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Model-Based Predictive Traffic Control for Intelligent Vehicles:

Dynamic Speed Limits and Dynamic Lane Allocation

Lakshmi Dhevi Baskar, Bart De Schutter, and Hans Hellendoorn

Abstract— We consider traffic management and control ap-
proaches for automated highway systems with a combination of
intelligent vehicles and roadside controllers. The vehicles are
organized in platoons with short intraplatoon distances, and
larger distances between platoons. Moreover, all vehicles are as-
sumed to be automated, i.e., throttle, braking, and steering com-
mands are determined by an automated on-board controller.
Within a platoon the vehicles coordinate their actions so as to
maintain a small but safe intervehicle distance, using adaptive
cruise control methods. Platoon leaders receive speed set-points
and lane change commands from the roadside controller. We
propose a model-based predictive control (MPC) approach to
determine appropriate speed limits and lane allocations for the
platoons. In general, this results in mixed-integer optimization
problems. We discuss some methods to solve these problems
suboptimally on-line. The proposed approach is then applied
to a simple simulation example in which the aim is to minimize
the total time all vehicles spend in the network by optimally
assigning dynamic speed limits and lane changes.

I. INTRODUCTION

Due to the ever-increasing demand for mobility and trans-

portation, traffic congestion is a growing problem throughout

the world. There are many possible ways to reduce the

frequency and impact of traffic jams (such as building new

roads, introducing road pricing policies, stimulating modal

shift, promoting public transportation, and so on). On the

short term one of the most promising approaches is the

use of advanced traffic management and control methods in

which control measures such as traffic signals, dynamic route

information panels, ramp metering installations, dynamic

speed limits, etc. are used to control the traffic flows and

to prevent or to reduce traffic jams, or more generally to

improve the performance of the traffic system. Possible

performance measures in this context are throughput, travel

times, safety, fuel consumption, robustness, etc.

The currently implemented traffic management and con-

trol approaches primarily make use of roadside and

infrastructure-based equipment (including sensors, actuators,

and traffic control centers). However, due to advances in

the field of telecommunication, control theory, and infor-

mation systems, and the increasing implementation of on-

board sensing, actuating, and telecommunication devices,

next-generation traffic management concepts that incorporate

intelligence in both roadways and vehicles will become

feasible, such as Intelligent Transportation Systems (ITS)
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[1], Intelligent Vehicle Highway Systems [2], Automated

Highway Systems (AHS) [3], or Cooperative Vehicle Infras-

tructure Systems (CVIS). In the reminder of this paper we

will use IVHS as a generic word for indicating (a mixture

of) ITS, IVHS, AHS, and CVIS.

For better coordination of traffic network activities, IVHS

also distribute the intelligence between the vehicles and the

roadside infrastructure. Moreover, in IVHS the driver tasks

are shifted away from driver to the vehicle since autonomous

control of driving tasks can substantially improve the traffic

flow [4]. Indeed, complete automation allows to arrange the

vehicles in closely spaced groups called “platoons”. In a

platoon, the first vehicle is called “leader” and the remaining

are called “followers”. In the platooning approach cars

travel on the highway in platoons with small distances (e.g.,

2 m) between vehicles within the platoon, and much larger

distances (e.g., 30–60 m) between different platoons. High

speeds and short intraplatoon spacings allow more vehicles

to be accommodated on the network, which substantially

increases the maximal traffic flows. Due to the very short

intraplatoon distance this approach requires automated dis-

tance keeping since human drivers cannot react fast enough

to guarantee adequate safety. So in IVHS every vehicle

contains an automatic system that can take over the driver’s

responsibilities in steering, braking, and throttle control.

In this paper, we deal traffic congestion problems by using

a variant of IVHS in which the monitoring and control han-

dles offered by automated intelligent vehicles are combined

with those of the roadside infrastructure. More specifically,

we integrate the platooning approach with conventional traf-

fic control measures such as dynamic speed limits, route

guidance, ramp metering, etc. The overall control framework

we use is the hierarchical framework we have presented in

[5] and which is closely related to the PATH framework [6].

