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A General Modeling Framework for Swarms

Jelmer van Ast, Robert Babuška, Bart De Schutter

Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628 CD Delft, the Netherlands

Abstract—Swarms are characterized by the ability to generate
complex behavior from the coupling of simple individuals. While
the swarm approach to distributed systems of moving agents
is gradually finding a way to engineering applications, a true
successful demonstration of an engineered swarm is still missing.
One of the reasons for this is the gap between the complexity of
the swarms studied in fundamental research and the complexity
needed for the application to interesting control problems. In
the majority of the research on swarm intelligent systems, the
moving agents in the swarm are modeled as simple reactive
agents. This model comprises too little intelligence to fully exploit
the potential of swarms. In this paper, a general comprehensive
swarm framework is introduced and related to the established
state of the art. Such a framework is novel and it is a first and
important step in the development and analysis of more complex
and intelligent swarms.

I. INTRODUCTION

IN the recent years, research on moving cooperative au-

tonomous agents has shown that their collective behavior

can be controlled to solve particular optimization and control

problems. In the majority of the publications, the moving

agents are modeled as simple reactive agents characterized by

a state denoting their position and a function describing their

dynamics, and they are frequently called particles. The col-

lection of these particles is called a swarm and its application

is referred to as swarm intelligence [1]. The individual agents

are typically too simple for the label ‘intelligent’, although

the swarm often does manifest intelligent behavior. Swarms of

particles have been successfully applied to optimization and

control problems, where the control objective for the particles

is to form a cohesive swarm in a certain formation. This paper

proposes a general framework for swarms of moving agents,

which combines the notions of particles and dynamic agents

to facilitate the development of swarms of more intelligent

agents.

Swarming is a term from biology denoting the collective

motion and behavior of a group of insects, bacteria, or animals

[2], [3]. Typically, swarms complete tasks that are impossible

to complete by the individuals alone. A swarm consists of

cooperating autonomous individuals, each having their own

strategies, while they are not aware of the global objective.

Each individual only locally interacts with the environment

and communicates with its neighbors. There is neither a

supervisor, nor a hierarchical structure. These characteristics
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provide some intrinsic advantages to the engineering applica-

tion of swarms:

• Simple homogeneous individuals can be produced in

series, resulting in lower production costs.

• The swarm is potentially robust to errors in the indi-

viduals. Individuals can be made of relatively unreliable

components, further reducing production costs. Malfunc-

tioning individuals can easily be replaced.

• The system is scalable; individuals can easily be added,

or removed.

Some conceptual developments of swarm applications have

been presented for platooning and the navigation of ground

robots and unmanned aerial vehicles. Platooning is the for-

mation of a string of vehicles that control their speed to

maintain a desired inter-vehicle distance and is closely related

to the subject of one-dimensional swarms. In such swarms,

the moving agents are modeled as particles with proximity

sensors at both sides. Mainly, the stability is studied under

various conditions of the communication links [4], [5]. The

control of multiple cooperative robotic vehicles controlling a

formation, guarding a perimeter, and surrounding a facility

is analyzed in [6]. Cooperative transport by robots, based on

similar behavior by several species of ants is considered in

[7]. In [8], a detailed description is given of the simulation

and possible realization of a sensor Unmanned Aerial Vehicle

(UAV), theoretically capable of autonomous refueling, coop-

erative search, information fusion, and munition deployment.

The analysis of a group of micro-UAVs, capable of performing

multiple target detection and localization is discussed in [9].

Swarms of sensors can facilitate detecting and discriminating

targets with low signal-to-noise ratio by allowing correlation

between different sensor types and/or different aspect angles.

Only a few applications of real swarm robotic systems have

been presented. A swarm of micro robots that communicate

at a short distance and have a perception of their surroundings

by IR sensors is described in [10]. Another application is

the swarm-bot project, which constitutes a self-assembling

and self-organizing robotic system [11]. The mobile robots

have the ability to connect to each other and to disconnect

from each other, and the research focuses on the problem

of synthesizing controllers for the swarm-bots using artificial

evolution. Specifically, aggregation and coordinated motion of

the swarm-bot are studied.

