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Randomly switching max-plus linear systems and

equivalent classes of discrete event systems

Ton van den Boom and Bart De Schutter

Abstract— In switching max-plus-linear discrete event sys-
tems we can switch between different modes of operation. In
each mode the discrete event system is described by a max-
plus-linear state space model with different system matrices
for each mode. In randomly switching max-plus-linear systems,
the switching between the modes can be both deterministic and
stochastic. The switching changes the structure of the system,
which allows the system to break synchronization and to change
the order of events. In this paper two equivalent descriptions for
randomly switching max-plus-linear systems will be discussed.
Furthermore, we will show that a randomly switching max-
plus-linear system can be written as a piecewise affine system
or a max-min-plus-scaling system. The last transformation can
be established under (rather mild) additional assumptions on
the boundedness of state and input.

I. INTRODUCTION

The class of discrete event systems (DES) essentially

consists of man-made systems that contain a finite number

of resources (such as machines, communications channels, or

processors) that are shared by several users (such as product

types, information packets, or jobs) all of which contribute

to the achievement of some common goal (the assembly of

products, the end-to-end transmission of a set of information

packets, or a parallel computation) [1].

In this paper we consider switching max-plus-linear

(SMPL) systems, discrete event systems that can switch

between different modes of operation, in which the mode

switching depends on a stochastic sequence or on the input

and previous state. In each mode the system is described by a

max-plus-linear state equation and a max-plus-linear output

equation, with different system matrices for each mode. In

[8] we have discussed SMPL systems with deterministic

switching, and in [9], [10] we have discussed SMPL systems

with random switching.

The class of SMPL systems contains discrete event sys-

tems with synchronization but no concurrency, in which the

order of synchronization of the event steps may vary ran-

domly, or is determined by input signals or the previous state.
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Typical examples of SMPL systems are flexible manufactur-

ing systems, telecommunication networks, logistic networks,

and signal controlled urban traffic networks.

Mode switching depending on input signals allows us

to model a change in the structure of the system, such

as breaking a synchronization or changing the order of

events. Mode switching depending on the state may be due

to concurrency between various events (see [8]). Random

mode switching between may be due to e.g. (randomly)

changing production recipes, varying customer demands or

traffic demands, or failures in production units, transmission

lines, or traffic links.

In this paper we review the type 1 RSMPL system

description introduced in [9], [10] and we introduce a type 2

RSMPL system description. We show that these two RSMPL

systems descriptions are in fact equivalent. Furthermore, we

show that a type 2 RSMPL system can be rewritten as a

piecewise affine (PWA) system or a max-min-plus-scaling

(MMPS) system. Using the results of [5] we also implicitly

prove that a RSMPL system can be rewritten as an (extended)

linear complementarity (ELC/LC) system or a mixed logic

dynamical (MLD) system, which are well-known system

descriptions used in the field of hybrid systems. Using these

results we can transfer properties of and methods for PWA

systems and MMPS systems to RSMPL systems.

II. SWITCHING MAX-PLUS LINEAR SYSTEMS

Max-plus algebra

We start this section by giving the some basic definitions

in the max-plus algebra [1], [4], [6].

Define ε =−∞ and Rε =R∪{ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as follows:

x⊕ y = max(x,y) , x⊗ y = x+ y

for numbers x,y ∈ Rε and

[A⊕B]i j = ai j ⊕bi j = max(ai j,bi j)

[A⊗C]i j =
n

⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

Randomly switching Max-Plus-Linear systems

Switching Max-Plus-Linear (SMPL) systems are discrete

event systems that can switch between different modes of

operation [8]. In each mode ℓ ∈ {1, . . . ,L}, the system is



described by a max-plus-linear state equation and a max-

plus-linear output equation:

x(k) = A(ℓ(k))⊗ x(k−1)⊕B(ℓ(k))⊗u(k) (1)

y(k) =C(ℓ(k))⊗ x(k) (2)

in which the matrices A(ℓ) ∈ R
nx×nx
ε , B(ℓ) ∈ R

nx×nu
ε , C(ℓ) ∈

R
ny×nx
ε are the system matrices for the ℓ-th mode.The index

k is called the event counter. For discrete event systems the

state x(k) typically contains the time instants at which the

internal events occur for the kth time, the input u(k) contains

the time instants at which the input events occur for the kth

time, and the output y(k) contains the time instants at which

the output events occur for the kth time.

