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Max-plus algebra and max-plus linear discrete event

systems: An introduction

Bart De Schutter and Ton van den Boom

Abstract— We provide an introduction to the max-plus alge-
bra and explain how it can be used to model a specific class of
discrete event systems with synchronization but no concurrency.
Such systems are called max-plus linear discrete event systems
because they can be described by a model that is “linear”
in the max-plus algebra. We discuss some key properties of
the max-plus algebra and indicate how these properties can
be used to analyze the behavior of max-plus linear discrete
event systems. We also briefly present some control approaches
for max-plus linear discrete event systems, including model
predictive control. Finally, we discuss some extensions of the
max-plus algebra and of max-plus linear systems.

I. INTRODUCTION

In recent years both industry and the academic world have

become more and more interested in techniques to model,

to analyze, and to control complex discrete event systems

(DES) such as flexible manufacturing systems, telecommu-

nication networks, multiprocessor operating systems, railway

networks, traffic control systems, logistic systems, intelligent

transportation systems, computer networks, multi-level mon-

itoring and control systems, and so on.

Although in general DES lead to a nonlinear description

in conventional algebra, there exists a subclass of DES for

which this model becomes “linear” when we formulate it in

the max-plus algebra [1]–[3], which has maximization and

addition as its basic operations. More specifically, DES in

which only synchronization and no concurrency or choice

occur can be modeled using the operations maximization

(corresponding to synchronization: a new operation starts as

soon as all preceding operations have been finished) and

addition (corresponding to the duration of activities: the

finishing time of an operation equals the starting time plus

the duration). This leads to a description that is “linear” in

the max-plus algebra. Therefore, DES with synchronization

but no concurrency are called max-plus linear DES. Some

examples of max-plus linear DES are production systems,

railroad networks, urban traffic networks, queuing systems,

and array processors [1]–[3].

In the early sixties the fact that certain classes of DES

can be described by max-linear models has been discov-

ered independently by a number of researchers, among

whom Cuninghame-Green [4], [5] and Giffler [6]–[8]. An

account of the pioneering work of Cuninghame-Green on

max-algebraic system theory for DES has been given in
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[2]. Related work has been done by Gondran and Minoux

[9]–[11]. In the late eighties and early the topic attracted

new interest due to the research of Cohen, Dubois, Moller,

Quadrat, Viot [12]–[14], Olsder [15]–[17], Gaubert [18]–

[20], which resulted in the publication of [1]. Since then,

several other researchers have entered the field.

The class of DES that can be described by a max-plus

linear time-invariant model is only a small subclass of the

class of all DES. However, for max-plus linear DES there

are many efficient analytic methods available to assess the

characteristics and the performance of the system since we

can use the properties of the max-plus algebra to analyze

max-plus linear models in a very efficient way (as opposed

to, e.g., computer simulation where, before we can determine

the steady-state behavior of a given DES, we may first have

to simulate the transient behavior, which in some cases might

require a rather large amount of computation time).

We will see that there exists a remarkable analogy between

the basic operations of the max-plus algebra (maximization

and addition) on the one hand, and the basic operations

of conventional algebra (addition and multiplication) on the

other hand. As a consequence, many concepts and properties

of conventional algebra also have a max-plus analogue. This

analogy also allows us to translate many concepts, properties,

and techniques from conventional linear system theory to

system theory for max-plus linear DES. However, there are

also some major differences that prevent a straightforward

translation of properties, concepts, and algorithms from con-

ventional linear algebra and linear system theory to max-plus

algebra and max-plus linear system theory for DES. Hence,

there is a need for a dedicated theory and dedicated methods

for max-plus linear DES.

In this paper we give an introduction to the max-plus

algebra and to max-plus linear systems. We will highlight the

most important properties and analysis methods of the max-

plus algebra, discuss some important characteristics of max-

plus linear DES, and give a brief overview of performance

analysis and control methods for max-plus linear DES. More

extensive overviews of the max-plus algebra and max-plus

linear systems can be found in [1]–[3], [19].