Although the swarm approach to distributed systems of

moving agents is gradually finding a way to engineering appli-

cations, true successful demonstrations of engineered swarms



are still lacking. One of the reasons for this is a ‘missing

link’ between the fundamental research on particle swarm

behavior and the application to practically relevant control

problems. This paper introduces a general swarm framework

that supports such a link by combining particle swarms and

dynamic agents. It must be stressed that a proper modeling

framework has not yet been presented in the literature and that

it is an essential first step before any analysis can be made of

the behavior of more intelligent moving agents in a swarm.

The rest of this paper is structured as follows. In Section II,

the proposed framework is introduced and discussed in detail.

Section III discusses two examples of how the framework

relates to the state of the art and Section IV indicates its op-

portunities for future research and development and concludes

this paper.

II. SWARM FRAMEWORK

A swarm is a multi-agent system of cooperating autonomous

agents. Generally, in multi-agent systems, the coordination of

the agents is achieved by complex strategies, in a fixed topol-

ogy. Often a central controller is used to determine the optimal

action for each of the agents. Such methods, however, scale

poorly with the number of agents. Swarm intelligence aims at

controlling a large number of cooperative autonomous agents,

in a varying topology, with simple, local rules. The analysis of

a swarm intelligence system typically focuses on the dynamics

of the swarm as a whole, rather than on the dynamics of

the individual agents. The most prevalent control problem

considered in swarm literature is that of swarm aggregation,

which is briefly described in Section III-B. The results for

swarm aggregation are too limited to be generally applicable

to a wide class of control problems. This demonstrates the

difficulty of applying swarm intelligence to practically relevant

control problems. However, considering the many potential

advantages of swarms, further research is highly desired.

This section presents a new framework that enables a

more structured approach to developing swarm intelligence

for distributed sensing and control and provides better insight

in the structure of swarm systems. The framework separates

the physical parts and behavior of the swarm members from

their decision making capabilities. Current swarm intelligence

research focuses mainly on the physical behavior of the swarm

members, while more sophisticated decision making is studied

in dynamic agent systems. The proposed framework aims to

integrate both fields to enable the development and analysis

of more sophisticated swarm systems.

In the considered framework, the members of the swarm

are called moving agents. The two key features of a moving

agent are that:

1) it can move through its environment and

2) it is capable of decision making based on its input and

recollection of the past.

These features are represented by two strictly distinct

classes, called particles and dynamic agents. A diagram of

the framework is given in Fig. 1.
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Fig. 1. Block diagram of the framework.

The diagram shows N dynamic agents A1, . . . , AN inter-

acting with an environment. The dynamic agents represent the

intelligence of the moving agents. The particles P1, . . . , PN

represent the physical part of the moving agents, such as

their position and speed. Each dynamic agent, indexed by

i, senses the environment by a vector yi and produces an

input ui to the environment. Furthermore, each dynamic

agent may send and receive messages vi and wi to and

from the environment, respectively. Within the communication

channel, it is determined which messages are received by

which dynamic agents, based on the state of all the particles

xs =
[

xT
1 . . . xT

N

]T
. Each dynamic agent is associated

with a particle by their corresponding index. The state of

each particle changes based on the input from its associated

dynamic agent and the restrictions posed on it by the envi-

ronment. The process state may be sensed and influenced by

the inputs us =
[

uT
1 . . . uT

N

]T
from the dynamic agents

and the state xs of all the particles. The rest of this section

discusses the elements of the framework in more detail.

Example 1: In order to exemplify the discussion throughout

this section, a swarm of identical tiny robots is considered,

the task of which is to guard a building. This is clearly a

task that may benefit from the advantages of a swarm over a

single agent. As it is assumed that the robots are frequently

cut off from long-range radio communication, a certain level

of autonomy is required. It is also desired for such a system

to be scalable and robust to malfunctioning robots. The robots

are assumed to be able to drive over the terrain surrounding

the building and they have some short-range communication

capabilities, some processing power, and sensors for sensing

some properties of their immediate environment. �

A. Particles

In research on swarm intelligence, the members of the

swarm are usually modeled as particles, though the exact

definition of a particle is not always given. In this paper, a

particle is defined as follows:



Definition 2.1: A particle Pi is an entity having a state xi ∈
X , containing the physical states of the moving agent.