In [8] we have considered deterministic switching, that

was a function of the previous state or an input signal. In

[9] we have introduced random switching, i.e. the mode

switching depended on a stochastic sequence. In [10] we

have combined both switching types. For the SMPL system

(1)-(2), the mode switching variable ℓ(k) then depends on

both stochastic variables as well as deterministic variables

(state and inputs). The switching times are determined by a

switching mechanism. The mode switching variable ℓ(k) is a

stochastic process, and the probability of switching depends

on the previous mode ℓ(k− 1), the previous state x(k− 1),
the input variable u(k), and an (additional) control vector

v(k) ∈ R
nv .

Definition 1 ([9], [10]): A type 1 Randomly Switching

Max-Plus-Linear (RSMPL) system is defined as follows:

Consider system (1)-(2) with L possible modes. The proba-

bility of switching to mode ℓ(k) given ℓ(k−1), x(k−1), u(k),
v(k) is denoted by P(ℓ(k)|ℓ(k− 1),x(k− 1),u(k),v(k)). For

any given ℓ(k) ∈ {1, . . . ,L}, the probability P is piecewise

affine on polyhedral sets in the variables ℓ(k−1), x(k−1),
u(k), v(k). ⋄

Define w(k) =
[

ℓ(k−1) xT (k−1) uT (k) vT (k)
]T

, then

for any m ∈ {1, . . . ,L} there exist matrices Si,m, vectors αi,m,

si,m and scalars βi,m such that the probability1 P can be

written as

P(ℓ(k)|w(k)) = αT
i,ℓ(k) w(k)+βi,ℓ(k) ,

if w(k) ∈ Γi,ℓ(k) for i = 1, . . . ,nℓ(k)

where ;Γi,ℓ(k) = { w(k) | Si,ℓ(k) w(k) ≤ si,ℓ(k) } , and the sets

Γi,ℓ(k) are such that

nm
⋃

i=1

Γi,m = R
nw and int(Γi,m)∩ int(Γ j,m) = /0 for i 6= j .

where int(·) denotes the interior.

Definition 2: A type 2 Randomly Switching Max-Plus-

Linear (RSMPL) system is defined as follows: Consider

system (1)-(2) with L possible modes. The mode ℓ(k) = m if

z(k)=
[

ℓ(k−1) xT (k−1) uT (k) vT (k) d(k)
]T

∈Ωm

1Note that P is a probability, so obviously for any w(k) we find 0 ≤
P(m|w(k))≤ 1 , m = 1, . . . ,L and ∑L

m=1 P(m|w(k)) = 1 .

where d(k) ∈ [0,1] is a uniformly distributed scalar signal,

and where Ωm = ∪nm
j=1Ωm, j in which Ωm, j are closed convex

polyhedra (i.e. given by a finite number of linear inequalities)

with non-overlapping interiors in the variable z(k):

Ωm, j = { z(k) | Rm, j z(k)≤ rm, j } , for j = 1, . . . ,nm ⋄

In the next section we will show that the two types of

RSMPL systems are equivalent and therefore model the same

class of discrete event systems. A type 1 RSMPL model is

easy for modeling where we consider the probabilities of

switching from one mode to another. The model gives a

lot of physical insight into the system and is usually more

intuitive for the user. A type 2 RSMPL model is signal based

and the properties of probabilities of switching are translated

into the properties of a stochastic signal. The fact that type

2 RSMPL models are signal based makes that this type of

RSMPL system can easily be translated into another model in

one of the well-known classes of hybrid systems (see Section

IV).