We will in particular focus on the control layer that manages

the different platoons in the traffic network and that controls

the speeds and lane changes of the platoons.

This paper is organized as follows. Section II starts with a

short survey on intelligent vehicles (IVs) and IV-based traffic

management. We also recapitulate the hierarchical IV-based

traffic control framework adopted in this paper. Section III

describes the model-based predictive control design method

that will be used to determine optimal speed limits and lane

change commands for the platoons. In Section IV we apply

the proposed approach to a case study based on simula-

tions and we highlight the potential effects of the proposed

approach on the traffic flow performance. Conclusions and

topics for future research are discussed in Section V.



II. INTELLIGENT VEHICLES AND IV-BASED TRAFFIC

MANAGEMENT

A. Intelligent vehicles and IV-based traffic control measures

Intelligent Vehicles (IVs) are equipped with control sys-

tems that can sense the environment around the vehicle and

that result in a more efficient vehicle operation by assisting

the driver or by taking complete control of the vehicle [7].

Depending on the level of support provided to the driver, we

can divide IV application areas into three categories:

• advisory systems (which use optic or acoustic systems

to provide an advisory or a warning to the drivers),

• semi-autonomous systems (which use haptic measures

to assist the driver or to take partial control of the

vehicle),

• fully autonomous systems (which take complete control

of vehicle operation).

Note that the platoon-based approach used in this paper

assumes that all IVs are fully autonomous.

We will now briefly discuss the main IV technologies

that support and improve the platooning concept by allowing

vehicle-vehicle and vehicle-roadside coordination [7], [8]:

1) Intelligent Speed Adaptation (ISA): ISA is based on

a speed limiter incorporated within each car and which

can take into account speed limit restrictions, can adjust

the maximum driving speed to the speed limit specified by

the roadside infrastructure, and can provide feedback to the

driver or take autonomous action when that speed limit is

exceeded. ISA systems could use fixed or dynamic speed

limits. In the fixed case, the driver is informed about the

speed limit, which could be obtained from a static database.

Dynamic speed limits take into account the current road

conditions such as bad weather, slippery roads, or major

incidents before prescribing the speed limit.

2) Adaptive Cruise Control (ACC): An ACC system is

a radar-based system that extends the conventional cruise

control and that is designed to sense the immediate vehicle

in front on the lane, and to automatically adjust the speed

of the equipped vehicle to match the speed of the preceding

vehicle and to maintain a safe intervehicle distance [9]. If

there is no vehicle in front, then ACC controller retains a

preset free-flow speed that can be selected by driver.

Cooperative ACC is a further enhancement of ACC sys-

tems that uses existing communication technologies (e.g.,

wireless technologies) to obtain real-time information about

the speed, acceleration, etc. of the preceding vehicle. Coop-

erative ACC equipped vehicles can exchange the information

much quicker and allow to set the safe minimum headway as

small as 0.5 s. With this reduced headways between vehicles

the maximal traffic flow can be augmented even further.

3) Dynamic route planning and guidance: A route guid-

ance system advises a driver about the “best” route he can

take to reach his requested destination [10]. Recommended

routes may be calculated within the equipped vehicle (“route

planning”) or communicated to the vehicle from the local

traffic center (“route guidance”). When the possible routes

are computed based on the average conditions of the traffic
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Fig. 1. IV-based framework.

network, this scheme is referred to as static route guidance. If

the existing traffic conditions and frequent updates of travel

times based on real-time traffic are taken into account when

computing the route recommendations, then this is called a

dynamic route planning system.

The IV-based approach we propose includes ISA with

dynamic speed limits, cooperative ACC, and dynamic route

guidance, as well as conventional infrastructure-based traffic

control measures.

B. Hierarchical framework for IV-based traffic management

In this section, we will briefly present the hierarchical

control framework we have proposed in [5]. This framework

distributes the intelligence between roadside infrastructure

and vehicles, assigns the traffic control actions based on

platoons rather than on highway sections (as is done in

PATH), and uses the IV-based control measures mentioned

in Section II to improve the traffic flow.

The proposed control architecture is based on the platoon

concept and consists of a multi-level control structure with

local controllers at the lowest level and one or more higher

supervisory control levels. A general structure of proposed

architecture is a distributed hierarchy as shown in Figure 1.

