
Delft University of Technology
Delft Center for Systems and Control

Technical report 08-003

Ant colony optimization for optimal
control∗

J. van Ast, R. Babuška, and B. De Schutter

If you want to cite this report, please use the following reference instead:
J. van Ast, R. Babuška, and B. De Schutter, “Ant colony optimization for optimal
control,” Proceedings of the 2008 IEEE Congress on Evolutionary Computation
(CEC 2008), Hong Kong, pp. 2040–2046, June 2008.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/08_003.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/08_003.html


Ant Colony Optimization for Optimal Control

Jelmer van Ast, Robert Babuška, Bart De Schutter

Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628 CD Delft, the Netherlands

Abstract—Ant Colony Optimization (ACO) has proven to
be a very powerful optimization heuristic for Combinatorial
Optimization Problems (COPs). It has been demonstrated to
work well when applied to various NP-complete problems, such
as the traveling salesman problem. In this paper, an ACO
approach to optimal control is proposed. This approach requires
that a continuous-time, continuous-state model of the system,
together with a finite action set, is formulated as a discrete, non-
deterministic automaton. The control problem is then translated
into a stochastic COP. This method is applied to the time-optimal
swing-up and stabilization of a pendulum.

I. INTRODUCTION

A
NT Colony Optimization (ACO) is inspired by ants

and their behavior of finding shortest paths from their

nest to sources of food. Without any leader that could guide

the ants to optimal trajectories, the ants manage to find

these optimal trajectories over time, by interacting with their

local environment. The ants initially search for food in a

random fashion, but when they have found some, they return

home while depositing chemicals, called pheromones. These

pheromones attract other ants to follow the same path, and

they in turn also deposit pheromones on their way back. Over

time, this behavior leads to the emergence of paths, that can

be shown to be near-optimal. ACO is used to indicate the class

of metaheuristic optimization methods that use these concepts

in solving Combinatorial Optimization Problems (COPs) [1].

The basic ACO algorithm and its variants, have successfully

been applied to various optimization problems, such as the

traveling salesman problem [2], job shop scheduling [3], op-

timal path planning for mobile robots [4], telecommunication

routing [5], and load balancing [6], [7]. An implementation of

the ACO concept of pheromone trails for real robotic systems

is described in [8]. A survey of ACO and other metaheuristics

to stochastic combinatorial optimization problems can be

found in [9]. The first application of ACO to optimization

problems in a continuous search space is outlined in [10].

More recent work presents and analyzes other extensions of

ACO to continuous domains, like the Aggregation Pheromones

System [11] and the Differential Ant-Stigmergy Algorithm

[12]. An application of ACO to the continuous optimization

problem of neural network training is outlined in [13].

This paper introduces a method for applying an ACO

algorithm to the design of optimal controllers for continuous-

This research is financially supported by Senter, Ministry of Economic
Affairs of The Netherlands within the BSIK-ICIS project “Self-Organizing
Moving Agents” (grant no. BSIK03024).
Bart De Schutter is also with the department of Marine and Transport
Technology, Delft University of Technology.

time, continuous-state dynamic systems. In order to make such

control problems suitable for ACO, the continuous model

of the system is transformed to a non-deterministic discrete

automaton. The main element in the automaton is the state-

transition function. This function describes the probability

distribution over the set of quantized states to which the system

makes a transition, after a control action has been applied in

the current state. The automaton then represents a Stochastic

Combinatorial Optimization Problem (SCOP), suitable for the

application of ACO. The model of the original system is

reflected in the stochasticity of the problem, which the ants

cannot sense directly. A special feature of the ACO algorithm

as used in this paper, is that it does not contain any heuristic

parameter. It is therefore very straightforward to apply, as there

are fewer parameters that need to be set a priori, compared to

the usual ACO algorithm. The effectiveness of this method is

demonstrated by applying it to the control task of swinging

up and stabilizing a pendulum. Noting that the ants in the

algorithm do not know the model of the system, finding the

optimal control policy is a challenging task. The results show

however, that a near optimal controller is found quickly with

the proposed ACO method.