II. MAX-PLUS ALGEBRA

A. Basic operations of the max-plus algebra

The basic operations of the max-plus algebra [1]–[3] are

maximization and addition, which will be represented by ⊕
and ⊗ respectively:

x⊕ y = max(x,y) and x⊗ y = x+ y



for x,y ∈ Rε
def
= R ∪ {−∞}. The reason for using these

symbols is that there is a remarkable analogy between ⊕
and conventional addition, and between ⊗ and conventional

multiplication: many concepts and properties from linear

algebra (such as the Cayley-Hamilton theorem, eigenvectors

and eigenvalues, Cramer’s rule, . . . ) can be translated to the

max-plus algebra by replacing + by ⊕ and × by ⊗ [1]–[3],

[16], [19]. Therefore, we also call ⊕ the max-plus-algebraic

addition, and ⊗ the max-plus-algebraic multiplication. Note

however that one of the major differences between conven-

tional algebra and max-plus algebra is that in general there

do not exist inverse elements w.r.t. ⊕ in Rε . The zero element

for ⊕ is ε
def
= −∞: we have a⊕ ε = a = ε ⊕a for all a ∈Rε .

The structure (Rε ,⊕,⊗) is called the max-plus algebra.

Let r ∈ R. The rth max-plus-algebraic power of x ∈ R is

denoted by x⊗r
and corresponds to rx in conventional algebra.

If x ∈ R then x⊗0
= 0 and the inverse element of x w.r.t. ⊗

is x⊗−1
= −x. There is no inverse element for ε since ε is

absorbing for ⊗. If r > 0 then ε⊗r
= ε . If r < 0 then ε⊗r

is

not defined. In this paper we have ε⊗0
= 0 by definition.

The rules for the order of evaluation of the max-plus-

algebraic operators correspond to those of conventional al-

gebra. So max-plus-algebraic power has the highest priority,

and max-plus-algebraic multiplication has a higher priority

than max-plus-algebraic addition.

B. Max-plus-algebraic matrix operations

The basic max-plus-algebraic operations are extended to

matrices as follows. If A,B ∈ R
m×n
ε and C ∈ R

n×p
ε then

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n

⊕

k=1

aik ⊗ ck j = max
k

(aik + ck j)

for all i, j. Note the analogy with the definitions of matrix

sum and product in conventional linear algebra.

The matrix εm×n is the m × n max-plus-algebraic zero

matrix: (εm×n)i j = ε for all i, j; and the matrix En is the

n×n max-plus-algebraic identity matrix: (En)ii = 0 for all i

and (En)i j = ε for all i, j with i 6= j. If the size of the max-

plus-algebraic identity matrix or the max-plus-algebraic zero

matrix is not specified, it should be clear from the context.

The max-plus-algebraic matrix power of A ∈R
n×n
ε is defined

as follows: A⊗0
= En and A⊗k

= A⊗A⊗k−1
for k = 1,2, . . .

C. Connection with graph theory

There exists a close relation between max-plus algebra

(and related structures) and graphs [1], [9], [21].

Definition 2.1 (Precedence graph): Consider A ∈ R
n×n
ε .

The precedence graph of A, denoted by G (A), is a weighted

directed graph with vertices 1, 2, . . . , n and an arc ( j, i) with

weight ai j for each ai j 6= ε .

It easy to verify that every weighted directed graph corre-

sponds to the precedence graph of an appropriately defined

matrix with entries in Rε .

Now we can give a graph-theoretic interpretation of the

max-plus-algebraic matrix power. Let A ∈ R
n×n
ε . If k ∈ N0

then we have

(A⊗k
)i j = max

i1,i2,...,ik−1

(aii1 +ai1i2 + . . .+aik−1 j)

for all i, j. Hence, (A⊗k
)i j is the maximal weight of all paths

of G (A) of length k that have j as their initial vertex and i

as their final vertex — where we assume that if there does

not exist a path of length k from j to i, then the maximal

weight is equal to ε by definition.

A directed graph G is called strongly connected if for any

two different vertices i, j of the graph, there exists a path

from i to j.

Definition 2.2 (Irreducible matrix): A matrix A ∈R
n×n
ε is

called irreducible if its precedence graph G (A) is strongly

connected.

If we reformulate this in the max-plus algebra then a matrix

A ∈ R
n×n
ε is irreducible if

(A⊕A⊗2
⊕ . . .⊕A⊗n−1

)i j 6= ε for all i, j with i 6= j ,

since this condition means that for two arbitrary vertices i

and j of G (A) with i 6= j there exists at least one path (of

length 1, 2, . . . or n−1) from j to i.