III. EQUIVALENCE IN CLASSES OF RSMPL SYSTEMS

Proposition 3: Every type 1 RSMPL system can be

written as a type 2 RSMPL system. ⋄

Proof: Consider a type 1 RSMPL system, let w(k) be

fixed and let (i1, i2, . . . , iL) be such that w(k) ∈ Γi j , j for j =
1, . . . ,L. Now define the function

η(m,w(k)) =

{

∑m
j=1 αT

i j , j
w(k)+βi j , j for m = 1, . . . ,L

0 for m = 0

Note that for varying w(k) the function η(m,w(k)) is a

sum of piecewise affine functions in the variable w(k),
and therefore is piecewise affine in w(k) itself. Now define

a system (1)-(2) and a uniformly distributed scalar signal

d(k) ∈ [0,1], and let

ℓ(k) = m if η(m−1,w(k))≤ d(k)≤ η(m,w(k))

This means that the probability that ℓ(k) = m is equal to:

P(m|w(k)) = P
(

η(m−1,w(k))≤ d(k)≤ η(m,w(k))
)

= η(m,w(k))−η(m−1,w(k))

= αT
im,m

w(k)+βim,m.

like in a type 1 RSMPL system. So we obtain

ℓ(k) = m if

[

−d(k)+η(m−1,w(k))
d(k)−η(m,w(k))

]

≤ 0

together with the constraints Si j , jw(k)≤ si j , j for j = 1, . . . ,L.

Define z(k) =
[

wT (k) d(k)
]T

and the function

ξ (m,z(k)) =















−d(k)+η(m−1,w(k))
d(k)−η(m,w(k))

Si1,1w(k)− si1,1

...

SiL,Lw(k)− siL,L















,



Define the set Φ = {φ1, . . . ,φnt} = {φt =
(i1, i2, . . . , iL)|Si j , jw(k)≤ si j , j for j = 1, . . . ,L} of all possible

permutations, such that Si j , jw(k) ≤ si j , j for j = 1, . . . ,L.

Now there exist matrices Rm,t and scalars rm,t such that the

function ξ (m,z(k)) for the corresponding φt can be written as

ξ (m,z(k)) = Rm,t z(k)− rm,t

This means that

ℓ(k) = m if Rm,t z(k)≤ rm,t , t = 1, . . . ,nt ,

which is equal to a type 2 RSMPL system.

Proposition 4: Every type 2 RSMPL system can be

written as a type 1 RSMPL system. ⋄

Proof: Consider a type 2 RSMPL system, so

ℓ(k) = m if Rm,t z(k)≤ rm,t

Define Rm,t,1 and Rm,t,2 such that

Rm,t z(k) = Rm,t,1 w(k)+Rm,t,2 d(k)≤ rm,t (3)

Note that d(k) ∈ [0,1] is a scalar. Let dm,t,max(w(k)) be

the maximum value d such that (3) is satisfied, and let

dm,t,min(w(k)) be the minimum value d such that (3) is satis-

fied. If for some w(k) there exists no d(k) ∈ [0,1] such that

(3) is satisfied, we define dm,t,max(w(k)) = dm,t,min(w(k)) =
0. Finding dm,t,max(w(k)) and dm,t,min(w(k)) can be done

using a linear programming algorithm, which means that

dm,t,max(w(k)) and dm,t,min(w(k)) are piecewise affine in w(k)
([3]). So there exist vectors pm,t,i,max and pm,t,i,min and scalars

qm,t,i,max and qm,t,i,min, such that

dm,t,max(w(k)) = pT
m,t,i,max w(k)+qm,t,i,max

dm,t,min(w(k)) = pT
m,t,i,min w(k)+qm,t,i,min

if Si,m,t w(k)≤ si,m,t for i = 1, . . . ,Mm, t = 1, . . . ,nt .

The probability that ℓ(k) = m, given w(k) can be written as

P(m|w(k)) = P(dm,t,min ≤ d(k)≤ dm,t,max)

= dm,t,max −dm,t,min

= (pT
m,t,i,max − pT

m,t,i,min)w(k)

+(qm,t,i,max −qm,t,i,min)

for Si,m,t w(k) ≤ si,m,t for i = 1, . . . ,Mm, t = 1, . . . ,nt , which

is a type 1 RSMPL system.