The layers of the framework can be characterized as

follows:

1) Higher-level controllers: The higher-level controllers

(such as area, regional, and supraregional controllers) provide

network-wide coordination of the lower-level and middle-

level controllers. For instance, the activities of a group

of roadside controllers could be supervised by an area

controller. In turn, a group of area controllers could be

supervised or controlled by regional controllers, and so on.

2) Roadside controllers: The roadside controllers use

IV-based control measures to improve the traffic flow. A

roadside controller may control a part of a highway, an

entire highway, or a collection of highways. Each platoon

in the highway network appears as a one single entity to

the roadside controller and therefore can be managed more

efficiently. The main tasks of the roadside controllers are

to assign desired speeds for each platoon, safe distances

to avoid collisions between platoons, desired platoon sizes

depending on the traffic conditions, to provide dynamic route

guidance for the platoons, metering values on the on-ramps



and off-ramps (ramp metering), and also to instruct for

merges, splits, and lane changes of platoons.

3) Platoon controllers: The platoon controllers receive

commands from the roadside controllers and are responsible

for control and coordination of each intelligent vehicle inside

the platoon. The platoon controller is mainly concerned

with actually executing the interplatoon maneuvers (such as

merges with other platoons, splits, and lane changes) and

intraplatoon activities (such as maintaining safe intervehicle

distances).

4) Vehicle controllers: The vehicle controllers present in

each vehicle receive commands from the platoon controllers

(e.g., set-points or reference trajectories for speeds (ISA),

headways (ACC), and paths) and they translate these com-

mands into control signals for the vehicle actuators such as

throttle, braking, and steering actions.

The main improvements and extensions of the new frame-

work when compared to existing frameworks are [5]:

• It enables the integration of in-vehicle IV-based traffic

control measures (such as ISA and ACC) and roadside

traffic control measures (such as ramp metering, variable

speed limits, dynamic route guidance, etc.).

• Platoon sizes are variable and optimal values can be

determined by the roadside controllers.

• The framework can be integrated with a model-based

predictive control strategy that determines optimal traf-

fic control measures in a receding horizon approach and

that will be described in the next section.

• The hierarchical structure enhances the scalability and

allows to manage and to control traffic flows in large-

scale networks.

III. MODEL PREDICTIVE CONTROL FOR INTELLIGENT

VEHICLES

The actual control strategy to be used in our approach

is a model-based predictive control approach called Model

Predictive Control (MPC),

A. Model Predictive Control — General framework

Model Predictive Control (MPC) [11], [12] has originated

in the process industry and it has already been successfully

implemented for many industrial applications.

We will now briefly summarize the main ideas behind

MPC (see Figure 2). In Section III-B they will then be

made more concrete for MPC-based traffic control using

intelligent vehicles and platoons in combination with the

IV-based traffic control measures of Section II-A and the

hierarchical framework of Section II-B.

MPC is based on (on-line) optimization and uses an

explicit prediction model to obtain the optimal actions for the

control measures. Let Tc be the control sampling interval, i.e.,

the (constant) time interval between two updates of the con-

trol signal settings. At each time step k (corresponding to the

time instant t = kTc), the controller measures or determines

the current state x(k) of the system and uses a model of the

system to predict the behavior of the system over an interval

[k,k + Np], where Np is called the prediction horizon, as

model
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system
inputs
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Fig. 2. Schematic representation of MPC.
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Fig. 3. Representation of the MPC control scheme.

shown in Figure 3. Next, the controller solves an open-loop

optimal control problem to determine the optimal control

inputs u(k), . . . ,u(k+Np − 1) that minimize a performance

criterion J(k) over the prediction period [k,k+Np], subject

to the operational constraints. To reduce the computational

complexity of the problem, one often introduces a constraint

of the form u(k + j) = u(k + j − 1) for j = Nc, ...,Np − 1,

where Nc (< Np) is called the control horizon. When the

optimal values are found by the controller, the control

actions are applied in a receding horizon fashion. This is

done by applying only the first control sample u(k) of the

optimal control sequence to the system. Next, the prediction

horizon is shifted one step forward and the prediction and

optimization procedure over the shifted horizon are repeated

using new system measurements.