Example 2.3 Consider A =





0 ε 2

2 0 4

1 2 3



. The precedence

graph G (A) of A is given in Figure 1.

1

32

0 3

0

2

2

4

2

1

Fig. 1. Precedence graph of the matrix A of Example 2.3. The vertices
are indicated in a bold italic font, and the weights are indicated next to the
arcs in a regular font.

Clearly, G (A) is strongly connected, and hence A is irre-

ducible. ✷

III. SOME BASIC PROBLEMS IN THE MAX-PLUS ALGEBRA

In this section we present some basic max-plus-algebraic

problems and some methods to solve them.

A. Systems of max-plus linear equations

Let A ∈ R
n×n
ε and b ∈ R

n
ε . In general, the system of

max-plus linear equations A⊗ x = b will not always have

a solution, even if A is square or if it has more columns than

rows. Therefore, the concept of subsolution is introduced [1],

[2].

Definition 3.1 (Subsolution): Let A ∈ R
n×n
ε and b ∈ R

n
ε .

We say that x ∈ R
n
ε is a subsolution of the system of max-

plus linear equations A⊗ x = b if A⊗ x 6 b.



Although the system A⊗x = b does not always have a so-

lution, it always possible to determine the largest subsolution

if we allow components that are equal to ∞ in the solution

and if we assume that ε ⊗∞ = ∞⊗ ε = ε by definition. For

the sake of simplicity and to avoid expressions like ε − ε ,

we assume from now on that all the components of b are

finite. The largest subsolution x̂ of Ax = b is then given by

x̂ j = min
i

(bi −ai j) for j = 1,2, . . . ,n .

Example 3.2 Consider the matrix A of Example 2.3 and

b=
[

1 2 3
]T

. The system of equations A⊗x= b does not

have a solution. However, the largest subsolution is given by

x̂ =
[

0 1 −2
]T

, and we have A⊗ x̂ =
[

0 2 3
]T

6 b. ✷

Note that for the largest subsolution x̂ we have A⊗ x̂6 b. In

some cases, we want to minimize the difference between A⊗
x and b, i.e., find x such that max

i
|bi−(A⊗x)i| is minimized.

A solution x̃ of this problem is given by

x̃ = x̂⊗
δ

2
with δ = max

i
(bi − (A⊗ x̂)i) . (1)

We then have max
i

|bi − (A⊗ x̃)i|=
δ
2

.

B. Max-plus-algebraic eigenvalue problem

Definition 3.3 (Max-plus-algebraic eigenvalue): Let A ∈
R

n×n
ε . If there exist λ ∈ Rε and v ∈ R

n
ε with v 6= ε n×1 such

that A⊗v = λ ⊗v then we say that λ is a max-plus-algebraic

eigenvalue of A and that v is a corresponding max-plus-

algebraic eigenvector of A.

It can be shown that every square matrix with entries in Rε

has at least one eigenvalue [1]. However, in contrast to linear

algebra, the number of max-plus-algebraic eigenvalues of an

n by n matrix is in general less than n. Moreover, if a matrix

is irreducible, it has is only one eigenvalue (see e.g., [13]).

Example 3.4 Consider the (irreducible) matrix A of Example

2.3. This matrix has one max-plus-algebraic eigenvalue λ = 3

and a corresponding max-plus-algebraic eigenvector is v =
[

0 2 1
]T

. We have A⊗ v =
[

3 5 4
]T

= 3⊗ v. ✷

There exist several efficient algorithms to determine max-

plus-algebraic eigenvalues such as the power algorithm of

[22] or the policy iteration algorithm of [23].

We also have the following property [1], [13], [24]:

Theorem 3.5: If A ∈ Rε is irreducible, then

∃k0 ∈ N, ∃c ∈ N0 such that ∀k > k0 : A⊗k+c
= λ⊗c

⊗A⊗k

where λ is the (unique) max-plus-algebraic eigenvalue of A.

In the case where A is not irreducible the behavior of A⊗k

for k is more complex (see, e.g., [1], [3], [25]).

