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Particle Swarms in Optimization and Control ⋆
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Abstract: In the last decennium, particle swarms have received considerable attention in the
fields of optimization and control. Inspired by swarms of social animals, such as birds, fish, and
termites, simple behavior on the local level has been shown to result in useful complex behavior
on the global level. Particle Swarm Optimization has proven to be a very powerful optimization
heuristic, and swarm aggregation based on artificial potential fields enjoys a growing interest for
controlling particles in a swarm. Especially the flexibility, scalability, and robustness to errors
on a local level are intrinsic properties of swarms that have attracted the interest of researchers
in applying swarm technology to various problems. In this contribution, we present an overview
of the application of particle swarms for optimization and control of swarm aggregation.

1. INTRODUCTION

In recent years, the collective behavior of large numbers
of moving cooperative agents, frequently called particles,
has proven to be useful in the fields of optimization and
control. The collection of these particles is called a swarm
and its application is referred to as swarm intelligence.
The power of swarm intelligence is that simple behavior
on the local level can result in useful, often more complex,
behavior on the global level. Even if the individual agents
are too simple for the label ‘intelligent’, the swarm often
does manifest intelligent behavior. The global behavior
of the swarm is difficult to predict based on the local
dynamics of the particles. A number of publications,
such as (Clerc and Kennedy, 2002; Gazi, 2005; Gazi and
Fidan, 2007; Jadbabaie et al., 2003), has however set the
foundations for the analysis and application of swarm
intelligence. This paper briefly reviews the major advances
of swarm intelligence, analyzed from the viewpoint of
optimization and control.

Swarming is a term from biology denoting the collective
motion of a group of insects, bacteria, or groups of animals.
Swarm intelligence is inspired by biological social animals,
such as flocks of birds, schools of fish, and herds of
running animals. Reynolds (1987) has demonstrated a
visually attractive simulation of flocking by implementing
only three basic local rules for each virtual bird, or boid
(i.e., bird-oid). These rules were: flock centering, collision
avoidance, and velocity matching. In a similar study,
Vicsek et al. (1995) demonstrate the flocking of bird-
like particles by averaging the flight direction of each
particle with that of its neighbors. These results have
been analyzed mathematically in (Jadbabaie et al., 2003).
A quantitative study using a kinematic model of group
motion is given by Okubo (1986). Grünbaum (1998) shows
how schooling helps animals to find food sources in a noisy
environment.

⋆ This research is financially supported by Senter, Ministry of
Economic Affairs of The Netherlands within the BSIK-ICIS project
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Swarms have many advantages when compared to their
individual members. In biological swarms, the group often
offers protection from predators (school of fish, herd of
antelopes), more efficient motion (flock of birds), or more
effective food collection (ants, termites). In general, a
swarm may complete tasks that are impossible to complete
by the individuals alone. The characteristics of a swarm
can be summarized as follows:

• A swarm consists of a set of cooperating autonomous
individuals.

• The individuals have their own strategies they aim to
satisfy and they are not aware of the global objective.

• Each individual locally interacts with the environ-
ment and communicates with its neighbors.

• There is neither a supervisor, nor a fixed and prede-
fined hierarchical structure.

The swarms approach to distributed systems of moving
agents is slowly finding a way to engineering applications,
such as controlling platoons of vehicles on freeways (Liu
et al., 2001), robot navigation (Feddema et al., 2002),
and control of unmanned aerial vehicles (Deming and
Perlovsky, 2007). The most important intrinsic advantages
of swarms in engineering applications are:

• Simple homogenous individuals can be produced in
series, resulting in lower production costs.

• The swarm is potentially robust to errors of the
individuals, so the individuals can be made of rel-
atively unreliable components. Malfunctioning indi-
viduals can easily be removed, or replaced.

• Scalability; individuals can easily be added, or re-
moved.

Generally, in multi-agent systems, the coordination of
the agents is achieved by complex strategies, in a fixed
topology. Often a central controller is used to determine
the optimal action for each of the agents. Such methods,
however, scale poorly with the number of agents. Swarm
intelligence aims at controlling a large number of coop-
erative autonomous agents, in a varying topology, with
simple, local rules. The analysis of a swarm intelligence



system typically focuses on the dynamics of the swarm as
a whole, rather than on the dynamics of the individual
agents.

