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Abstract: Advanced online control of drinking water treatment plants requires reliable models.
These models in general involve temperature-dependent, uncertain parameters, which can only
be measured in laboratory conditions. We propose to estimate these parameters online, using the
available pH quality measurements. Since the pH measurements are a nonlinear combination
of the system’s states, a particle filter is used. Thanks to the cascaded nature of the plant,
the estimation is also performed in a cascaded setting. The performance is evaluated both for
simulated and real-world data. Results indicate that the filter can be effectively used to improve
the model accuracy.

1. INTRODUCTION

In drinking water production and distribution, there is an
increased interest in advanced control using online flow
and level measurements. However, in the current practice
advanced control methods are mainly used for water
quantity control. The increased use of these measurements
has led to the optimization of the quantitative aspect of
production and distribution [Bakker et al., 2003; Hill et al.,
2005]. For instance, in the Netherlands, about 25% of the
drinking water production and distribution locations use
advanced control to optimize the production capacity and
storage.

Advanced semi-online water quality measurements have
also become more common, although, currently they are
predominantly used for monitoring. Such measurements
include for instance pH and UV spectra measurements.

Previous research [van Schagen et al., 2006] has shown that
before implementing advanced control strategies in drink-
ing water production, it is recommended to investigate the
trade-off between the number of necessary measurements,
the accuracy of the measurements, and the effort for main-
taining the measurement devices. The sensors must be able
to perform under industrial circumstances, with very small
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variations in water quality. If new measurements that do
not meet the above conditions are used in online control,
they can worsen the performance of the process.

The measure to describe the super-saturation of calcium
carbonate in the water is the Saturation Index (SI), which
is defined as the pH offset at which the actual calcium
concentration is in equilibrium with the carbonate concen-
tration (see van Schagen et al. [2007] and the references
therein). An SI below zero will cause the concrete of the
installation to dissolve. An SI above 0.3 will cause scaling
on the equipment of the installation, causing malfunction
of the valves and dosing units. The difference between a
high and low SI therefore about 0.3. The accuracy of the
pH measurement is restricted and the process conditions
change in time.

The research reported here involves one of the water treat-
ment plants (WTP) of Amsterdam, WTP Weesperkarspel.
Together with the WTP Leiduin it produces all the drink-
ing water for the city of Amsterdam (400Ml/day). The
Weesperkarspel plant treats seepage water from a polder
with eight process steps (stages) in cascade: coagulation,
100 days retention in a lake water reservoir, acid dosage
(HCl), rapid sand filtration (RSF), ozone, pellet softening,
biologically activated carbon, and slow sand filtration.

In the current situation, the SI is controlled using only
pH measurements. Due to the setup of the treatment
plant (with a long retention time in the lake), the water
quality parameters change slowly. However, the reaction
dynamics and model characteristics in each process step
depend non-linearly on the temperature, which is reflected
in uncertain model parameters. To improve SI control a



reliable dynamic model should be available. This research
aims to improve the model characteristics based on the
pH measurements available in the process. In order to
improve the model, we consider the online estimation of
these uncertain parameters for two stages: acid dosage and
RSF.

The most well-known and widely used probabilistic esti-
mation methods are the Kalman filter and its extensions
to nonlinear systems [Kalman, 1960; Welch and Bishop,
2002]. However, these filters have severe limitations and
may become unstable even for linear processes. Over the
last years, particle filters [Doucet et al., 2000; Arulam-
palam et al., 2002] have been extensively studied. These
filters have been successfully applied to state-estimation
problems [Nait-Charif and McKenna, 2004; Li et al., 2007],
and allow to handle nonlinear, non-Gaussian dynamic sys-
tems.

We propose a method for the online estimation of the
uncertain reaction constants of the acid dosage and the
RSF stage, in order to improve the model characteristics.
Due to the nonlinear and uncertain nature of the process,
we use particle filters. Since the process steps are in
a cascade, the parameter estimation is performed in a
cascaded manner.

In Section 2, the cascaded particle filter methodology is
reviewed. Section 3 presents the water treatment plant and
the dynamic model used to represent the stages of interest.
Section 4 gives the results for simulated and experimental
data, respectively. Finally, Section 5 concludes the paper.