Example 3.6 For the matrix A of Example 2.3 we have

A =





0 ε 2

2 0 4

1 2 3



 , A⊗2
=





3 4 5

5 6 7

4 5 6



 ,

A⊗3
=





6 7 8

8 9 10

7 8 9



 , A⊗4
=





9 10 11

11 12 13

10 11 12



 , . . .

So A⊗k+1
= 3⊗A⊗k

for k = 2,3, . . . ✷

C. Systems of max-plus-algebraic multivariate polynomial

equalities and inequalities

A system of multivariate polynomial equalities and in-

equalities in the max-plus algebra is defined as follows:

Given a set of integers {mk} and sets of coeffi-

cients {aki}, {bk} and {cki j} with i ∈ {1, . . . ,mk}, j ∈
{1, . . . ,n} and k ∈ {1, . . . , p1, p1 + 1, . . . , p1 + p2}, find

x ∈ R
n such that

mk
⊕

i=1

aki ⊗
n

⊗

j=1

x j
⊗

cki j
= bk for k = 1,2, . . . , p1,

mk
⊕

i=1

aki ⊗
n

⊗

j=1

x j
⊗

cki j
6 bk for k = p1 +1, . . . , p1 + p2.

Note that the exponents can be negative or real. In conven-

tional algebra the equations can be written as

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j

)

= bk for k = 1,2, . . . , p1,

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j

)

6 bk for k = p1 +1, . . . , p1 + p2.

In [26]–[28] it has been shown that the above problem

and related max-plus problems such as computing max-

plus matrix decompositions, transformation of max-plus lin-

ear state space models, state space realization of max-plus

linear systems, construction of matrices with a given max-

plus characteristic polynomial, and solving systems of max-

min-plus equations can be recast as a so-called extended

linear complementarity problem (ELCP), which is defined

as follows:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m

subsets φ j of {1,2, . . . , p}, find x ∈ R
n such that

m

∑
j=1

∏
i∈φ j

(Ax− c)i = 0 (2)

subject to Ax > c and Bx = d.

Algorithms for solving ELCPs can be found in [29] (to

compute the entire solution set) and in [30] (to find one

solution only).

IV. MAX-PLUS LINEAR SYSTEMS

A. Max-plus linear state space models

DES with only synchronization and no concurrency can

be modeled by a max-plus-algebraic model of the following

form [1]–[3]:

x(k) = A⊗ x(k−1) ⊕ B⊗u(k) (3)

y(k) =C⊗ x(k) (4)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m is the

number of inputs and l the number of outputs. The vector x

represents the state, u is the input vector, and y is the output

vector of the system. It is important to note that in (3)–(4)

the components of the input, the output, and the state are



event times, and that the counter k in (3)–(4) is an event

counter. For a manufacturing system, u(k) would typically

represent the time instants at which raw material is fed to

the system for the kth time, x(k) the time instants at which

the machines start processing the kth batch of intermediate

products, and y(k) the time instants at which the kth batch

of finished products leaves the system.

Due to the analogy with conventional linear time-invariant

systems, a DES that can be modeled by (3)–(4) will be called

a max-plus linear time-invariant DES system.

Typical examples of systems that can be modeled as max-

plus linear DES are production systems, railroad networks,

urban traffic networks, and queuing systems. We will now

illustrate in detail how the behavior of a simple manufactur-

ing system can be described by a max-plus linear model of

the form (3)–(4).

B. Example: A simple production system

P1

P2

✲

✲

P
P

P
P
P
PPq

✏
✏

✏
✏
✏
✏✏✶

P3
✲

u(k)

y(k)

t1 = 2

t2 = 0

t3 = 1

t4 = 0
t5 = 0

d1 = 5

d2 = 6

d3 = 3

Fig. 2. A simple production system.

Consider the system of Figure 2. This production system

consists of 3 processing units: P1, P2, and P3. Raw material

is fed to P1 and P2, processed, and sent to P3 where assembly

takes place. The processing times for P1, P2, and P3 are

respectively d1 = 5, d2 = 6, and d3 = 3 time units. We assume

that it takes t1 = 2 time units for the raw material to get

from the input source to P1 and that it takes t3 = 1 time unit

for the finished products of processing unit P1 to reach P3.