Particles at least represent the position of the moving agent

in the environment, but may include many other states, ranging

from velocity and orientation to shape and color. The particle

is in fact the placeholder of the moving agent and it is not

responsible for the decision making. The states of the particles

influence the neighborhood for all the agents, the local value

of the sensor input, and the distance between the agents.

Example 2: The physical position and speed of each robot

in our previous example belong to the state of its associated

particle. The state changes as a result of the actions chosen

by the robots, according to the dynamics of the robots and the

environment. The particle may also represent other physical

properties of the robots, such as size, shape, color, etc,

depending on what is useful for the control problem. �

B. Dynamic Agents

The decision making power of a moving agent is taken

care of by a dynamic agent. Dynamic agents are the basis

of modern artificial intelligence [12]. A dynamic agent is

defined as an entity that observes the environment, possesses

an internal state that changes as a function of the observations

and acts on the environment based on this internal state and

the observations. Moreover, it is able to send and receive

messages, which is discussed further in Section II-F.

Definition 2.2: A dynamic agent Ai, is a tuple

〈Z, Y, U,W, h, π, φ〉, with:

• zi ∈ Z the agent’s internal state,

• yi ∈ Y its observation of the environment,

• ui ∈ U its input to the environment,

• wi,vi ∈ W its incoming and outgoing message respec-

tively,

• h : Z×Y ×W → Z its internal state transition function,

describing how the internal state evolves as a result of

observations and the messages received,

• π : Z × Y × U → [0, 1] its decision probability

distribution, and

• φ : Z → W its message generating function.

In this definition, the behavior of a dynamic agent is thus

defined as a probabilistic mapping of states and observations

to actions. This allows for explorative decisions, which is

essential to decision making in an environment of which there

is no model available to the dynamic agents. This stochasticity

is explicitly separated from the dynamic agent’s internal state

transition function h to stress the algorithmic nature of h.

Example 3: The dynamic agent of each robot is the soft-

ware routine that receives input from sensors and communica-

tion links, processes this input based on its current state, and

produces an output. This output generally drives the actuators

of the robot and usually results in a change of the position,

thus a change of the particle state. According to this state and

the environment, the dynamic agent is presented with other

information based on which it has to make a new decision.

According to the principle that the physical state of the robot

is not a part of the dynamic agent, the position of the robot

is not known to the dynamic agent right away. Everything

the dynamic agent needs to know, it has to draw from its

observations of the environment.

The framework also stipulates that the decision making part

does not necessarily needs to be present at the same location

as the rest of the robot. Remote controlled robots are in this

sense identical to robots with an onboard controller. �

For the application to swarms, dynamic agents are assumed

to be cooperative. Cooperativeness is usually defined in the

way that all the agents aim at achieving the same objec-

tive. Within the swarm framework, this needs a little more

explanation, as the agents are all autonomous and thus act

based on their own local objective function, or strategy. The

control objective is generally defined for the whole swarm, so

the cooperativeness must hold for a global objective that is

unknown to the agents. As this is a contradictio in terminis,

dynamic agents in a swarm are usually said to be cooperative

if the agents do not aim at preventing other agents from

achieving their individual goals.1

C. Moving Agents

Using Definitions 2.1 and 2.2 a moving agent can be

defined.

Definition 2.3: A moving agent Mi = (Ai, Pi) is a pair of

a dynamic agent and a particle.

In this way, the dynamic agent can operate without directly

taking into account its motion through the environment, and

the motion of the particle can be considered without directly

taking into account the decision making of the dynamic agent.

Existing results on either part can be more easily combined to

form more sophisticated swarms than the current state of the

art. When discussing the behavior of the swarm, one can now

refer to its members by the clearly defined moving agents.

Regarding stability and performance of the swarm, conditions

can be determined for the signals u and y and the messages

w and v that couple the dynamic agents and the environment.