✫✪
✬✩

PWA

✫✪
✬✩

MMPS

✫✪
✬✩

TYPE 2

RSMPL ✫✪
✬✩

TYPE 1

RSMPL
✟

✟
✟✙

❍
❍

❍❨

✲

✛

Proposition 5: A type 2 RSMPL system can always be

rewritten in the compact form:

x(k) = Ā(κ(k))⊗ x(k−1)⊕ B̄(κ(k))⊗u(k) (4)

y(k) = C̄(κ(k))⊗ x(k) (5)

The mode κ(k) = m if

z(k)=
[

κ(k−1) xT (k−1) uT (k) vT (k) d(k)
]T

∈ Ω̄m

where d(k) ∈ [0,1] is a uniformly distributed scalar signal,

and where Ω̄m are polyhedra (i.e. given by a finite number

of linear inequalities) with non-overlapping interior in the

variable z(k):

Ω̄m = { z(k) | Rm z(k)≤ rm }

Proof: Consider the type 2 RSMPL system of definition

2, and introduce a new numbering

κ = j+
ℓ−1

∑
i=1

ni, for ℓ= 1, . . . ,L and j = 1, . . . ,nℓ

then we find

Ω̄κ = Ωℓ, j

and

[

Āκ B̄κ C̄κ
]

=
[

A(ℓ(k)) B(ℓ(k)) C(ℓ(k))
]

Definition 6: An RSMPL system is bounded if for any

bounded (x(k − 1),u(k)) we have that x(k) and y(k) are

bounded for all ℓ(k−1) ∈ {1, . . . ,L} and d(k) ∈ [0,1]. ⋄

Corollary 7: For a bounded RSMPL system the matrix

M(ℓ) =

[

A(ℓ) B(ℓ) ε
ε ε C(ℓ)

]

is row-finite for all ℓ = 1, . . . ,L (i.e. for all ℓ every row of

the matrix M(ℓ) has at least one finite entry).

IV. RSMPL SYSTEMS AND EQUIVALENT SYSTEM

DESCRIPTIONS

The following definition is an extension of [7]:

Definition 8: Piecewise Affine (PWA) systems are de-

scribed by

x(k)=Aix(k−1)+Biu(k)+ fi

y(k)=Cix(k)+Diu(k)+gi
for





x(k−1)
u(k)
d(k)



 ∈ Ωi, (6)

for i = 1, . . . ,N where Ω1, . . . ,ΩN are closed polyhedra

(i.e. given by a finite number of linear inequalities) with

non-overlapping interiors in the variables x(k − 1), u(k),
and d(k). The signal d(k) ∈ [0,1] is a uniformly distributed

scalar signal. ⋄



Proposition 9: Every bounded RSMPL system of type 2

can be written as a piecewise affine (PWA) system. ⋄

Proof: Consider the bounded RSMPL system of type

2 with state and output equations (1) and (2) where ℓ(k) = i

if z(k) satisfies Ri z(k)≤ ri. Define

ω(k) =

[

x(k)
y(k)

]

, η(k) =





x(k−1)
u(k)
x(k)



 (7)

M(ℓ) =

[

A(ℓ) B(ℓ) ε
ε ε C(ℓ)

]

(8)

then (1) and (2) can be written as

ω(k) = M(ℓ)(k)⊗η(k) for Rℓ z(k)≤ rℓ

The RSMPL system is well-defined, which means that if η
is bounded, then ω will bounded.

Define the set Φℓ of all elements φt =
(ℓt , p1,t , p2,t , . . . , pn,t), t = 1, . . . ,nt , where ℓt ∈ {0, . . . ,L} and

pi,t ∈ {1, . . . ,n} such that there exists an η(k) satisfying

ω j(k) = max
p

(m
(ℓt )
j,p +ηp(k)) = m

(ℓt )
j,p j,t

+ηp j,t
(k) , j = 1, . . . ,n

or equivalently

m
(ℓt )
j,p j,t

+ηp j,t
(k)≥ m

(ℓt )
j,i +ηi(k) for i, j = 1, . . . ,n

Now by collecting all entries for i, j = 1, . . . ,n we obtain that

ω(k) = H(t) η(k)+h(t) (9)

if E(t) η(k)≤ e(t) and Rℓt
z(k)≤ rℓt

where, for i, j = 1, . . . ,n, and for t = 1, . . . ,nt , we have

[H(t)]i, j =

{

1 for j = pi,t

0 otherwise
, [h(t)]i = m

(ℓ)
i,pi,t

[E(t)]i(n−1)+ j,l =











1 for l = j and j 6= pi,t

−1 for l = pi,t and j 6= pi,t

0 otherwise

[e(t)]i(n−1)+ j,l = m
(ℓt )
i,pi,t

−m
(ℓt )
i, j

It is clear that from equation (9) we can derive the matrices

Ai, Bi, Ci, Di, and vectors fi and gi. Note that the polyhedra

are described by the inequalities E(t,ℓ) η(k) ≤ e(t,ℓ) and

Rℓ z(k)≤ rℓ.