The receding horizon approach introduces a feedback

mechanism, which allows to reduce the effects of possible

disturbances and mismatch errors between the actual real-

world traffic flows and the predicted traffic flows.

B. IV-based MPC

There are several reasons why MPC is probably the most

applied advanced control technique in the process industry:

• MPC can easily handle multi-input multi-output pro-

cesses, processes with large time-delays, and unstable

processes.

• It is an easy-to-tune method.

• MPC can handle constraints on the inputs and the

outputs of the process in a systematic way during the

design and the implementation of the controller.

• MPC can handle changes in system parameters or

system structure (including sensor or actuator failures)



by regularly updating the parameters and the structure

of the prediction model.

However, the use of MPC is not limited to the process indus-

try. The many advantages that MPC offers are also relevant

for traffic control. In fact, MPC has already been extended to

conventional roadside-based non-IV traffic management [13],

[14]. However, MPC can also be used for traffic management

and control with intelligent vehicles. In particular, MPC-

based traffic control offers several advantages on top of the

ones mentioned above:

• It allows a network-wide coordination of the various

traffic control measures.

• Using upstream and downstream measurements, histor-

ical data, and information gathered from the intelligent

vehicles, we can anticipate on future changes in traffic

demands, weather conditions, etc.

In the context of the hierarchical IV-based traffic control

framework of Figure 1 MPC can be applied at almost all

levels (except maybe the vehicle control level where the on-

line optimization requirements of MPC might interfere with

the short control sample times at this level). In this paper,

we will in particular focus on the roadside controller level.

Typical control sampling times at this level range from 10 s

to 1 min.

There exists a wide range of traffic models [15], [16]. An

important factor that determines the choice of the prediction

model to be used in MPC is the trade-off between accuracy of

the model and the computational complexity since at each

time step k the model will be simulated repeatedly within

the on-line optimization algorithm. As a consequence, very

detailed microscopic traffic simulation models are usually

not suited as MPC prediction model. Instead, usually more

aggregate macroscopic models are applied. For instance, the

roadside controller could use a model in which the platoons

are the basic simulation entities instead of individual cars.

Also note that MPC is a modular approach so that in case a

given prediction model does not perform well, it can easily

be replaced by another prediction model.

Possible performance criteria J(k) at the roadside con-

troller level are minimizing the total time spent in a traffic

network, total throughput, total fuel consumption, safety or

a combination of these. In this paper we will in particular

consider the total time spent by all the vehicles in the

network:

JTTS(k) =
Np

∑
j=0

nveh(k+ j)Tc , (1)

where nveh(k+ j) is the number of vehicles that are present

in the network at time t = (k + j)Tc. Moreover, in order

to prevent oscillations and frequent shifting in the control

signals, there is also often a penalty on variations in the

control signal u, which results in the penalty term

Jpen(k) =
Np

∑
j=0

‖u(k+ j)−u(k+ j−1)‖Q (2)

that has to be added to the performance criterion J(k), where

Q is a positive semi-definite matrix and ‖v‖Q = vTQv for a

vector v. This leads to the total MPC objective function

Jtot(k) = J(k)+ Jpen(k)

at time step k.

Possible control measures that can be determined by the

roadside controller are then dynamic speeds limits for the

platoons (ISA), lane changes1, platoons sizes, merge and

split operations, as well as settings for the roadside-based

measures such as ramp metering rates, lane closures, shoul-

der lane openings (on highways) and traffic signal settings

(in urban environments).

Typical constraints for the roadside controller are then

minimum separation between vehicles and platoons, max-

imum platoons lengths, minimum and maximum speeds,

minimum headways, minimum and maximum metering rates

and green or red times, etc.