In this paper, the application of swarm intelligence to
optimization and control is considered. This overview is
particularly useful as a concise review of the state of the
art of these subjects. The most prevalent method regarding
optimization is Particle Swarm Optimization (PSO). In
PSO, the individual particles influence each other in their
search for the optimum in a certain parameter space and
in many cases, the swarm as a whole converges to this
optimum. Regarding swarm intelligence for control, the
most prevalent control problem is Swarm Aggregation, in
which the particles have to form a cohesive swarm with
certain characteristics, such as size, shape, and location
in the environment. This paper discusses the method of
artificial potential fields, which has received increased at-
tention in the recent literature. In this method, attraction
and repulsion forces are assigned to all objects in the
environment. The particles move based on the nett force
of the potential field. This method is a more general way
of implementing the rules, defined by (Reynolds, 1987).

The rest of this paper is structured as follows. In Section 2,
swarm intelligence for optimization is discussed. Section 3
discusses the modeling, control, and analysis of swarms of
particles moving in two or three dimensions, and Section 4
concludes this paper.

2. PARTICLE SWARM OPTIMIZATION

In many optimization problems, the size of the search
space rapidly increases with the number of variables and
the domain of the values they can take. Finding an opti-
mum in these search spaces quickly becomes an intractable
problem, due to what is referred to as the curse of dimen-
sionality. Rather than finding the global optimal solution,
optimization heuristics have been developed to find suf-
ficiently good solutions in polynomial time (Dorigo and
Stützle, 2004). Swarm intelligence presents a class of such
heuristics.

Particle Swarm Optimization (PSO) (Kennedy and Eber-
hart, 1995) has been developed to solve nonlinear multi-
dimensional optimization problems. In analogy to flocks of
birds, PSO casts the optimization problem in a parameter
space, through which a set of particles flies. However, as
opposed to birds, which fly in a three-dimensional space,
the space of the particles can be of arbitrary dimension.
The nonlinear function, the optimum of which needs to be
found, maps the parameters to fitness values. The particles
search on the local level and keep one another updated on
the best solutions (associated with higher fitness values)
found so far, so that they are biased towards more promis-
ing regions of the search space.

2.1 PSO Update Rule

In PSO, the problem state space is defined as X ⊆ R
n,

with xi(k) the position of a particle i and vi(k) its velocity
at time k. After initialization, the particles update their
state in each iteration of the algorithm, with the following
rule:

vi(k + 1) =w(k)vi(k) + c1r1(k)[xi,pbest(k)− xi(k)]

+c2r2(k)[xi,lbest(k)− xi(k)] (1)

xi(k + 1) = xi(k) + vi(k), (2)

where k is the current time step, xi,pbest(k) is the personal
best position, xi,lbest(k) is the local best position, w(k) is
the inertia weight, r1,2(k) are random variables, and c1,2
are positive acceleration constants.

In each iteration, a fitness function F : X → R is evaluated
for the values of xi(k) and compared to the personal
best values xi,pbest(k). If a better value, corresponding
to a higher fitness, has been found for a particle i, its
personal best value is replaced by xi(k). If the maximum
of xi(k) over all i in some neighborhood is higher than
the current xi,lbest(k), the latter value is replaced by that
value. Sometimes, the neighborhood is considered to cover
the complete swarm. In that case, the local best is called
the global best position of a particle, xi,gbest(k). Each
particle in the swarm is attracted towards its personal
best solution and its local best solution. In this way, it
learns to find the optimum of the fitness function, not
only by its own experience, but from other members of
the swarm as well. The values of the inertia weight w(k)
and the range of the random variables r1,2(k) influence
the convergence properties of the particle swarm. The
positive acceleration constants c1,2 trade off exploration
and exploitation. The convergence of PSO has been proven
in (Clerc and Kennedy, 2002) and in (Kadirkamanathan
et al., 2006).

2.2 Variations on the Basic Update Rule

As PSO is a very active field of research, new variations
are proposed continuously. Some include special rules of
selecting the local best position, moving particles to ran-
dom places in the environment, and information exchange
between multiple cooperating swarms (Baskar and Sug-
anthan, 2004; El-Abd and Kamel, 2005; Kennedy and
Eberhart, 2001). Other authors propose new PSO-like
methods inspired by other biological counterparts, such
as the immune system (Afshinmanesh et al., 2005).