Example 4: The physical robots (particles) including their

software for the decision making (dynamic agents) together

form the moving agents. �

D. Process

Everything that must be sensed, or controlled by the moving

agent is called the process. It may include a real process, for

instance a chemical reaction, but also a virtual process, such

as an artificial potential field (see Section III-B).

Definition 2.4: A process is characterized by its state ψ ∈
Ψ, which contains the variables that must be sensed and/or

controlled by the dynamic agents.

The process state may change based on the output of the

dynamic agents us and the state of the particles xs. Typically,

1A better term would be indifferent rather than cooperative.



the state of the process is distributed in space when a swarm

approach is chosen to sense or control it. The observations of

the dynamic agent may vary for varying positions as a result

of this.

Example 5: Threats in the environment must be noticed by

the robots, and their state forms the process. There may also

be a virtual process, when the interaction between the robots

and the environment is modeled by an artificial potential field.

�

E. Environment

As illustrated in Fig. 1, the environment encompasses ev-

erything that is outside of the dynamic agent. It consists of

everything that is physically present in the problem setting. It

holds the physical state of the moving agents xs (the particles),

the process, and the communication channel. It also defines the

state space of the particles, i.e., the world state with boundaries

and obstacles. As the particles move through the environment

and potentially are obstacles to each other, this state space is

dynamic. The environment also includes the state transition

functions of the particles.

The term environment, as used in this definition, comes

from the dynamic agent community. It is different from what

is standard in the systems and control community, where the

environment denotes everything that is outside of the controller

and the process, and is usually just held responsible for the

disturbances of the signals in the system. Disturbances can

also easily be added to the framework, as well as communi-

cation delays and errors, although these are left out from the

discussion in this paper.

Definition 2.5: The environment is a tuple

〈N,X, g,Ψ, f, C〉, where

• N is the number of particles,

• X is the state space of the particles,

• g : X×U×X → [0, 1], with U =×N

i
Ui the joint action

space, is the particle’s state transition function, describing

how the state of the particle evolves as a result of the

action taken by all dynamic agents,

• Ψ is the state space of the process,

• f : Ψ×U×Ψ → [0, 1], with U =×N

i
Ui the joint action

space, is the process transition probability distribution,

describing how the process evolves as a result of the

agents’ actions, and

• C is the communication channel.

Example 6: The world outside to the software of the robots

is the environment. It contains the physical robots, the build-

ing, its surroundings, possible threats, the communication

signals, and other signals that may be received by the sensors

of the robots. �

F. Communication and Interaction

A key characteristic of a swarm is that the dynamic agents

within the swarm interact strongly in order to enhance the

performance of the swarm as a whole. One important aspect

of interaction are the observations by the dynamic agents

of the states of the particles. This is closely related to a

second form of interaction, namely communication. Agents

may communicate in order to share information about, e.g.,

the observations and strategies. The moving agents can com-

municate in various ways. One way is through their particle

state, e.g., by making meaningful movements. This is observed

in nature with honey bees. Another way is by changing the

environment in a meaningful way through its process state.

This is called stigmergy and is observed in nature with ants.

A third way is by sending and receiving messages through

the communication channel C. In the framework, this is

incorporated by the message signals v and w, the message

space W , and the message generating function φ, defined in

Definition 2.2.

As the moving agents in a swarm are typically low powered,

with short-ranged sensors, they are only capable of com-

municating with other agents within a certain neighborhood.

The neighborhood of a moving agent is defined as the set

of moving agents that the given agent can receive messages

from and is a function of the communication properties of the

moving agents and their positions.

Definition 2.6: The neighborhood of a moving agent Mi is

denoted by the set Ni(xs,σ), with xs the vector stacking the

particle states and σ the vector of communication parameters

of all the moving agents respectively.

The neighborhoods of the dynamic agents are dynamic, as

they are dependent on the particle states xs. The framework

allows for any method to model the communication channel.