2. CASCADED PARTICLE FILTERS

For arbitrary distributions or nonlinear processes, repre-
senting the random variables by their mean and covari-
ance only, as Kalman filters do, is not sufficient for a
reliable estimation. Moreover, there is no general method
to compute the resulting distribution analytically. Particle
filters approximate the distributions by samples, rather
than by a compact parametric form, which leads to better
performance. The price that has to be paid are the higher
computational costs.

2.1 Particle Filters

The particle filter (PF) uses probabilistic models for the
state transition function and the measurement function,
respectively [Doucet et al., 2000]:

p(xk|xk−1), p(yk|xk) .

The objective is to recursively construct the posterior
probability density function (PDF) p(xk|yk) of the state,
given the measured output yk and assuming conditional
independence of the measurement sequence, given the
states. The PF works in two stages:

(1) The prediction stage uses the state-transition model
to predict the state PDF one step ahead. The PDF
obtained is called the prior.

(2) The update stage uses the current measurement to
correct the prior via the Bayes rule. The PDF ob-
tained after the update is called the posterior.

Particle filters represent the PDF by N random samples
(particles) xi

k with their associated weights wi
k, normalized

so that
∑N

i=1 w
i
k = 1. At time instant k, the posterior

obtained in the previous step, p(xk−1|yk−1), is represented
by N samples xi

k−1 and the corresponding weights wi
k−1.

To approximate the posterior p(xk|yk), new samples xi
k

and weights wi
k are generated. Samples xi

k are drawn from
a (chosen) importance density function q(xi

k|x
i
k−1, yk), and

the weights are updated, using the current measurement
yk

w̃i
k = wi

k−1

p(yk|x
i
k) p(x

i
k|x

i
k−1)

q(xi
k|x

i
k−1, yk)

(1)

and normalized

wi
k =

w̃i
k∑N

j=1 w̃
j
k

.

If the importance density q(xk|xk−1, yk) is chosen equal to
the state-transition PDF p(xk|xk−1), the weight update
equation (1) becomes:

w̃i
k = wi

k−1p(yk|x
i
k) .

The use of the transition prior as the importance density
is a common choice [Arulampalam et al., 2002] and it
has the advantage that it can be easily sampled and the
weights are easily evaluated. In practice, this effectively
means generating samples of the noise and using these
samples in the state transition functions to generate the
state samples.

The posterior PDF is represented by the set of weighted
samples, conventionally denoted by:

p(xk|yk) ≈

N∑

i=1

wi
kδ(xk − xi

k)

where δ is the Dirac delta measure.

The PF algorithm is summarized in Algorithm 1. A com-
mon problem of PF is the particle degeneracy: after several
iterations, all but one particle will have negligible weights.
Therefore, particles must be resampled. A standard mea-
sure of the degeneracy is the effective sample size:

Neff =
1

∑N

i=1(w
i
k)

2

If Neff drops below a specified threshold NT ∈ [1, N ],
particles are resampled by using Algorithm 2.

Algorithm 1 Particle filter
Input: p(xk|xk−1), p(yk|xk), p(x0), N , NT

Initialize:

for i = 1, 2, . . . , N do

Draw a new particle: xi
1 ∼ p(x0)

Assign the weight: wi
1 = 1

N

end for

At every time step k = 2, 3, . . .
for i = 1, 2, . . . , N do

Draw a particle from importance distribution:
xi
k
∼ p(xi

k
|xi

k−1)
Use the measured yk to update the weight:
w̃i

k
= wi

k−1p(yk|x
i
k
)

end for

Normalize the weights: wi
k
=

w̃i
k∑

N

j=1
w̃

j

k

if 1∑
N

i=1
(wi

k
)2

< NT then

Resample using Algorithm 2.
end if



Algorithm 2 Resampling

Input: {(xi, wi)}N
i=1

Output: {(xi
new, wi

new)}N
i=1

for i = 1, 2, . . . , N do

Compute cumulative sum of weights: wi
c =

∑i

j=1
w

j

k

end for

Draw u1 from the uniform distribution U(0, 1
N
)

for i = 1, 2, . . . , N do

Find x+i, the first sample for which wi
c ≥ ui.

Replace particle i: xi
new = x+i, wi

new = 1
N

ui+1 = ui +
1
N

end for

The state estimate is computed as the weighted mean of
the particles:

x̂k =
N∑

i=1

wi
kx

i
k .