The rest of this paper is structured as follows. In Section II,

the ACO heuristic is briefly reviewed. Section III presents

our main contribution of formalizing a control problem as a

stochastic combinatorial optimization problem and describes

the ACO algorithm to solve it. Section IV contains the results

of the simulations of the pendulum by a controller obtained

by ACO and Section V concludes this paper.

II. ANT COLONY OPTIMIZATION

ACO algorithms have been developed to solve hard combi-

natorial optimization problems [1]. A combinatorial optimiza-

tion problem can be represented as a tuple P = 〈S, F 〉, where

S is the solution space with s ∈ S a specific candidate solution

and F : S → R
+ is a fitness function assigning values to

candidate solutions, where higher values correspond to better

solutions. The purpose of the algorithm is to find the solution,

or set of solutions, s∗ ∈ S∗ ⊆ S that maximizes the fitness

function. The solution s∗ is then called an optimal solution

and S∗ is called the set of optimal solutions.

In ACO, the combinatorial optimization problem is repre-

sented as a construction graph consisting of a set of vertices

and a set of edges connecting the vertices. A particular solution

s consists of solution components, which are denoted by

cij ∈ C and are pairs of a vertex and an edge. A particular

solution s is thus a concatenation of solution components, and



forms a path from the initial vertex to the terminal vertex.

How the terminal vertex is defined depends on the problem

considered. For instance, in the traveling salesman problem,

there are multiple terminal vertices, namely for each ant the

terminal vertex is equal to its initial vertex. It will be shown

that for the application to control problems, as considered

in this paper, the terminal vertex corresponds to the desired

steady-state. Associated with the edges are two values: a

pheromone trail variable τij and a heuristic variable ηij . The

pheromone trail represents the acquired knowledge about the

optimal solution over time and the heuristic variable provides

a priori information about the value of the solution component.

Basically, the heuristic variables represent a short-term quality

measure of the solution component, while the task is to acquire

a concatenation of solution components that overall form the

optimal solution. The pheromone variables basically encode

the measure of the long-term quality of adding the solution

component. The trade-off between these two parameters is

important for the performance of the algorithm.

In words, the basic ACO algorithm works as follows. A set

of M ants is randomly distributed over the vertices. Initially,

the partial solutions sp are empty and the pheromone and

heuristic variables are set to some initial value. In each itera-

tion, each ant decides based on some probability distribution,

which vertex to add to sp next. This function is typically

defined as:

p(cij |s
p) =

ταijη
β
ij

∑

cil∈N (sp) τ
α
ilη

β
il

, ∀cij ∈ N (sp), (1)

with N (sp) the feasible neighborhood given the current partial

solution and α and β determining the relative importance of

ηij and τij respectively.

By moving from vertex i to vertex j, the ants add the

associated solution component cij to their partial solution

sp until they reach their terminal vertex and complete their

candidate solutions. These candidate solutions are evaluated

using the fitness function F (s) and the resulting values are

used to update the pheromone values by:

τij ← (1− ρ)τij + ρ
∑

s∈Supd|cij∈s

F (s), (2)

with ρ ∈ (0, 1] the evaporation rate and Supd the set of

solutions that are eligible to be used for the pheromone update.

The pheromone values are a measure of how desirable it

is to add the associated solution component to the partial

solution. In order to incorporate forgetting, the pheromone

values decrease by some factor in each iteration. In this way

it is avoided that the algorithm prematurely converges to sub-

optimal solutions. In the next iteration, each ant repeats the

previous steps, but now the pheromone values are updated and

can be used to make better decisions about which vertex to

move to now. After some stopping criterion has been reached,

the values of τ and η on the graph encode the solution, as

they determine by (1) the path with the highest probability of

being constructed step-wise from any initial vertex to the final

vertex.

