the

Čuk converter) admit a limit cycle behavior around the desired
equilibrium point (Hart, 1997). When the period of this cycle goes
to 0, the behavior can be interpreted as a sliding mode. From
a geometrical point of view it corresponds to the presence of an
attractive switching surface between the two modes.
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Fig. 6. Juxtaposition of the result in Corona et al. (2007) with
the switching law obtained with the approximated criterion (6).
The right and dark zone corresponds to ρ = 1, and the left and
light zone to ρ = 0.

Property 4.1. The switching surfaces described by (11)
and (12) are identical and they are independent from ρ(0).

Proof. Let us define

F (ρ) = Qρ +AT
ρ P + PAρ, (13)

with Aρ = A0 + (A1 − A0)ρ and Qρ = Q0 + (Q1 − Q0)ρ.
Substituting these last two equations in (13) we obtain:

F (ρ) = F0 + (F1 − F0)ρ. (14)

Note that from (10) we have Qρm
+ AT

ρm
P + PAρm

= 0,
therefore

F (ρm) = F0 + (F1 − F0)ρm = 0,

so

F0 = −F1
ρm

1− ρm
.

Hence, the quadratic forms defined by (11) and (12) are
equivalent, thus X0 ≡ X1 and the switching surface does
not depend on the particular initial value of ρ. �

Equation (11) (or (12)) is a conic section and it is not
a particular trajectory of the average model. It can also
be shown that the target point xp = [0, 0, 1]T belongs to
X. The profile of this surface and the result obtained in
Corona et al. (2007) by means of the STP (Switching Table
Procedure) are similar, as depicted in Figure 6.

In order to obtain the feedback switching signal ρ(x) along
the surface we proceed as it follows: clearly, if xTFx = 0

it also holds that d(xTFx)
dt

= 0. This implies that

ẋTFx+ xTF ẋ+ xTḞ x = 0. (15)

The term xTḞ x in (15) does not contribute, since,

from (14), we have Ḟ = ρ̇(F1−F0), and therefore xTḞ x =
ρ̇xT(F1 − F0)x = 0, since x belongs to the sliding surface.

Inserting in (15) the state equation with a time-varying
ratio of the duty cycle, ẋ = A0x + (A1 − A0)ρ(t)x, we
obtain

ρ(x) = −min

{

max

(

xTM0x

xTM1x
, 0

)

, 1

}

, (16)
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Fig. 7. Function ρ(x1) when x is along the switching surface, for
the numerical example described in Section 5.

where M0 = AT
0 F + FA0 and M1 = AT

1 F + FA1 − M0,
which may be used to describe the feedback law. We depict
in Figure 7 the expression of the switching signal ρ(x)
when the point x is moving along the switching surface.

Let us now show that the costs of the evolution along the
switching surface and the cost of the evolution with the
average model are the same if the initial point x belongs
to the switching surface:

Property 4.2. Given a point x on the switching surface
xTFx = 0, the costs

JF (x) =

∫

∞

0

xTQρ xdt

s.t. ẋ = Aρ(t)x

x(t)TFx(t) = 0,

(17)

and

Jm(x) =

∫

∞

0

xTQρm
xdt

s.t. ẋ = Aρm
x,

(18)

are equal.

Proof. Clearly Jm(x, t = ∞) = xTPx, where P solves
Qρm

+ AT
ρm

P + PAρm
= 0. Consider a point x + dx such

that (x + dx)TF (x + dx) = 0, reached after a time dt of
the evolution along the switching surface. We may consider
the cost of an evolution that proceeds along the switching
surface until x + dx is reached and then switches to the
average model. We have

J(x) = xTQρxdt+ Jm(x+ dx, t = ∞), (19)

which is equal to

J(x) = xTQρxdt+ (x+ dx)TP (x+ dx). (20)

In a short time interval we may consider ρ(t) = ρ̄ =
constant. This allows to define Ā = Aρ̄ and Q̄ = Qρ̄.

Being 4 x + dx = eĀdtx = (I + Ādt)x + O((dt)2), (20)
becomes

J(x) = xTQ̄xdt+ xT(I + Ādt)TP (I + Ādt)x+O((dt)2),
(21)

which, after some steps, becomes

J(x) = xTQ̄xdt+ xT(ĀTP + PĀ)xdt+
Jm(x) +O((dt)2).

(22)

4 The symbol O refers to the so called big O notation: for two scalar
functions f and g we have f(t) = O(g(t)) for t → 0 if and only if
there exist real numbers ε > 0 and M > 0 such that |f(t)| 6 M |g(t)
for all t with |t| 6 ε.

We show that xT(Q̄+ ĀTP + PĀ)xdt = 0. In fact, being
Q̄ = Q0+(Q1−Q0)ρ̄ and Ā = A0+(A1−A0)ρ̄, we obtain

xT(Q̄+ ĀTP + PĀ)x = xTF̄ x,

with F̄ = F0 + (F1 − F0)ρ̄. By hypothesis xTF0x =
xTF1x = 0 (as x is on the switching surface), hence
xTF̄ x = 0, and therefore

J(x) = Jm(x) +O((dt)2) ≈ Jm(x, t = ∞). (23)

With similar arguments the same result may be obtained
for the evolution from the point x+ dx and another small
time increment, showing that JF (x) = Jm(x). �

Property 4.2 shows that the evolution following the non-
linear controller described by (16) is equivalent, according
to the criterion with weights Qρ, to the evolution that
switches indefinitely fast around the average model.