For more details on particle filters, the interested reader is
referred to [Doucet et al., 2000; Arulampalam et al., 2002].

2.2 Cascaded State Estimation

An important class of nonlinear systems can be repre-
sented as cascaded subsystems (e.g., material processing
systems, chemical processes, flow processes). For such sys-
tems it is also possible to design cascaded observers, which
makes their tuning easier.

Consider a general, nonlinear system, for which an ob-
server has to be designed. For a large number of states,
and highly nonlinear equations, the design of an observer
is clearly problematic. If the states and/or measurements
are also corrupted by noise and one uses a particle filter,
then a very large sample set is needed, in which case the
computational costs may render the observer unusable for
online estimation.

A solution is to decompose such a system, and to design
separate observers for each subsystem, allowing that one
subsystem may use the estimation results of another one.
Such a decomposition is presented in Figure 1.

x
2

x
1

Observer 2

Observer 1

u

2

1
y

y

Fig. 1. Cascaded observers.

3. THE WATER TREATMENT PLANT

Most models developed for water treatment plants are
steady-state models, and they are used for design pur-
poses. In this paper we consider a dynamic model, that de-
scribes the effect of chemical dosing and reactions through
the m-alkalinity (M) and p-alkalinity (P ), related to the
pH. Neither these alkalinities, nor the reaction rates or
disturbances can be measured directly. The available mea-
surement is that of the pH, which is a nonlinear function
of M and P .

In the current situation, the pH at different stages is
kept at fixed values to achieve a desired SI. The desired

pH is based on laboratory measurements of M and P
and the current temperature. Therefore the true SI is
only controlled at the sampling rate of the laboratory
measurements, with a delay of several days. In reality, the
process parameters vary with the temperature and other,
non-measured disturbances. Moreover, the concentrations
of interests cannot be directly measured. This effectively
means that changes in process performance/process input
can only be detected with a delay of several days. In
order to determine the current state of the process, online
estimation is needed. This would also give direct feedback
to the operators, instead of a delayed evaluation.

So, the goal is to determine M and P online, based on the
measured pH and dosing at different steps in the treatment
process together with the reaction rates at the treatment
steps.

In drinking water production, the pH is mainly determined
by the carbonic equilibrium [Wiechers et al., 1975]:

CO2 + 2H2O
K1

⇆ H3O
+ +HCO−

3

HCO−

3 +H2O
K2

⇆ H3O
+ + CO2−

3

H3O
+ +OH−

Kw

⇆ 2H2O

(2)

whereK1,K2 andKw are temperature-dependent reaction
constants.

The reaction rates of these equilibria are high, and it is
therefore assumed that the carbonic fractions are always
in equilibrium. The pH (H3O

+ activity) changes when
one of the other concentrations changes due to a reaction.
To model the equilibrium, the alkalinities M and P are
used. These numbers are “conservative”, as they follow
the normal rules of mixing (the pH does not). The actual
concentrations can be found by solving the following
system of equations [van Schagen et al., 2007]:

M = 2[CO2−
3 ] + [HCO−

3 ] + [OH−]− [H3O
+]

P = [CO2−
3 ]− [CO2] + [OH−]− [H3O

+]

K1 = f2[HCO−

3 ][H3O
+][CO2]

−1

K2 = f4[CO2−
3 ][H3O

+][HCO−

3 ]
−1

Kw = f2[H3O
+][OH−]

(3)

where f is a function of the ionic strength of the water and
[.] denotes concentration. This system of five equations can
be solved as soon as two variables are known. It can also
be used to make a simple model of the treatment plant
with respect to the pH, by describing the effect of dosage
and reactions on M and P and deducing the (nonlinear)
relation to the pH. For the relevant range between 7 and
11 the relation is plotted in Figure 2. The measured pH
values are normally between 7.6 and 8.6.

The dynamic model for M and P can be expressed as:

Ṁ =
F

V
(Mprev −M) +

F

V
fM (rin)−RM (M,P, r, τ)

Ṗ =
F

V
(Pprev − P ) +

F

V
fP (rin)−RP (M,P, r, τ)

ṙ =
F

V
(rin − r)−Rr(M,P, r, τ)

where F is the flow, V is the water volume in the
corresponding process step, r is the concentration of the
reactant in the water, rin is the concentration of the
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Fig. 2. Dependence of the pH on M and P at 15◦C.

reactant added to the water, RM , RP and Rr describe
the influence of the temperature on the reactions in the
treatment step and depend on the temperature τ . The
functions fM and fP are the instantaneous changes in M
and P due to the dosage of chemicals and Mprev and Pprev

are the M and P from the previous treatment stage [van
Schagen et al., 2006].