There exist various rules to construct Supd, of which the

most standard one is to use all the candidate solutions found in

the trial. This update rule is called the Ant System (AS) update

rule. Although other update rules have found to outperform AS

in some applications [1], the method described in this paper

will use the AS update rule, because of its easy implemen-

tation. Future research will show if other update rules might

improve our method.

III. ACO FOR OPTIMAL CONTROL

A. Discrete Non-Deterministic Automata

Assume a continuous-time, continuous-state system with

state vector x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ R

n that

must be controlled by a control policy derived from an ACO

algorithm. Here, a control policy is a mapping from states

to actions and the optimal control policy maps the states to

actions such that the resulting sequence of state-action-next

state triples yield the optimal solution of the problem. The

system of differential equations describing the process to be

controlled has to be converted to a discrete-time, quantized-

state version before it can be cast as a SCOP. The dynamics

are sampled with some fixed and properly chosen sample time

h. The continuous state space of the system is quantized with a

finite number of bins. Depending on the sizes and the number

of these bins, portions of the state space will be represented

with one and the same quantized state. One can imagine that

applying an input to the system that is in a particular quantized

state results in the system to move to a next quantized state

with some probability. In order to represent these aspects of the

quantization, the continuous model will be cast as a discrete

non-deterministic automaton.

Definition 3.1: An automaton is defined by the triple Σ =
(Q,U , φ), with

• Q: a finite or countable set of discrete states,

• U : a finite or countable set of discrete inputs, and

• φ : Q× U ×Q → [0, 1]: a state transition function.

Given a discrete state vector q ∈ Q, a discrete input

symbol u ∈ U , and a discrete next state vector q
′ ∈ Q, the

(Markovian) state transition function φ defines the probability

of this state transition, φ(q, u,q′), making the automaton non-

deterministic. The probabilities over all states q
′ must each

sum up to one for each state-action pair (q, u). An example

of a non-deterministic automaton is given in Fig. 1. In this

figure, it is clear that, e.g., applying an action u = 1 to the

system in q = 1 can move the system to a state after one time

step h that is either q = 1 or q = 2 with some probability.

The probability distribution function determining the tran-

sition probabilities reflect the system dynamics. This function

is estimated from simulations of the system over a fine grid

of combinations of initial states and inputs. This procedure is

explained in the next section.

B. Conversion to a SCOP

As mentioned in Section III-A, the first step of formulating

the control problem as a stochastic COP is to quantize the state



φ(q = 2, u = 1, q′ = 2) = 1

q = 2q = 1

φ(q = 1, u = 1, q′ = 1) = 0.2

φ(q = 2, u = 2, q′ = 2) = 0.1φ(q = 1, u = 2, q′ = 1) = 1

φ(q = 1, u = 1, q′ = 2) = 0.8

φ(q = 2, u = 2, q′ = 1) = 0.9

Fig. 1. An example of a non-deterministic automaton.

variables. The model is simulated for initial states on a fine

grid, covering the complete domain of the state space, and for

each of the inputs in U . The resulting output state is stored for

each of these combinations and mapped onto the quantization

levels, predefined by Q. These values are normalized, resulting

in a probability distribution as described in Section III-A,

called the transition function φ. This transition function will

only be able to properly describe the system dynamics if the

state vector describing the system is Markovian [14].

The goal of the SCOP is to find the correct sequence of

states q and inputs u that leads to the goal state from any

initial state in an optimal way, according to the fitness function.

As the SCOP corresponds to a non-deterministic automaton,

the sequence is actually the sequence that leads to the goal

state with the highest probability. This paper will demonstrate

in simulations that it is possible to find a solution to the

SCOP using ACO for the pendulum swing-up and stabilization

problem.

C. ACO Algorithm

The model of the system and the set of possible control

actions is reflected in the structure of the automaton. In each

state, the ants have to determine which action to choose from.