The number of polyhedra is less than or equal to N = Lnn.

Definition 10: An MMPS expression f of the variables

x1, . . . , xn is defined by the grammar2

f := xi|α|max( fk, fl)|min( fk, fl)| fk + fl |β fk (10)

with i ∈ {1,2, . . . ,n}, α , β ∈ R, and where fk, fl are again

MMPS expressions. ⋄

2The symbol | stands for OR and the definition is recursive.

Definition 11: Consider systems that can be described by

x(k+1) = fx(x(k),u(k),d(k)) (11)

y(k) = fy(x(k),u(k),d(k)), (12)

where fx, fy are MMPS expressions in terms of the compo-

nents of x(k), u(k), and the auxiliary variables d(k), which

are all real-valued. Such systems will be called MMPS

systems. If in addition, we have a condition of the form

fc(x(k),u(k),d(k))6 c(k) ,

with fc an MMPS expression, we speak about constrained

MMPS systems. ⋄

Proposition 12: Every bounded RSMPL system of type

2 can be written as a constrained max-min-plus-scaling

(MMPS) system provided that the variables x and u are

bounded. ⋄

Note that this Proposition is a direct consequence of the

equivalence between the class of PWA systems and con-

strained MMPS system (see [5]). However we will provide

a direct proof here which transfers RSMPL systems directly

into MMPS systems.

Proof: Consider a bounded RSMPL system of type 2 with

state and output equations (1) and (2) where ℓ(k) = i if z(k)
satisfies Ri z(k) ≤ ri. Define ω , η , and M(ℓ) as (7) and (8).

Then

ω(k) = M(ℓ(k))(k)⊗η(k) for Rℓ(k) z(k)≤ rℓ(k)

so

ωi(k) = max
j

(

m
(ℓ(k))
i, j +η j(k)

)

for Rℓ(k) z(k)≤ rℓ(k)

where [M(ℓ)]i, j = m
(ℓ)
i, j . Introduce the binary variables δi ∈

{0,1}, for all i = 1, . . . ,L such that

[δi = 1]⇔ [Ri z(k)≤ ri] (13)

Now assume that x and u are bounded. Then with ℓ ∈
{1, . . . ,L} and d ∈ [0,1] we find that there exist bounded

sets E and Z such that η ∈ E and z ∈ Z . Let

ρ∗
i = max

z∈Z

Ri z(k)− ri

then according to [2], using the fact that the interiors of the

sets {Ri z(k)≤ ri} are non-overlapping, we can rewrite (13)

as

Ri z(k)− ri ≤ ρ∗
i

(

1−δi(k)
)

(14)

L

∑
i=1

δi(k) = 1 (15)

Note that constraints (14) and (15) are linear constraints.

Define the lower bound

σ∗
min = min

l
min

i
min
η∈E

max
j

(m
(l)
i, j +η j(k))



(note that σ∗
min is bounded because both m

(l)
i, j and η j(k) are

bounded), then the system is described by the following

equations:

ωi(k) = max
l, j

(

ml
i, j +η j(k)+(1−δl(k))σmin

)

Note that this is an MMPS function in the variables η and

δi. Together with the linear constraints (14) and (15) (which

are also MMPS constraints) we have proven that a type 2

RSMPL system, with bounded x and u, can be rewritten as

a constrained MMPS system.

V. EXAMPLE

Consider a type RSMPL system

x(k) = max
(

x(k−1)+1,u(k)+0.2
)

for ℓ(k) = 1

x(k) = max
(

x(k−1)−0.1,u(k)+0.1
)

for ℓ(k) = 2

y(k) = x(k)

with

P(1|1,x(k−1)) = 0

P(2|1,x(k−1)) = 1

P(1|2,x(k−1)) = sat(−x(k−1))

P(2|2,x(k−1)) = sat(1+ x(k−1))

where sat(α) =







0 for α < 0

α for 0 ≤ α ≤ 1

1 for α > 1

.