The other transportation times (t2, t4, and t5) are assumed

to be negligible. At the input of the system and between

the processing units there are buffers with a capacity that is

large enough to ensure that no buffer overflow will occur.

Initially all buffers are empty and none of the processing

units contains raw material or intermediate products.

A processing unit can only start working on a new product

if it has finished processing the previous one. We assume that

each processing unit starts working as soon as all parts are

available. Define

• u(k): time instant at which raw material is fed to the

system for the kth time,

• xi(k): time instant at which the ith processing unit starts

working for the kth time,

• y(k): time instant at which the kth finished product

leaves the system.

Let us now determine the time instant at which processing

unit P1 starts working for the kth time. If we feed raw

material to the system for the kth time, then this raw material

is available at the input of processing unit P1 at time t =
u(k) + 2. However, P1 can only start working on the new

batch of raw material as soon as it has finished processing

the previous, i.e., the (k− 1)st, batch. Since the processing

time on P1 is d1 = 5 time units, the (k− 1)st intermediate

product will leave P1 at time t = x1(k − 1) + 5. Since P1

starts working on a batch of raw material as soon as the

raw material is available and the current batch has left the

processing unit, this implies that we have

x1(k) = max(x1(k−1)+5, u(k)+2) (5)

for k = 1,2, . . . The condition that initially processing unit P1

is empty and idle corresponds to the initial condition x1(0) =
ε since then it follows from (5) that x1(1) = u(1)+2, i.e., the

first batch of raw material that is fed to the system will be

processed immediately (after a delay of 2 time units needed

to transport the raw material from the input to P1).

Using a similar reasoning we find the following expres-

sions for the time instants at which P2 and P3 start working

for the (k+ 1)st time and for the time instant at which the

kth finished product leaves the system:

x2(k) = max(x2(k−1)+6, u(k)+0) (6)

x3(k) = max(x1(k)+5+1,x2(k)+6+0, x3(k−1)+3)

= max(x1(k−1)+11, x2(k−1)+12,

x3(k−1)+3, u(k)+8) (7)

y(k) = x3(k)+3+0 (8)

for k = 1,2, . . . The condition that initially all buffers are

empty corresponds to the initial condition x1(0) = x2(0) =
x3(0) = ε .

Let us now rewrite the evolution equations of the produc-

tion system using the symbols ⊕ and ⊗. It is easy to verify

that (5) can be rewritten as

x1(k) = 5⊗ x1(k−1) ⊕ 2⊗u(k) .

If we also do this for (6)–(8) and if we rewrite the resulting

equations in max-plus-algebraic matrix notation, we obtain

x(k) =





5 ε ε
ε 6 ε

11 12 3



⊗ x(k−1) ⊕





2

0

8



⊗u(k)

y(k) =
[

ε ε 3
]

⊗ x(k)

where x(k) =
[

x1(k) x2(k) x3(k)
]T

. Note that this is a

model of the form (3)–(4).

In the next section we shall use this production system to

illustrate some of the max-plus-algebraic techniques that can

be used to analyze max-plus linear time-invariant DES.

V. PERFORMANCE ANALYSIS AND CONTROL OF

MAX-PLUS LINEAR SYSTEMS

A. Analysis of max-plus linear systems

Now we present some analysis techniques for DES that

can be described by a model of the form (3)–(4).



First we determine the input-output behavior of the DES.

We have

x(1) = A⊗ x(0) ⊕ B⊗u(1)

x(2) = A⊗ x(1) ⊕ B⊗u(2)

= A⊗2
⊗ x(0) ⊕ A⊗B⊗u(1) ⊕ B⊗u(2)

etc., which yields x(k) = A⊗k
⊗ x(0) ⊕

k
⊕

i=1

A⊗k−i
⊗B⊗ u(i)

for k = 1,2, . . . Hence,

y(k) = C⊗A⊗k
⊗ x(0) ⊕

k
⊕

i=1

C⊗A⊗k−i
⊗B⊗u(i) (9)

for k = 1,2, . . .