Apart from PSO, another interesting swarm intelligence
optimization heuristic is Ant Colony Optimization (Dorigo
and Stützle, 2004; Dorigo and Blum, 2005). Ant Colony
Optimization (ACO) has proven to be successful at finding
good solutions in polynomial time to many NP-complete
combinatorial optimization problems. Agents are modeled
as ants traversing the nodes of a graph, representing
the optimization problem. Traversing a node corresponds
to adding it to a partial solution. In ACO, the agents
communicate by pheromones, or values assigned to the
connections between the nodes, which influence the prob-
ability for other agents to traverse these connections. It
is proven that this mechanism results in a convergence of
the solutions constructed by all the agents to the optimal
combination of nodes and connections (Dorigo and Stützle,
2004; Dorigo and Blum, 2005).

2.3 Applications of PSO

PSO has successfully been applied to many optimization
problems. Chen et al. (2006) and Gaing (2004) apply PSO



to the tuning of PID controllers. Training of feedforward
neural networks is described in (Kennedy and Eberhart,
2001). In the field of control of power plants, PSO has also
been applied in (Heo et al., 2006; Gaing, 2004). Several
other applications of PSO include the synthesis of antenna
arrays (Chen et al., 2005), clustering in mobile ad hoc
networks (Ji et al., 2004), and traffic incident detection
(Srinivasan et al., 2003).

For a more detailed description of the basic update rule, its
variations, and application areas, please refer to (Kennedy
and Eberhart, 2001) and the references therein. That
paper also contains a nice overview of the relation between
swarm intelligence, biological flocking, and the field of
evolutionary computation.

2.4 Concluding Remarks

The previous discussion has briefly presented the appli-
cability of swarms for optimization. Rather than solving
the problem analytically, or in an enumerative way, the
particles in the swarm influence each other such that they
are driven towards more promising regions of the search
space, in which they eventually converge to the optimum.
The next section describes methods for controlling swarm
aggregation. In contrast to optimization, the control objec-
tive is not anymore for the particles to converge to a single
point in a parameter space, but to form a cohesive swarm
with some specific characteristics, such as size, shape, and
location.

3. CONTROLLING A PARTICLE SWARM

The control of a swarm of moving agents has mainly
focused on three control problems: rendezvous, formation
control, and swarm aggregation. An overview of these
problems and associated controller design can be found
in (Martinez et al., 2007).

The rendezvous problem is to find control strategies under
which all the agents in the swarm group eventually agree
on and reach a single common location. This problem
is analyzed for synchronous communication, where the
agents communicate synchronized with a common clock,
as well as the asynchronous case in (Lin et al., 2003, 2004).
The rendezvous problem also relates to the distributed
consensus problem, which is clearly covered in (Olfati-
Saber et al., 2007). This paper presents stability and per-
formance conditions of the swarm based on the properties
of the graph Laplacian, describing the connectivity of the
individuals.

Formation control refers to the control problem where the
agents need to control their distance to other agents, as
specified in a formation graph. Typically, the formation
needs to be maintained while the agents follow a trajectory
and may encounter obstacles. Formation control is studied
in, e.g., (Gazi and Fidan, 2007), in which rigid graph
theory is used to analyze the properties of the formation
in various conditions. This study also includes an overview
of the control problems related to formation control, such
as splitting and merging of formations.

Swarm aggregation deals with the control problem in
which the agents have to aggregate to form a cohesive
swarm.

Controlling a swarm is a difficult task. The large number
of particles and interactions makes explicit analysis of the
motion of all the particles rapidly infeasible. This paper
focuses on swarm aggregation as the control problem of
interest. The main method for controlling the motion of
the particles uses artificial potential fields. This method is
considered in, e.g., (Barnes et al., 2006; Chu et al., 2006;
Gazi and Passino, 2003, 2004b,a, 2005; Gazi, 2005; Kim
et al., 2006; Liu et al., 2003b,a; Liu and Passino, 2004).

3.1 Particle Dynamics

Swarm aggregation is the convergence of a set of particles
to a cohesive swarm in an environment defined by a
state x ∈ X ⊆ R

n, with X the state space and n
the dimension of the state space. When analyzing large
distributed systems, it is convenient to start with a simple
model of the particle dynamics and their interaction. The
particles are modeled by a simple kinematic model:

ẋi(t) = ui(t), (3)

where the position of a particle i at time t is denoted by
xi(t) and its corresponding input by ui(t). This model
allows proof-of-concept design of swarm systems, where at
a later stage, the particle dynamics (3) can be replaced
by a more realistic model, like a point-mass model or
full-actuator model. The full actuator model has been
considered in (Gazi and Passino, 2005). In (Gazi and
Fidan, 2007), more models are described, such as the
non-holonomic unicycle model, Dubins’ vehicle model, and
the self-propelled particle model. The interested reader is
referred to that paper and the references therein.