It is not known to the ants to which state this action will take

them, as in general there is a set of next states to which the ants

can move, according to some probability distribution. At each

trial, the ants are initialized randomly over the set of states Q.

The ants add the state-action pair to their constructed partial

solutions. No heuristic values are associated with the vertices,

as there is no a priori information available about the quality

of solution components. This is implemented by setting all

heuristic values to one. It can be seen that η disappears from

(1) in this case. As the values of β and α tune the relative

importance of the pheromones τ and the heuristics η, these

are also eliminated. The probability of an ant k being in a

state q = i taking an action u = j is now:

pkij =
τij

∑

l∈Ui
τil

, (3)

with Ui the action set the ant has to its disposal in state i. The

choice of the next action thus only depends on the value of

the pheromone τij associated with this vertex. Note that (3)

contains no constants that need tuning, making this algorithm

much more straightforward to implement than the original

ACO algorithm based on (1). The pheromones are initialized

equally for all vertices and set to a small value, different

from zero. In every trial, all ants construct their solutions until

they either have reached the goal state, or the trial exceeds a

certain pre-specified limit. The pheromones are then updated

according to the following rule:

τij ← (1− ρ)τij + ρ

M
∑

k=1

∆τkij , ∀cij ∈ s ∈ Siter,

with Siter the set of all candidate solutions found in the trial.

This type of update rule is comparable to the AS update rule.

Future research will investigate what the effect of other types

of update rules on the performance of this algorithm is. The

value of ∆τkij represents the fitness function F (s) and reflects

the amount of pheromone an ant k deposits on the vertices it

has visited. This value is defined as follows:

∆τkij =
1

√

(Tk − (1− h))h
−

1
√

(Tmax − (1− h))h
, (4)

where Tk is the number of steps the ant k needed to reach the

goal state, h is the sample time, used to express the time in

seconds, and Tmax is the maximum number of steps allowed

in a trial. The value of (1 − h) is used to make the amount

of pheromone deposit approximately equal to 1/h when the

ant reaches the goal in just one step. The second term in (4)

makes sure that the pheromones are not updated when the trial

is stopped at the maximum number of time steps and the ant

did not yet reach the goal. It is clear that the fitness function –

the total amount of pheromones deposited – is maximized if all

ants find the shortest path. A plot of the amount of pheromone

deposit ∆τkij as a function of trial length Tk is shown in Fig. 2.

Tk (steps)

∆
τ
k ij

0 10 20 30 40 50
0

5

10

15

20

25

30

35

Fig. 2. Pheromone deposit ∆τkij as a function of trial length Tk .

The number of ants can be taken equal to the number of

states, but a smaller number is also allowed. The number



of ants largely influences the computation time required to

determine the controller.

IV. ACO OPTIMAL CONTROL OF A PENDULUM

A. Pendulum Swing-Up and Stabilization

The pendulum swing-up and stabilization problem is a

challenging control problem due to the narrow solution space.

The pendulum is modeled as a pole, attached to a pivot point

at which a motor exerts a torque. The objective is to get the

pendulum from a certain initial position to its unstable upright

position, and to keep it stabilized. The torque is, however,

limited such that it is not possible to move the pendulum to

its upright position in one movement. A solution is to first

swing the pendulum back and forth in order to accumulate

energy to swing it up eventually. The pendulum problem is a

nice abstraction of more complex robot control problems. The

behavior can be easily analyzed, while the learning problem

is challenging.

The non-linear state equations of the pendulum are given

by:

Jω̇ = Ku−mgR sin(θ)−Dω, (5)

with θ = x1 and ω = x2 the state variables, representing the

angle and angular velocity of the pole respectively. The signs

of the state variables are indicated in Fig. 3(a). Furthermore,

u is the applied torque and the other parameters with their

values as used in the simulations are listed in Table I.