Consider two input sequences u1 = {u1(k)}
∞
k=1 and u2 =

{u2(k)}
∞
k=1. Let y1 = {y1(k)}

∞
k=1 be the output sequence that

corresponds to the input sequence u1 (with initial condition

x1(0) = x1,0) and let y2 = {y2(k)}
∞
k=1 be the output sequence

that corresponds to the input sequence u2 (with initial con-

dition x2(0) = x2,0). Let α,β ∈ Rε . From (9) it follows that

the output sequence that corresponds to the input sequence

α ⊗u1 ⊕ β ⊗u2 = {α ⊗u1(k) ⊕ β ⊗u2(k)}
∞
k=1 (with initial

condition α ⊗ x1,0 ⊕ β ⊗ x2,0) is given by α ⊗ y1 ⊕ β ⊗ y2.

This explains why DES that can be described by a model of

the form (3)–(4) are called max-plus linear.

Now we assume that x(0) = ε n×1. For the simple pro-

duction system of Section IV-B this would mean that

all the buffers are empty at the beginning. Let p ∈

N0. If we define Y =
[

y(1) y(2) . . . y(p)
]T

and U =
[

u(1) u(2) . . . u(p)
]T

, then (9) results in

Y = H ⊗U (10)

with

H =











C⊗B ε . . . ε
C⊗A⊗B C⊗B . . . ε

...
...

. . .
...

C⊗A⊗p−1
⊗B C⊗A⊗p−2

⊗B . . . C⊗B











.

For the production system of Section IV-B this means that

if we know the time instants at which raw material is fed to

the system, we can compute the time instants at which the

finished products will leave the system.

Example 5.1 Consider the production system of Sec-

tion IV-B. Define Y =
[

y(1) y(2) y(3) y(4)
]T

and U =
[

u(1) u(2) u(3) u(4)
]T

. If x(0) = ε 3×1 then we have

Y = H ⊗U with

H =









11 ε ε ε
16 11 ε ε
21 16 11 ε
27 21 16 11









.

If we feed raw material to the system at time instants u(1) =
0, u(2) = 9, u(3) = 12, u(4) = 15, the finished products will

leave the system at time instants y(1) = 11, y(2) = 20, y(3) =
25, and y(4) = 30 since

H ⊗









0

9

12

15









=









11

20

25

30









.

✷

Now we consider the autonomous DES described by

x(k+1) = A⊗ x(k)

y(k) =C⊗ x(k)

with x(0) = x0. For the production system of Section IV-B

this would mean that we start from a situation in which some

internal buffers and all the input buffer are not empty at the

beginning (if x0 6=ε n×1) and that afterwards the raw material

is fed to the system at such a rate that the input buffers never

become empty.

If the system matrix A of the autonomous DES is ir-

reducible, then we can compute the “ultimate” behavior

of the autonomous DES by solving the max-plus-algebraic

eigenvalue problem A⊗v= λ ⊗v. By Theorem 3.5 there exist

integers k0 ∈ N and c ∈ N0 such that x(k+ c) = λ⊗c
⊗ x(k)

for all k > k0. This means that

xi(k+ c)− xi(k) = cλ (11)

for i = 1,2, . . . ,n and for all k > k0. From this relation it

follows that for a production system the average duration

of a cycle of the production process when the system has

reached its cyclic behavior will be given by λ . The average

production rate will then be equal to 1
λ . This also enables

us to calculate the utilization levels of the various machines

in the production process. Furthermore, some algorithms to

compute the eigenvalue also yield the critical paths of the

production process and the bottleneck machines [13].

Example 5.2 The system matrix A of the production system

of Section IV-B is not irreducible and it does not lead to

a behavior of the form (11). In fact, it can be verified that

A has three eigenvalues λ1 = 3, λ2 = 5, and λ3 = 6, with

corresponding eigenvectors

v1 =





ε
ε
0



 , v2 =





0

ε
6



 , and v3 =





ε
0

6



 .

✷

B. Control of max-plus linear DES

1) Residuation-based control: The basic control problem

for max-plus linear DES consists in determining the optimal

feeding times of raw material to the system and/or the

optimal starting times of the (internal) processes.

Consider (10). If we know the vector Y of latest times at

which the finished products have to leave the system, we can

compute the vector U of (latest) time instants at which raw

material has to be fed to the system by solving the system

of max-plus linear equations H ⊗U = Y , if this system has



a solution, or by determining the largest subsolution of H ⊗
U = Y , i.e., determining the largest U such that H ⊗U 6 Y .