With limited broadcast power, the neighborhood of a moving

agent consists only of the other moving agents that are within

a certain radius. The communication parameter σ then consists

of these radii. The notion of neighborhood is defined in the

framework to be part of the environment, as it depends on the

physical properties of the moving agents. Also properties of

the process, such as bandwidth of the communication channel

and the delay and attenuation of the signals traveling through

the communication channel are relevant to this definition.

It must be noted that in order to retain flexibility and

scalability of the swarm, the dynamic agents are not able to

directly address other agents. The agents thus broadcast their

messages and the neighborhood defines which agents receive

them.

Example 7: The robots broadcast the messages that are

constructed by their software. Their position, broadcast power,

and the properties of the environment determine their neigh-

borhoods, which dictate which of the other robots receive their

messages. The messages can be used to improve an internal

world model and decision making. �

G. Swarms

Finally the notion of a swarm can be formalized.

Definition 2.7: A swarm is a subset of the set of moving

agents, S , with the dynamic agents being cooperative.



In Definition 2.2, the index i to the spaces and transition

functions could have been added to stress that the framework

allows for all the moving agents to have different properties.

This gives rise to the notions of homogeneous and heteroge-

neous swarms.

Definition 2.8: If all the moving agents in the swarm have

the same state transition functions, the swarm is said to be

homogeneous. If at least one of the state transition functions

is different, the swarm is said to be heterogeneous.

III. RELATION TO STATE OF THE ART

This section relates the proposed framework to the two

major swarm intelligence methods in optimization and control,

namely Particle Swarm Optimization (PSO) and artificial

potential fields for swarm aggregation.

A. Particle Swarm Optimization

PSO [13] is an optimization heuristic, in which the goal is to

find the parameter vector associated with the global optimum

in a problem space according to a certain objective, or fitness

function. It is different from most other optimization heuristics

as it uses a swarm of agents instead of only one agent. In

this way, it is closely related to evolutionary computation,

which is also population-based. Similarities and differences are

discussed in, e.g., [1]. The agents in PSO are called particles

and partly conform with the particles from the framework

introduced in this paper. A particle i is defined by a state

xi =
[

θTi vT
i

]T
denoting its position and velocity in the

problem space Θ. A fitness function F (θ) : X → R maps

the parameter space to a fitness landscape, which as a result

associates each particle to a fitness value.

In PSO, the particles evolve in discrete time, because of the

algorithmic nature of the optimization problem. In the basic

setting, at each iteration of the algorithm, the particles update

their state with the following rule:

θi(k + 1) = θi(k) + vi(k), (1)

vi(k + 1) = w(k)vi(k) + c1r1(k)[θi,pbest(k)− θi(k)]

+c2r2(k)[θi,lbest(k)− θi(k)] (2)

where k is the current time step, θi,pbest is the personal best

position, θi,lbest is the local best position, w(k) is the inertia

weight, r1,2(k) are random variables, and c1,2 are positive

acceleration constants. The personal and local best positions

are the values of θi(k) that are associated with the highest

fitness value attained since k = 0 for particle i and any

particle in the neighborhood of that particle respectively.2 Each

particle in the swarm is attracted towards its personal best

solution and the local best solution. In this way, it learns to

find the optimum of the fitness function, not only by its own

experience, but from other members of the swarm as well.

The values of the inertia weight w(k) and the range of the

random variables r1,2(k) influence the convergence properties

2Sometimes, the neighborhood is considered to cover the complete swarm.
In that case, the local best is called the global best position of a particle,
θi,gbest.

of the particle swarm. The positive acceleration constants c1,2
trade off exploration and exploitation. More information can

be found in [13] and [14].

The equations (1) and (2) can be written in a state-space

form that separates the particle from the dynamic agent

according to the framework proposed in this paper:

xi(k + 1) =

[

1 1
0 w(k)

]

xi(k)

+

[

0 0
c1r1(k) c2r2(k)

] [

θi,pbest − θi
θi,lbest − θi

]

(k).

From this form, the particle Pi can be identified by the

relation:

xi(k + 1) =

[

1 1
0 w(k)

]

xi(k) + ui(k),

with

ui(k) =

[

0 0
c1r1(k) c2r2(k)

]

zi(k) (3)

the input from the dynamic agent Ai, having an internal state

zi =
[

(θi,pbest − θi)
T (θi,lbest − θi)

T
]T

.