Define the vector w(k) =
[

ℓ(k−1) x(k−1) u(k)
]T

.

The probability P(ℓ(k)|w(k)) can be written as a piecewise

function:

P(ℓ(k)|w(k)) = αT
i,ℓ(k) w(k)+βi,ℓ(k) ,

if Si,ℓ(k) w(k)≤ si,ℓ(k) , i = 1, . . . ,4

where

i = 1 S1,ℓ(k) =
[

1 0 0
]

s1,ℓ(k) =
[

1.5
]

αT
1,1 =

[

0 0 0
]

β1,1 =0

αT
1,2 =

[

0 0 0
]

β1,2 =1

i = 2 S2,ℓ(k) =

[

−1 0 0

0 −1 0

]

s2,ℓ(k) =

[

−1.5

0

]

αT
2,1 =

[

0 0 0
]

β2,1 =0

αT
2,2 =

[

0 0 0
]

β2,2 =1

i = 3 S3,ℓ(k) =





−1 0 0

0 −1 0

0 1 0



 s3,ℓ(k) =





−1.5

1

0





αT
3,1 =

[

0 −1 0
]

β3,1 =0

αT
3,2 =

[

0 1 0
]

β3,2 =1

i = 4 S4,ℓ(k) =

[

−1 0 0

0 1 0

]

s4,ℓ(k) =

[

−1.5

−1

]

αT
4,1 =

[

0 0 0
]

β4,1 =1

αT
4,2 =

[

0 0 0
]

β4,2 =0

This is a type 1 RSMPL system.

Now we will rewrite this system as a type 2 RSMPL

system. First define

η(0,w(k)) = 0

η(1,w(k)) = αT
i,1 w(k)+βi,1

for Si,1 w(k)≤ si,1 , i = 1, . . . ,4

η(2,w(k)) = 1

Now define a uniformly distributed scalar signal d(k)∈ [0,1],

define z(k) =
[

w(k) d(k)
]T

, and the functions

ξ (1,z(k)) =





−d(k)+0

d(k)−αT
i,1 w(k)−βi,1

Si,1 w(k)− si,1



 ,

ξ (2,z(k)) =





−d(k)+αT
i,1 w(k)+βi,1

d(k)−1

Si,1 w(k)− si,1





for i= 1, . . . ,4. Note that the first entry of ξ (1,z(k)) is always

smaller than zero, and the same holds for the second entry

of ξ (2,z(k)), so we can remove these entries. Now we can

compute the matrices for i = 1, . . . ,4:

R1,i =

[

1 −αT
i,1

0 Si,1

]

r1,i =

[

βi,1

si,1

]

R2,i =

[

−1 αT
i,1

0 Si,2

]

r2,i =

[

−βi,2

si,2

]

which results in

R1,1 =

[

1 0 0 0

0 1 0 0

]

r1,1 =

[

1.5

0

]

R2,1 =

[

1 0 0 0

0 1 0 0

]

r2,1 =

[

1.5

1

]

R1,2 =





−1 0 0 0

0 1 0 0

0 0 0 −1



 r1,2 =





−1.5

0

0





R2,2 =





−1 0 0 0

0 1 0 0

0 0 0 −1



 r2,2 =





−1.5

1

0





R1,3 =









−1 0 0 −1

0 1 0 0

0 0 −1

0 0 0 1









r1,3 =









−1.5

0

1

0









R2,3 =









−1 0 0 1

0 1 0 0

0 0 −1

0 0 0 1









r2,3 =









−1.5

1

1

0









R1,4 =





−1 0 0 0

0 1 0 0

0 0 0 1



 r1,4 =





−1.5

1

−1





R2,4 =





−1 0 0 0

0 1 0 0

0 0 0 1



 r2,4 =





−1.5

0

1







To rewrite this type 2 RSMPL system in a compact form

we have to introduce 8 modes, where we have

x(k) = max
(

x(k−1)+1,u(k)+0.2
)

for κ(k) = 1,2,3,4

x(k) = max
(

x(k−1)−0.1,u(k)+0.1
)

for κ(k) = 5,6,7,8

y(k) = x(k)
(16)