3.2 Artificial Potential Fields

In the environment, all the objects, such as the particles
and obstacles are assigned a certain potential function,
which defines the force acting upon a particle at a certain
distance. The value of the artificial potential field is the
sum of the values of all the potential functions. The input
to the particle dynamics (3) is the local value of the
artificial potential field. For N particles present in an
obstacle-free environment, (3) becomes:

ẋi(t) =

N
∑

j=1,j 6=i

gi(xi(t)− xj(t)), for i = 1, . . . , N (4)

where gi(xi(t) − xj(t)) represents the potential function
assigned to particle i that governs the attraction and
repulsion of the particles in the swarm. Note that each
particle may have its own potential function. This means
that particles may have potential functions that are differ-
ent in structure, or have the same structure, but different
parameter values. A swarm in which at least one particle
has a different potential function from the other particles,
is called a heterogeneous swarm. When all the particles
have the same potential functions, the swarm is said to
be homogeneous. Although this framework allows for het-
erogeneous swarms, almost all the research published is
on the analysis and control of homogeneous swarms. The
main reason for this is that proving convergence for het-
erogeneous swarms is much more involving than for homo-
geneous swarms. The general class of attraction/repulsion



functions for which convergence is proven in (Gazi and
Passino, 2004a) is of the type:

g(y) =−y[ga(||y||)− gr(||y||)], (5)

where ga : R+ → R
+ and gr : R+ → R

+ represent the
magnitude of the attraction and repulsion term respec-

tively and ||y|| =
√

yTy is the Euclidean norm. Here,
the vector y represents the distance between two particles
y = xi−xj , for i, j ∈ {1, . . . ,M}. The explicit dependence
on time is left out for the sake of brevity. One particular
function that is frequently used to model the particles is:

g(y) =−y

(

a− b exp

(

−
||y||2

c

))

, (6)

with a, b, and c positive constants such that b > a. For
large distances, a dominates and the function is attractive.

For small distances, the term b exp
(

− ||y||2

c

)

dominates

and the function is repulsive. The function (6) is plotted
in Fig. 1 for a scalar y and for several values of the
parameters.
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Fig. 1. The particle potential function (6) for several values
of the parameters.

We can deduce from the motion equation (4) and the
potential function (6) that the sign of the velocity of the
particles changes at the set of points Y = {g(y) = 0} =

{y = 0 or ||y|| = δ =
√

c ln(b/a)}, i.e., when the particles
cross each other, or when they are at a distance δ known
as the comfortable distance. The equilibrium y = 0 is
unstable, so the particles will move away from each other
when crossing. The set of equilibrium points ||y|| = δ is
stable because the force from the potential function drives
the state of the particles to this equilibrium. The swarm
will thus converge to the state where each individual
reaches its comfortable distance with respect to all the
other individuals. Note that in this analysis, the particles
are allowed to move through each other, and collisions
are not considered. Collision avoidance based on potential
functions is addressed in, e.g., (Barnes et al., 2006) and
(Kim et al., 2006).

Obstacles can also be modeled by potential functions. A
typical potential function for an obstacle is:

g(y) =−sign(y)

(

−b exp

(

−
||y||2

c

))

, (7)

where sign(y) = 1 for y ≥ 0 and sign(y) = −1 for y < 0.
The attraction term ga of (5) is set to 0, b to a high value
so the repulsion is large and collisions are avoided, and c
set to a value determining the range of influence, which
acts as a safety margin to the obstacle.

3.3 Aggregation in a Nutrient Profile

Gazi and Passino (2004b) consider an extension of the
motion dynamics from (4) by including a term σ(x) :
R

n → R representing the nutrient profile. The term
nutrient stems from its analogy with the environment in
which insects forage their nutrients. The profile contains
the attractant/repellent parts of the environment and the
motion equation for each particle becomes:

ẋi =−∇xσ(xi) +
N+O
∑

j=1,j 6=i

gi(xi − xj), for i = 1, . . . , N,

where the term −∇xσ(xi) represents negative gradient of
the nutrient profile as measured by a particle i. It results in
the motion of the individual particles toward the attractive
regions and away from the more repellent regions. The
number of obstacles is denoted by O, with the obstacles
indexed from N + 1 to N +O.