We consider the estimation of the parameters for the HCl
dosage stage and the RSF stage, for which the functions
fM , fP , RM , RP and Rr for the treatment stages of
interest are presented in Table 1. In the HCl dosage
stage, reactions take place due to the added HCl, with
the reaction “constant” k12 depending heavily on the
temperature. During the RSF stage, NH4 is biologically
degraded. The biology uses PO4 already in the water The
reaction constants again depend on the temperature.

Table 1. Functions used in the estimation
model.

Stage fM fP RM RP Rr

HCl dosage −rin −rin 0 k12(P + 0.05) 0
RSF 0 0 k3r k3r r

Transportation 0 0 0 0 —

The functions fM and fP are considered to be linear
in rin, and RM , RP and Rr are approximated by linear
combinations of M , P and r. The parameters ki change
in each treatment step, and in general they depend on the
temperature. The measurements are the pH values after
each stage.

For each treatment stage, the input is considered to be the
states M and P from the previous stage and the dosing
rin. The concentration in each stage refers to the different
chemical added. The change during the stage in theM and
P numbers depend on the dosing, the reactant already in
the water and the temperature. The measurement is the
pH after the treatment stage.

Since measurements are only available after the water
resulting from RSF has been transported, we need to
consider the RSF and transportation models as one stage.
This is why Table 1 also contains a “Transportation” stage.
It is assumed that the reactions due to the reactant added
in a stage are restricted to the corresponding stage.

Due to the nonlinear nature of both the state transition
and the measurement model, a nonlinear estimator is
needed. Trials have shown that neither the Extended
Kalman Filter, nor the Unscented Kalman Filter are able
to handle the estimation when measured data is used.
Therefore, particle filters were applied. Thanks to the
cascaded form of the system, the filters were also applied
in cascades.

4. ESTIMATION RESULTS

The particle filter was first tested for simulated data and
afterwards applied to measured data. In all cases, the
estimation is cascaded and particle filters are used.

4.1 Results Using Simulation Data

The model was simulated using noisy measured flow (F )
and reactant (r) data, and both the states and the mea-
surements were corrupted by zero-mean, Gaussian noises.

The initial values were randomly generated. For each pro-
cess step, both the states and measurements are assumed
to be corrupted by a zero-mean Gaussian noise, with
known noise covariances. The state transition noise covari-
ance in each stage is 0.005 for M , P , and r and 0.01 for the
unknown parameter. The measurement noise covariance
is 0.05, which is approximately the measurement error.
To simulate the continuous model, a fourth-order Runge-
Kutta numerical integration method was used.

Since the water quality parameters in the lake are prac-
tically constant, the Mprev and Pprev for the first HCl
dosage are known and constant. The models for each stage
and the corresponding results are presented below. For
each stage, 50 particles were used, with resampling at
NT = 45. To estimate the unknown parameters, a random
walk model is used.

HCl dosage stage The model used for both simulation
and estimation purposes is:

Ṁ =
F

V
(Mprev −M)−

F

V
rin

Ṗ =
F

V
(Pprev − P )−

F

V
rin − k12(P + 0.05)

ṙ =
F

V
(rin − r)

(4)

When generating the data, k12 = 0.1 was used. The
estimation result for the unknown parameter is presented
in Figure 3(a).

Rapid Sand Filtration stage The model used for both
simulation and estimation purposes is:

Ṁ =
F

V
(Mprev −M)− k3r

Ṗ =
F

V
(Pprev − P )− k3r

ṙ =
F

V
(rin − r)− r

(5)

When generating the data, k3 = 3 was used. The esti-
mation result for the unknown parameter is presented in
Figure 3(b).
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Fig. 3. HCl and RSF estimation results.

As one can see from the presented results, the estimates
converge to the true values. The maximum standard
deviation computed point-wise over the 30 simulations is
below 0.01 for all the estimated states and below 0.001 for
the estimated reaction constants.

4.2 Results Using Experiment Data

The simulation results give confidence that using a particle
filter the process parameters can be identified based on the
measured pH and the measured dosing.