The process represents the fitness function F (θ) and

the observation signal is defined as yi =
[

F (θi) θTi
]T

.

Each dynamic agent determines its personal best position

as θi,pbest(k) = arg max (F (θi(k)), F (θi(k − 1))) and

broadcasts it as the message vi(k) =
[

F (θi) θi,pbest(k)
T
]T

.

The communication channel determines the neighborhood

of each moving agent and produces the message wi =
{F (θj),θj,pbest | Mj ∈ Ni(xs, σ)}, with σ the size of

the neighborhood, equal for all the moving agents. Dynamic

agent Ai processes this message by taking the maximum

over the fitness values in this set to determine the local best

position θi,lbest. This provides the dynamic agent with enough

information to update the internal state zi and produce its input

to the environment ui according to (3). Here, the stochastic

nature of the decision making is expressed by the random

variables r1,2(k).

B. Controlling a Particle Swarm

One of the main control problems studied in literature is

swarm aggregation, in which the agents have to aggregate

to form a cohesive swarm [15]. For analyzing the swarm

behavior, most of the research has focused on a simple model

of the particle dynamics and their interaction. The particles

are modeled by a kinematic model:

ẋi(t) = ui(t), (4)

where the position of a particle i at time t is denoted by

xi(t) and its corresponding input by ui(t). This model allows

proof-of-concept design of swarm systems, where at a later

stage (4) can be replaced by a more realistic, more complex

model, like a point mass model or full actuator model [15],

[16]. The input to the particle dynamics is the local value of

an artificial potential field. In the environment, all the objects,

such as the particles and obstacles are assigned a potential



function that defines a virtual force acting upon a particle at a

certain distance. The value of the artificial potential field is the

sum of the values of all the potential functions. The general

class of attraction/repulsion functions studied in [17] is of the

type:

g(y) = −y[ga(||y||)− gr(||y||)], (5)

where ga, gr : R
+ → R

+ represent the magnitude of

the attraction and repulsion term respectively, the vector

y = xi − xj represents the distance between two particles

i, j ∈ {1, . . . ,M}, and ||y|| =
√

yTy is the Euclidean norm.

The input ui is generated by the dynamic agent Ai based

on measurement of the distance between its own particle

and other particles in the environment, yi = {xi − xj |
Mj ∈ Ni(xs, σi)}. The neighborhood is defined by the set

Ni(xs, σi) = {Mj | ||xi − xj || < σi}, with σi the sensing

radius of Pi. The function g is typically predefined and iden-

tical for all the moving agents. Dynamic agents may also infer

g from observed physical properties of other moving agents.

The color of a moving agent, e.g., may be associated with a

certain g according to a prespecified database. Parameters that

define g may also be communicated by the signals v and w.

IV. CONCLUSIONS AND OUTLOOK

This paper has introduced a general framework for swarm

systems. It is an essential first step before any proper develop-

ment and analysis of more intelligent swarms can be done. The

proposed framework provides a good basis for future research.

• The framework enables a more structured approach to the

development of new applications of swarm intelligence,

particularly for distributed sensing and control.

• It provides a better insight in the structure of swarm sys-

tems. Theoretical results and results based on simulation

can be more directly mapped to the application domain.

• The framework separates the physical parts and behav-

ior of the swarm members from their decision making

capabilities. This facilitates the integration of current

swarm intelligence research, which focuses mainly on the

physical behavior of the swarm members, with research

on more sophisticate decision making in dynamic agent

systems and AI. The proposed framework aims to inte-

grate both fields to enable the development and analysis

of more sophisticated swarm systems.

Two of the most established methods from the swarm

community, PSO and artificial potential functions for swarm

aggregation have been related to the proposed framework. Al-

though PSO is an optimization method and swarm aggregation

is a control problem, it has been demonstrated how these

methods can both be decomposed into similar elements. Future

research of the authors will focus on the development and

analysis of swarms of moving agents for distributed sensing

and control, based on the proposed framework.
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