We redefine R̄κ = R̄(i−1)∗4+ j = Ri, j and we define

r̄1 =

[

0

4.5

]

, r̄2 =





0

−4.5

0



 , r̄3 =









0

−4.5

1

0









, r̄4 =





1

−4.5

−1



 ,

r̄5 =

[

1

4.5

]

, r̄6 =





1

−4.5

0



 , r̄7 =









1

−4.5

1

0









, r̄8 =





0

−4.5

1



 ,

and we obtain that the now mode κ(k) = m if

z̄(k)=
[

κ(k−1) xT (k−1) uT (k) vT (k) d(k)
]T

∈ Ω̄m

where

Ω̄m = { z(k) | R̄m z̄(k)≤ r̄m }

Now it is straightforward to derive the PWA system: Note

that

x(k) = x(k−1)+1 if κ(k)< 4.5, x(k−1)+1 ≤ u(k)+0.2

x(k) = u(k)+0.2 if κ(k)< 4.5, x(k−1)+1 < u(k)+0.2

x(k) = x(k−1)−0.1 if κ(k)> 4.5, x(k−1)−0.1 ≤ u(k)+0.1

x(k) = u(k)+0.1 if κ(k)> 4.5, x(k−1)−0.1 < u(k)+0.1

This translates to the following PWA system:

for κ = 1, . . . ,4 :

x(k) = x(k−1)+1 if R̄κ z̄(k)≤ r̄κ , x(k−1)+0.8 ≥ u(k)
x(k) = u(k)+0.2 if R̄κ z̄(k)≤ r̄κ , x(k−1)+0.8 ≤ u(k)

for κ = 5, . . . ,8 :

x(k) = x(k−1)+1 if R̄κ z̄(k)≤ r̄κ , x(k−1)−0.2 ≥ u(k)
x(k) = u(k)+0.1 if R̄κ z̄(k)≤ r̄κ , x(k−1)−0.2 ≤ u(k)

We conclude that this system is a PWA system with 16

polyhedral regions.

Finally we rewrite the system as a constrained MMPS

system. Assume the input is in the bounded set umin ≤ u(k)≤
umax and that the initial state x(0) satisfies xmin ≤ x(0)≤ xmax.

It is easy to derive that in that case x(k), k ≤ 0 will be

bounded:

max
(

xmin−0.1,umin+0.1
)

≤x(k)≤max
(

1,xmax+1,umax+0.2
)

.

We compute

ρ∗
i = max

z̄∈Z

R̄i z̄(k)− r̄i = min(−3.5,xmin −0.1)

and

σ∗
min = min

l
min

i
min
η∈E

max
j

(m
(l)
i, j +η j(k)) = umin +0.1

Introduce the binary variables δi ∈ {0,1}, for all i = 1, . . . ,8.

Now we obtain the following model:

x(k) = max
[(

max(x(k−1)+1,u(k)+0.2)+

(1−δ1−δ2−δ3−δ4)σ
∗
min

)

,
(

max(x(k−1)−0.1,u(k)+0.1)+

(1−δ5−δ6−δ7−δ8)σ
∗
min

)]

for δi(k) ∈ [0,1] and subject to

R̄i z̄(k)≤ r̄i +ρ∗
i (1−δi(k)) for all i = 1, . . . ,8

8

∑
i=1

δi(k) = 1

This is a constrained MMPS system.

VI. DISCUSSION

In randomly switching max-plus-linear (RSMPL) discrete

event systems we can switch between different modes of

operation. The switching between the modes can be both

deterministic and stochastic, and in each mode the discrete

event system is described by a max-plus-linear state space

model with different system matrices for each mode.

In this paper we have revisited the type 1 randomly switching

max-plus-linear (RSMPL) systems, introduced a new type

2 RSMPL system, and showed that these two classes of

RSMPL systems are equivalent.

Furthermore we have proven that every bounded RSMPL

system of type 1 or 2 can be written as a piecewise

affine (PWA) system or a constrained max-min-plus-scaling

(MMPS) system (provided that the variables x and u are

bounded).
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