θ

ω

(a) Convention of θ and ω
for the pendulum.

10

11

12

13

14

15

16 1
2

3

4

5

6

7

8
9

(b) A particular (equidistant) quan-
tization of θ with 16 bins.

Fig. 3. Schematic of the pendulum and quantization of its angle.

TABLE I
THE PARAMETERS OF THE PENDULUM MODEL AND THEIR VALUES USED

IN THE EXPERIMENT.

Parameter Value Explanation

J 0.005 kg·m2 arm inertia

K 0.1 motor gain

D 0.01 kg·s−1 damping

m 0.1 kg mass

g 9.81 m·s−2 gravitational acceleration

R 0.1 m arm half-length

The states θ and ω are quantized according to:

θq = i, if θ (mod 2π) ∈ (bθ,i, bθ,i+1],

ωq = i, if ω ∈ (bω,i, bω,i+1],

with bθ,i and bω,i respectively the ith element of the sets

Bθ =

{

(2Nθ − 1)π

Nθ

,
π

Nθ

,
3π

Nθ

, . . . ,
(2Nθ − 1)π

Nθ

}

Bω =

{

−∞,−ωmax +
0(2ωmax)

Nω − 2
,−ωmax +

1(2ωmax)

Nω − 2
,

. . . ,−ωmax +
(Nω − 2)(2ωmax)

Nω − 2
,+∞

}

,

in case of equidistant quantization levels. Here Nθ and Nω ≥ 3
are the number of quantization bins for θ and ω respectively

and ωmax is the maximum (absolute) angular velocity expected

to occur. Nθ must be even to make sure that both equilibria

fall within a bin and not at the boundary of two neighboring

bins, which would result in chattering of the quantized state

when the pendulum is near one of the equilibria. For similar

reasons, Nω must be odd.

B. Simulation Parameters

First, the non-linear state equation from (5) is transformed

to a non-deterministic automaton, with a sample time of

h = 0.1s, Nθ = 40, Nω = 41, and ωmax = 9rad · s−1.

The action set consists of only three actions, namely plus and

minus the maximum torque of 0.8Nm and zero torque. The

resulting function φ is a table with 1640× 1640× 3 elements

and describes the transition probabilities of the automaton.

There are 500 ants initialized with a random state at the start

of each trial. In each trial, the ants get 300 time steps to find

the goal state, which is sufficiently long for the ants to swing

up and stabilize the pendulum. The evaporation rate of the

pheromones is fixed to ρ = 0.1. In order to measure the

convergence, a success rate is defined as the fraction of the

ants that reach the goal state within the duration of the trial.

C. Simulation Results

The algorithm converged quickly and monotonically to a

success rate of 1 in about 25 trials as can be seen in Fig. 4.

The distribution of the number of steps that the 500 ants

needed in order to reach the goal is shown in Fig. 5.

As the ants are randomly initialized over the set of states,

some ants will need more steps to reach the goal than other

ants. Furthermore, the decisions of the ants at each time step

are stochastic, meaning that probably none of the ants chooses

an optimal action at every state. However, the power of the

ACO approach is that the optimal policy is not encoded by

a single ant, but by the colony as a whole. Averaging over

the colony reveals that the number of steps needed to reach

the optimum from any initial state on the non-deterministic

automaton is about 49. With a sampling time of h = 0.1s,
this would correspond to 4.9s on the original system when the

stochastic policy would be applied. In this research however,

it is the purpose to derive a non-stochastic (greedy) policy.



Trial number

S
u
cc

es
s

R
at

e

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Success rate: the fraction of the ants that reach the goal state within
the time of the trial.

Number of steps to the goal

N
u
m

b
er

o
f

an
ts

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

Fig. 5. Histogram showing the distribution of the 500 ants over the number
of steps they needed to reach the goal.