To verify this assumption unfiltered real-world data from
the full-scale plant are used. The reactant dosage in the
HCl dosage stage, the pH after the dosage stage, the
incoming NH4 concentration in the RSF stage, the pH
after transportation and the temperature are measured
every minute. The results are obtained for a situation
where the reactant and flow through the treatment plant
are changed, due to operational changes.

HCl dosage stage Since before the HCl dosage, the
water is in equilibrium with the CO2 in the air, the M
and P numbers stabilize at M = 3.7 and P = −0.05,
respectively. These are the inputs Mprev and Pprev for
the HCl dosage stage. The added reactant is measured,
and so is the pH at the end of the stage. The states M ,
P , r and the reaction constant k12 need to be estimated.
The particle filter uses 100 particles, with resampling at
NT = 90. The state transition noise covariance for M , P
and r was 0.00005, while for the random walk model of
k12 it was 0.002. The measurement noise covariance used
was 0.05. The results are presented in Figure 4.

With these tuning parameters the prediction of the pH
after dosing is very accurate, but the reaction rate varies
too quickly. This variation cannot be explained by physical
phenomena and therefore it is concluded that the error
in the pH measurement must be larger. In a second run
the accuracy of the pH measurement was changed to 0.2
and the covariance of the random walk model of k12 was
changed to 0.0001. The results of this run are shown in
Figure 5.
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Fig. 4. Estimation results for the first acid dosage -
experimental data (solid line - measured, dashed -
predicted).
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Fig. 5. Estimation results for the first acid dosage -
experimental data (solid line - measured, dashed -
predicted).

In Figure 5, the pH is within the expected deviation from
the measured pH, and the process parameters stabilize at
a constant value. However, in simulation, the pH varies
more rapidly than in the real-world measurements. An
explanation is a possible extra mixing in the HCl dosage
stage that is not modeled in the current model.

RSF stage and transportation. Since a measurement of
the pH is only available after transportation of the water
obtained in the RSF stage, the two stages have to be taken
together. Reactant is added only in the RSF stage, where
the inputs are the M and P numbers at the end of the
HCl dosage stage. The transportation only delays the M
and P s obtained at the end of the RSF stage. The model
is given by:



Ṁ2 =
F

V2

(M1 −M2)

Ṗ2 =
F

V2

(P1 − P2)

Ṁ1 =
F

V1

(Mprev −M1)− k3r

Ṗ1 =
F

V1

(Pprev − P1)− k3r

ṙ =
F

V1

(rin − r)− r

(6)

The measured pH is a nonlinear combination of M2 and
P2. Besides the states, the parameter k3 also has to be
estimated. The values used for Mprev and Pprev are those
estimated in the previous stage. A part of the estimated
results is presented in Figure 6. The particle filter uses 100
particles, with resampling atNT = 90. The state transition
noise covariances are 0.00005 forM1,M2, P1, P2, and r and
0.0002 for the random walk model of k3. The measurement
noise covariance is again increased to 0.2.
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Fig. 6. Estimation results for RSF and transportation -
experimental data (solid line - measured, dash-dotted
- predicted).

The estimation results for this case (Figure 6) show that
the convergence to the correct pH value is slower than
in the simulated case, but again the process parameter
converges to a constant parameter. There still remain
changes in the pH measurements that are not explained
by the model.

5. CONCLUSIONS

In drinking water production and distribution there is
an increased interest in advanced control using online
data. However, in the current situation only the pH at
different stages is measured. Based on these measurements,
a particle filter was applied to the estimation of reaction
constants for two stages of a water treatment plant.

Estimation was performed both on simulated data and us-
ing data from the full-scale installation. It has been shown
that the theoretical accuracy of the pH measurements does
not hold in practice, and that an accuracy of 0.2 for the

pH measurement must be used. If that accuracy is taken
into account, “constant” process parameters are changing
gradually and the pH is within the defined range.

The results are encouraging, but, at the same time, they
show that SI cannot be controlled solely by one pH mea-
surement. The actual accuracy of a pH measurement (of
0.2) is within the allowed SI range (of 0.3). To guarantee
that the desired SI is kept, it is necessary to implement
redundant pH measurements (to increase accuracy) or
to use our model-based approach to identify erroneous
measurement data.
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