Finally it is relevant to observe that if the initial point
point x(0) is chosen in the nominal working area, the
asymptotic stability is guaranteed by the attractiveness of
the switching surface and the passivity of the components.

5. NUMERICAL SIMULATIONS

In order to illustrate the results described in this paper,
a numerical example, the buck-boost converter depicted
in Figure 1, is considered. The numerical values of the
physical system are normalized, hence E = 1, L = 1,
C = 1 and R = 1. We select the set-point x̄p = [2,−1]T,
to which corresponds the average model ρm = 0.5. Three
different optimal controllers are studied.

The first controller consists in using the suboptimal
switching manifold derived in Section 4. In particular,
we have implemented the state feedback solution of equa-
tion (16), depicted in Figure 7. Note that this nonlinear
controller uses a time-varying ratio of the duty cycle ρ,
according to (16).

The second controller consists in using the initial given
mode until the state space hits the optimal switching
surface. From there on the system evolves with a constant
duty cycle ratio corresponding to the average model.

Note that in force of Property 4.2 these first two controllers
are equivalent in terms of performance index.

Finally we have implemented the optimal controller de-
rived in Corona et al. (2007), for completeness reported in
Figure 6.

For these three different controllers we have chosen 11 sig-
nificant initial points. These points are significant because
they force the controllers to work in areas of the state
space where the resolution is not numerically accurate, or
where we expect that further theoretical results should be
pioneered. In Table 1 the values of the costs are listed for
these 11 significant initial points for the mentioned three
different cases: (I) Evolution with (16); (II) Evolution
with (6); (III) Evolution with the law depicted in Figure 6.

The results obtained from these numerical experiences
deserve some comments. First it is remarkable to observe
that, for each considered initial point, the performance of
the suboptimal controllers is competitive with the optimal
one. The minor differences may be due to the numerical
inaccuracy of the control law in Figure 6. This implies
that an (almost) optimal switching signal for this converter
(still easily extensible to other converters) can be obtained
by means of simple analytical calculations.



Table 1. Costs of the evolution for three different control techniques.

x
−5
−5

−5
5

5
−5

5
5

2.62
2.62

−1.19
−1.67

0.24
−3.57

−5
2.14

−2.14
2.62

−1.19
−2.14

−4.05
−2.14

JF 52.93 36.40 34.46 58.84 11.99 1.28 5.77 44.63 8.81 3.55 30.14
Jm 52.94 36.41 34.47 58.85 12.00 1.28 5.77 45.62 8.93 3.55 29.25
J∗ 53.60 36.61 32.89 58.26 11.94 1.36 5.64 49.98 9.08 3.75 30.13

6. CONCLUSION

An optimal control problem for the design of a feedback
switching signal for a DC-DC converter has been studied.
The performance index, based on the quadratic error be-
tween the state and the target working point, offers the
possibility of designing the law by means of minimization
of a Hamiltonian function. In addition, suboptimal solu-
tion have been developed and compared with the result in
Corona et al. (2007).

For future research it would be interesting to investigate
and quantify the error of the suboptimal solution with
the optimal one obtained in Corona et al. (2007). Specific
further analysis on the suboptimal solution should study
the sign of the second derivative of J defined in (8), to
obtain additional constraints on the switching manifold.
Additional design requirements can be imposed on the
controller in order to prevent potential risk of instability
due to high frequency switching.
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Appendix A. CONSTRUCTION OF THE SWITCHING
SURFACE

Let us consider the problem (7), where the function
J(x(0), ρ(0), t), detailed in (8) can be rewritten as

J(x(0), ρ(0), T ) =

∫ T

0

xTQρ(0)xdτ +

∫

∞

T

xTQρm
xdτ

s.t. ẋ = Aρ(0)x s.t. ẋ = Aρm
x.

(A.1)

By derivation over the variable T , the switching instant,
we obtain
∂J(x(0), ρ(0), T )

∂T
= xT(T )Qρ(0)x(T ) +

∂xT(T )Px(T )

∂T
,

which is equal to

∂J(x(0), ρ(0), T )

∂T
= xT(T )Qρ(0)x(T )+

∂xT(T )

∂T
Px(T ) + xT(T )P

∂x(T )

∂T
.

(A.2)

From the state equation it holds that ∂x(T )
∂T

= Aρ(0)x(T )

and x(T ) = eAρ(0)Tx(0), which, substituted in (A.2),
provides the analytical expression of the derivative (7),

∂J(x(0), ρ(0), T )

∂T
= x(0)T

(

e
AT

ρ(0)TQρ(0)e
Aρ(0)T+

AT
ρ(0)e

AT
ρ(0)TPeAρ(0)T + e

AT
ρ(0)TPAρ(0)e

Aρ(0)T
)

x(0).