The resulting greedy policy of the controller derived from

the pheromone trail after convergence is depicted in Fig. 6. In

this figure, the optimal action as a function of the quantized

state is depicted in a shaded grid, where black represents full

negative torque, grey represents zero torque, and white repre-

sents full positive torque. There is a clear ridge indicating the

region where there is a fine trade-off between the three actions

needed to stabilize the pendulum near the goal. The policy far

to the right of the ridge is to apply full positive torque. At

the far left of the ridge, the optimal action is in general to

apply full negative torque. This corresponds to destabilizing

the pendulum in the downwards position. Close to the ridge,

the optimal policy changes from maximal positive to maximal

negative torque. This is to slow the pendulum down in order

to balance it. At the ridge itself, the optimal policy is to apply

no torque at all, thereby keeping the pendulum still in its goal

state. The chaotic nature of the picture indicates that there is

not much certainty about the optimal action in many of the

states. This is a general phenomenon with motion systems,

where in this case, the inertia of the rotating pendulum masks

the clear effect of a certain action in some of the states. It

turns out that there is no clear optimal action in these states.

θq

ω
q

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Fig. 6. Control policy. The shaded rectangles indicate the optimal action
in the respective state. Black represents full negative torque, grey represents
zero torque, and white represents full positive torque.

The behavior of the continuous model of the pendulum

controlled by the policy from Fig. 6 is presented in Fig. 7 and

8. The figures show the behavior of the pendulum for a set of

initial angles and zero velocity. Basically, the optimal policy

is to swing the pendulum first to about 90 degrees on the other

side and then swing it back and brake in time to stabilize it

hanging upsidedown. Exhaustive policy search shows that an

optimal policy is able to swing-up and stabilize the pendulum

from a downward position with zero angular velocity in about

3.5s. The figures show that the controller derived by the ACO

algorithm controls the pendulum in a near time-optimal way.

The little chattering around the instable equilibrium is due

to the quantization of the state and action space, because it

is almost impossible to reach an exact angle of π by only

applying full positive, full negative, or zero torque in discrete

states. It would of course be possible to allow for a larger

action set. This would probably increase the ‘smoothness’ of

the policy, but also rapidly increase the convergence time.

Based on Fig. 7 and 8, the resulting behavior is thus considered

to be very close to optimal.

V. CONCLUSIONS

This paper has proposed a new method to the design of

an optimal controller for continuous-time, continuous-state

dynamic systems based on ACO. It has been described how

the dynamics of the system can be transformed into a non-

deterministic discrete automaton, where the original state



Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(a) x(0) = (−π
8
, 0)T

Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(b) x(0) = (−π
4
, 0)T

Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(c) x(0) = (−π
2
, 0)T

Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(d) x(0) = (0, 0)T

Fig. 7. Simulation of the original continuous system, controlled by the
controller derived by the ACO algorithm after 25 trials. The figures show the
behavior of the pendulum for the initial angles {−π

8
,−π

4
,−π

2
, 0}[rad] and

zero initial angular velocity. The solid lines represent the angle θ(x1)[rad]
and the dashed lines represent the angular velocity ω(x2)[rad · s−1].

Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(a) x(0) = (+π
8
, 0)T

Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(b) x(0) = (+π
4
, 0)T

Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(c) x(0) = (+π
2
, 0)T

Time (t) [s]

x
(t
)

0 5 10 15 20
-6

-4

-2

0

2

4

6

(d) x(0) = (π, 0)T

Fig. 8. Simulation of the original continuous system, controlled by the
controller derived by the ACO algorithm after 25 trials. The figures show the
behavior of the pendulum for the initial angles {+π

8
,+π

4
,+π

2
, π}[rad] and

zero initial angular velocity. The solid lines represent the angle θ(x1)[rad]
and the dashed lines represent the angular velocity ω(x2)[rad · s−1].



space is quantized into a finite set of states and the transition

function is a probability distribution over these states under an

action from a discrete action set. The ACO algorithm does not

require the assignment of heuristic values to the state-action

pairs and is therefore straightforward to apply.