C. Optimization methods

Computing the optimal control action (i.e., solving the

MPC optimization problem) is the most demanding oper-

ation in the MPC approach. For our framework, the MPC

approach could give rise to discrete (i.e., integer), continuous,

or mixed-integer optimization problems depending on the

nature of the control measures as we could have both con-

tinuous variables (dynamic speed limits, ramp metering rates,

green times, etc.) and discrete variables (platoon size, lane

allocations, lane closures, etc.). The resulting optimization

problems have to be solved on-line. Hence, a proper choice

of optimization techniques that would suit the nature of the

problem has to be made.

In general, the optimization problems resulting from IV-

based control will be nonlinear and nonconvex, which im-

plies that global or multi-start local optimization methods are

required. Continuous optimization problems can be solved

using multi-start sequential quadratic programming [17] or

pattern search [18]. Integer and mixed-integer optimization

problems could be solved using genetic algorithms [19],

simulated annealing [20], or branch-and-bound methods [21].

IV. CASE STUDY

The effectiveness of any traffic control strategy can be

evaluated by verifying whether the controller is able to

resolve or to eliminate the possible traffic problems in a

better way than other approaches. Some of the problems

that could degrade the traffic performance are congestion,

capacity drop, or blocking scenario. In this section, we

present a simple case study in which the MPC control

strategy described in Section III is used by the roadside

controller layer. First, we will describe the scenario used

to evaluate the performance of the proposed approach, the

models used by MPC, and other implementation details.

1The routes of the platoons would then determined by both the area
controllers (as regards which route to follow within the area under control)
and by the roadside controller (as regards which route to follow within the
highway segments under the control of the given roadside controller)
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Fig. 4. Set-up of the case study.

Next, we will discuss and analyze the results obtained from

the simulations for the considered scenario.

A. Set-up

We use a basic set-up as a test-bed for implementing our

proposed framework consisting of a 10 km highway stretch

with two lanes and without any on-ramp and off-ramp (see

Figure 4). We will compare three different situations:

• uncontrolled traffic (with human drivers),

• controlled traffic with human drivers and autonomous

ISA as control measure2,

• IV-based traffic with platoons.

For the sake of simplicity all vehicles are assumed to be of

same length (4 m). In the IV-based case we assume that all

the vehicles are fully automated IVs equipped with advanced

communication and detection technologies such as in-vehicle

computers and sensors and with on-board ACC and ISA

controllers. Both human driven vehicles and platoons are

allowed to change lanes, provided suitable gaps are found

in the targeted lane.

B. Scenario

In general, traffic congestion occurs when the available

network resources are not sufficient to handle the traffic

demand, or due to irregular occurrences, such as traffic

incidents. In practice, traffic jams or congestion result in

capacity drop. A capacity drop is defined as a phenomenon

that causes the expected maximum outflow from the jammed

traffic to be less than in the case of free-flow traffic. This is

mainly caused by the delay in reaction time and increased

intervehicle distance (time headway) when vehicles start to

exit from a traffic jam. For human drivers the capacity drop

is typically of the order of 2–5 %. With fully automated

vehicles the capacity drop can be reduced to almost 0 %.

We simulate a period of 30 min starting at time tstart =
7 h 30 min and ending at time tend = 8 h 00 min. In the

proposed scenario an incident occurs at position x = 500 km

in lane 2, and exists for an interval of 15 min, starting at time

t1 = tstart = 7 h 30 min and ending at time t2 = 7 h 45 min.

During this interval, the maximum outflow from the incident

position x is less when compared to free-flow traffic due to

the capacity drop. The value of this capacity drop in our

case is around 2 %. After time t2, the traffic flow at position

x returns slowly to the regular level.

2So we assume that ISA limits the speed in a hard way and that human
drivers cannot surpass the imposed speed limit. Note that with advisory ISA
the performance can be expected to be somewhat worse depending on the
compliance level of the drivers (advisory ISA typically result in a relative
variance of about 5 % of the speeds around the ISA speed limit [22]).

C. Models

As indicated above we are interested in comparing the

simulation results obtained for the same scenario using

human driving (both without and with control) and using

our platoon-based hierarchical approach. For this purpose,

we have developed simulation models in Matlab for human

driving and platoon driving. For the sake of simplicity and

to avoid calibration, we have used the same model for both

simulation and prediction purposes in this simulation study.