This approach is also called residuation [31].

The residuation-based approach for computing the optimal

feeding times is used in [32], [33]. Note that the sequence

u(1),u(2), . . . ,u(p) should be non-decreasing as it corre-

sponds to a sequence of consecutive feeding times. However,

a residuation-based solution does not always satisfy this

property. This problem can be overcome by projection on

the set of non-increasing sequences [34].

Note that the method above corresponds to just-in-time

production. However, if we have perishable goods it is

sometimes better to minimize the maximal deviation between

the desired and the actual finishing times. In this case we

have to solve the problem min
U

max
i

|(Y − H ⊗U)i|. This

problem can be solved using formula (1).

Example 5.3 Let us again consider the production system

of Section IV-B and the matrix H and the vectors U and Y

as defined in Example 5.1. If the finished parts should leave

the system before time instants 17, 19, 24, and 27 and if

we want to feed the raw material to the system as late as

possible, then we should feed raw material to the system

at time instants 0, 6, 11, 16 since the largest subsolution

of H ⊗U =
[

17 19 24 27
]T

is Û =
[

0 6 11 16
]T

.

The actual output times Ŷ are given by Ŷ = H ⊗ Û =
[

11 17 22 27
]T

. Note that the largest deviation δ be-

tween the desired and the actual output times is equal to

6. The input times that minimize this deviation are given by

Ũ = Û⊗
δ

2
= Û⊗3=

[

3 9 14 19
]T

. The corresponding

output times are given by Ỹ =
[

14 20 25 30
]T

. Note

that the largest deviation between the desired finishing and

the actual finishing times is now equal to δ
2
= 3. ✷

2) Model predictive control: A somewhat more advanced

control approach for max-plus linear DES has been devel-

oped in [35]. This approach is an extension to max-plus

linear DES of the model-based predictive control approach

called Model Predictive Control (MPC) [36], [37] that has

originally been developed for time-driven systems.

In MPC for max-plus linear DES at each event step k

the controller computes the input sequence that optimizes

a performance criterion J over the next Np event steps,

where Np is called the prediction horizon, subject to various

constraints on the inputs, states, and outputs of the system.

Typically, the performance criterion aims at minimizing the

difference or the tardiness with respect to a due date signal,

while at the same time making the inputs as large as possible

(just-in-time production). This results in an optimization

problem that has to be solved at each event step k. In order to

reduce the computational complexity, often a control horizon

Nc is introduced with Nc <Np and it is assumed that the input

rate is constant after event step k+Nc.

MPC uses a receding horizon approach. This means that

once the optimal input sequence has been determined only

the input for the first event step is applied to the system. Next,

at event step k+1 the new state of the system is determined

or measured1, the horizon is shifted, and the whole process

is repeated again. This receding horizon approach introduces

a feedback mechanism, which allows to reduce the effects

of possible disturbances and model mismatch errors.

In [35] it has been shown that for a broad range of

performance criteria and constraints, max-plus linear MPC

results in a linear programming problem, which can be

solved very efficiently. Worked examples of MPC for max-

plus linear systems and related results can be found in [35],

[38]–[41].

VI. SUMMARY

We have presented an overview of the basic notions of

the max-plus algebra and max-plus linear discrete event

systems (DES). We have introduced the basic operations of

the max-plus algebra and stated some of the main definitions,

theorems, and properties of the max-plus algebra. Next, we

have given an introduction to max-plus linear DES, and

presented some elementary analysis and control methods for

max-plus linear DES.

For more information on the analysis of max-plus linear

time-invariant DES such as production systems, timetable

dependent transportation networks, queuing systems, array

processors, and so on the interested reader is referred to [1]–

[3], [13], [14], [16], [17], [19], [32], [34], [40], [42]–[49] and

the references therein.
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systems: The strictly convex case,” Annals of Operations Research,
vol. 57, pp. 45–63, 1995.

[47] C. Maia, L. Hardouin, R. Santos-Mendes, and B. Cottenceau, “Optimal
closed-loop control of timed event graphs in dioids,” IEEE Transac-

tions on Automatic Control, vol. 48, no. 12, pp. 2284–2287, Dec.
2003.
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