The proposed ACO algorithm has been applied to the

control of the swing-up and stabilization of a pendulum. An

optimal controller was found after only a few trials.

Future research will consist in comparing the ACO optimal

control method to other learning-based methods, such as

reinforcement learning, that are also able to find optimal

controllers by interacting with the system, as well as to

other ACO algorithms for continuous domains. These methods

will be applied to a real setup investigating the practical

applicability of the newly proposed method. Furthermore, the

question of how to validate the optimality of the controller

will be addressed. Other variations of the pheromone update

rule in the ACO algorithm will also be investigated.

REFERENCES

[1] M. Dorigo and C. Blum, “Ant colony optimization theory: a survey,”
Theoretical Computer Science, vol. 344, no. 2-3, pp. 243–278, Novem-
ber 2005.

[2] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA,
USA: The MIT Press, 2004.

[3] P. K. Jain and P. K. Sharma, “Solving job shop layout problem
using ant colony optimization technique,” in Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, vol. 1, Big
Island, HI, USA, October 2005, pp. 288–292.

[4] X. Fan, X. Luo, S. Yi, S. Yang, and H. Zhang, “Optimal path
planning for mobile robots based on intensified ant colony optimiza-
tion algorithm,” in Proceedings of the IEEE International Conference

on Robotics, Intelligent Systems and Signal Processing (RISSP 2003),
vol. 1, Changsha, Hunan, China, October 2003, pp. 131–136.

[5] M. T. Islam, P. Thulasiraman, and R. K. Thulasiram, “A parallel ant
colony optimization algorithm for all-pair routing in MANETs,” in
Proceedings of the International Symposium on Parallel and Distributed

Processing (IPDPS 2003), Nice, France, April 2003.
[6] Y. Hsiao, C. Chuang, and C. Chien, “Computer network load-balancing

and routing by ant colony optimization,” in Proceedings of the IEEE

International Conference on Networks (ICON 2004), vol. 1, Singapore,
November 2004, pp. 313–318.

[7] K. M. Sim and W. H. Sun, “Ant colony optimization for routing
and load-balancing: survey and new directions,” IEEE Transactions

on Systems, Man and Cybernetics, Part A, vol. 33, no. 5, pp. 560–572,
September 2003.

[8] A. H. Purnamadjaja and R. A. Russell, “Pheromone communication in a
robot swarm: necrophoric bee behaviour and its replication,” Robotica,
vol. 23, no. 6, pp. 731–742, 2005.

[9] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “Meta-
heuristics in stochastic combinatorial optimization: a survey.” IDSIA,
Tech. Rep. 08, March 2006.

[10] G. Bilchev and I. C. Parmee, “The ant colony metaphor for searching
continuous design spaces,” in Selected Papers from AISB Workshop

on Evolutionary Computing, ser. Lecture Notes in Computer Science,
T. Fogarty, Ed., vol. 993. London, UK: Springer-Verlag, April 1995,
pp. 25–39.

[11] S. Tsutsui, M. Pelikan, and A. Ghosh, “Performance of aggregation
pheromone system on unimodal and multimodal problems,” in Proceed-

ings of the 2005 Congress on Evolutionary Computation (CEC 2005),
vol. 1, September 2005, pp. 880–887.

[12] P. Korosec, J. Silc, K. Oblak, and F. Kosel, “The differential ant-
stigmergy algorithm: an experimental evaluation and a real-world ap-
plication,” in Proceedings of the 2007 Congress on Evolutionary Com-

putation (CEC 2007), September 2007, pp. 157–164.
[13] K. Socha and C. Blum, “An ant colony optimization algorithm for

continuous optimization: application to feed-forward neural network
training,” Neural Computing & Applications, vol. 16, no. 3, pp. 235–247,
May 2007. [Online]. Available: http://dx.doi.org/10.1007/s00521-007-
0084-z

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.