The human driver behavior is captured using a standard

car-following model [23] and for platoon driving model, we

use a PID controller as ACC controller to maintain a safe

distance for the vehicles inside the platoon and to track the

speed of the platoon leader (which in its turn is influenced by

the dynamic speed limit provided by the roadside controller).

The time step for the simulations is set at 1 s.

D. Control problem

The goal of our traffic controller is to improve the traffic

performance. The objective that we consider is minimization

of the total time spent by all the vehicles in the network (see

(1)) and we use dynamic speed limits and lane changes as the

control handles. So the control signal u for the MPC problem

of time step k includes speed limits for all platoons that are

in the network at time k as well as their lane allocations. We

have also included a penalty term Jpen(k) of the form (2) with

Qii = 2 if ui is a lane change control input and Qii = 0.02 if

ui is a speed control input. We consider a maximum speed of

120 km/h for both the human drivers and the platoon leaders.

As we focus on dynamic speed limits and lane changes as

the control handles, the platoon size is not considered to be

a control variable, but it is kept fixed at 5 for all platoons.

The control sampling time Tc is set at 1 min. For the

prediction horizon Np we have taken a value that corresponds

to 20 min, and for the control horizon Nc we have selected

a value that corresponds to 2 min so as to limit the number

of optimization variables.

For the optimization we have used the fmincon com-

mand of the Matlab Optimization toolbox for the continuous

optimization problems (i.e., the determination of the speeds

for the controlled human case) and the glcFast command

of the Matlab/Tomlab toolbox for the mixed-integer opti-

mization problems. The fmincon command implements

Sequential Quadratic Programming and the glcFast com-

mand implements an extended version of the DIRECT algo-

rithm of [24]. Both methods have been executed multiple

times so as to get a good approximation of the optimal

solution.

E. Results and analysis

For the given scenario with an incident, the results ob-

tained from human driving with ISA control and without

control, and the hierarchical traffic controller for IV-based

platoons are reported in Table I. In particular, we report the

Total Time Spent (TTS) by all vehicles in the network during



Case TTS (veh.min) Relative improvement

uncontrolled case 1465 0 %

controlled (human drivers) 1367 6.69 %

controlled (platoons) 1320 9.90 %

TABLE I

RESULTS OF THE THREE APPROACHES. THE RELATIVE IMPROVEMENT IS

COMPUTED WITH RESPECT TO THE UNCONTROLLED CASE.

the entire simulation period:

JTTS(k) =
Nsim

∑
k=0

nveh(k)Tc , (3)

where Nsim represents the simulation length (expressed in

number of control steps), so the total simulation time is

NsimTc, and hence Nsim = 30.

Clearly, the IV-based traffic with platoons results in the

best performance with an improvement of about 10 % with

respect to the uncontrolled case. The results can be explained

as follows.

In the uncontrolled case with human drivers, when there

are no vehicles in front of the driver or if there is enough

space between two drivers, then the drivers maintain their

desired speed. But when the driver is confronted with an

incident, then he can either decelerate in order to avoid

collision with the incident or if there exists a desired gap

in the next lane, then he can change lane to avoid waiting.

For the same scenario but with the human driver and

ISA control, our approach can predict the presence of the

incident and prevent it or diminish the negative impacts by

slowing down the vehicles before they reach the incident. In

addition, in the IV-based control approach with platoon, our

approach also allocates appropriate lane for each platoon to

avoid confronting the incident.

V. CONCLUSIONS AND FUTURE WORK

We have presented how a model predictive control ap-

proach can be used to determine speed and lane change

commands for platoons of intelligent vehicles (IVs) by

roadside controllers within a hierarchical framework. The

proposed approach has been illustrated using a case study

based on simulations. The results of the case study highlight

the potential benefits and improvements that can be obtained

by using an IV-based traffic control approach with interaction

and integration between the roadside infrastructure and the

fully automated IVs.

Future research topics include: additional and more exten-

sive case studies, inclusion of additional control measures

apart from speed limits and lane changes, taking model

uncertainty, disturbances, and inaccurate predictions about

future demands into account, explicit consideration of the

other levels in the control hierarchy, and extension of the

approach to larger networks.
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