The nutrient profile presents a way to control the position
of the swarm in the environment. A changing nutrient
profile can represent a moving setpoint for trajectory
tracking. The introduction of a nutrient profile shows
similarities with PSO, in which the particles are controlled
to the global optimum in a parameter space. However, the
nutrient profiles studied by Gazi and Passino (2004b); Liu
et al. (2007) are smooth functions, without local optima,
whereas typical optimization problems solved by PSO
contain many local optima (Kennedy and Eberhart, 2001).

3.4 Convergence and Stability

Convergence and stability analysis of swarm aggregation
based on artificial potential fields is not trivial. The poten-
tial field contains many local optima and changes contin-
uously as the particles move and have a varying distance
to the other objects while aggregating. Convergence and
stability proofs are mainly published in (Gazi and Passino,
2003, 2004a; Gazi, 2005; Liu et al., 2003b).

Gazi and Passino (2003) have proved that the motion of
the particles over time is towards the center of the swarm.
As time progresses, all members of the swarm will converge
to a hyperball

Bǫ(x) = {xi : ||xi − x|| ≤ ǫ}, ∀ i = 1, . . . , N,

where

ǫ=
b

a

√

c

2
exp(−

1

2
)

is the swarm size and



x=
1

N

N
∑

i=1

xi,

the swarm center. Moreover, they prove that the conver-
gence will occur in finite time. They also provide a bound
on the swarm size for finite number of agents ǫN , as

ǫN =
b(N − 1)

aN

√

c

2
exp

(

−
1

2

)

.

This quantity is always smaller than ǫ for finite values of
N and when N → ∞, this bound becomes equal to ǫ. In
other words, ǫ is the largest possible bound on the swarm
size, independent of the number of particles in the swarm.

This result is very conservative, in the sense that it tells
nothing about other properties of the swarm, such as the
shape, orientation, and distribution of the particles within
this hyperball. A detailed analysis of the convergence of
the swarm to such macroscopic characteristics has not
been published yet.

In relation to formation control, the convergence to charac-
teristics on a local level, such as the exact distance between
all the particles is studied in (Gazi, 2005). He proved the
convergence of the swarm when formation constraints are
added to (4):

||xi − xj ||= di,j , for i, j = 1, . . . , N,

with di,j the desired distance between two particles i, j in
the swarm.

3.5 Concluding Remarks

This section has presented the main results for the control
of swarm aggregation using artificial potential fields for
modeling the interaction between the particles and other
objects in the environment. Artificial potential fields pro-
vide a general and convenient way of modeling the influ-
ence of all the objects in the environment on the particle
motion. However, the resulting potential field generally
contains many local optima and is varying in time due to
the continuous motion of the particles while aggregating.
For these reasons, the analysis and application of this
method has been limited to simplified scenarios.

The same holds for the application of potential functions
to control real swarm robotic systems. This approach
can be used when the robots are capable of determining
the distance between them and the other objects in the
environment, and when they know the potential functions
associated to them. Most of the research on particle
swarms has been done on an analysis and simulation basis.
Results on swarm aggregation are almost always regarded
as proofs of concept, because the motion dynamics of the
particles do not correspond to the dynamics of realistic
agents.

4. CONCLUSIONS

This paper has presented an overview of the modeling
and control of particle swarms applied to global non-linear
optimization and swarm aggregation. Particle Swarm Op-
timization has been reviewed as an optimization heuristic

in which virtual particles often converge to the global
optimal value in the search space, even in the presence
of local optima. Regarding the control of real moving
agent systems, swarm aggregation has been reviewed as
a method in which the agents, modeled as particles, are
controlled to form a cohesive swarm. The concept of con-
trolling the particles in the swarm by artificial potential
fields, in which the interaction between the particles and
all the objects in the environment is modeled by potential
functions has been discussed.

Swarm intelligence for controlling large numbers of agents
for real-world applications is still far from being realized.
The analysis has only proven that homogenous swarms, for
a certain class of potential functions and in an obstacle-
free environment, converge within a certain hyperball.
Analysis of swarms in more realistic circumstances and
the development of systematic control design is necessary
before swarm intelligence can be applied to practical
relevant control problems.
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