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Influencing route choice in traffic networks: A model predictive control

approach based on mixed-integer linear programming

M. van den Berg, B. De Schutter, J. Hellendoorn, A. Hegyi

Abstract— Traffic control measures like variable speed limits
or outflow control can be used to influence the route choice
of drivers. In this paper we develop a day-to-day route choice
control method that is based on model predictive control (MPC).
A basic route choice model forms the basis for the controller.
We show that for the given model and for a linear cost function
it is possible to reformulate the MPC optimization problem as a
mixed-integer linear programming (MILP) problem. For MILP
problems efficient branch-and-bound solvers are available that
guarantee to find the global optimum. We also illustrate the
efficiency of the proposed approach for a simple simulation
example involving speed limit control.

I. INTRODUCTION

Route choice takes place when there exist two or more

routes between an origin and a destination. In this case,

drivers select a route based on their preferences. The choices

of the drivers lead to a traffic assignment, which describes

how the vehicles are divided over the network. When drivers

select their route solely based on their own preferences, this

traffic assignment may lead to large traffic flows on narrow

or dangerous roads, to socially undesired situations (e.g., too

many vehicles in residential areas or near primary schools),

or to too large flows near urban areas or nature reserves

causing pollution and noise. Road administrators can try to

prevent these unwanted situations by influencing the route

choice of the drivers. In [1], [2] it has been shown that traffic

control measures that do not directly influence route choice

but that do have an impact on the travel time (such as traffic

signals, variable speed limits, and ramp metering) can be

used for this purpose.

Traffic control methods that incorporate the effect of

control measures on route choice are described in, e.g., [3]–

[5]. In this paper we consider control methods that can be

used for steering the traffic flows in a network to a desired

traffic assignment. This will result in settings for the outflow

capacity of the links, or for the speed limits on these links.

We use model predictive control (MPC) [6], [7] as control

method. As prediction model we use the static route choice

model we have presented in [8]. This model is based on

the assumption that the experienced travel time is the most
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important factor in route choice, which is also argued for in

[9]. Moreover, the model allows for an analytical description

of the behavior of traffic flows in a network. MPC uses

this route choice model combined with an optimization

algorithm to determine the optimal settings for the traffic

control measures. MPC has already been applied previously

for traffic control in, e.g., [10]–[12], where it resulted in non-

linear nonconvex continuous or mixed-integer optimization

problems. In our specific case the whole control problem

can be formulated as a mixed-integer linear programming

(MILP) problem, for which fast solvers are available, which

reduces the required computation time. Furthermore, the

MILP approach also results in a globally optimal solution.

This paper is organized as follows. We first describe the

route choice model and the MPC-based approach for route

choice control in Section II. In Section III we reformulate

the problem as an MILP problem. Next, the proposed control

approach is applied to a simulation example in Section IV.

II. ROUTE CHOICE CONTROL

In this section we briefly recapitulate the day-to-day route

choice model and the corresponding MPC-based route choice

control approach that we have developed in [8].

A. Route choice model

To illustrate our approach we will use the simple two-

route network given in Figure 1 throughout the paper. This

network consists of one origin and one destination that are

connected via two routes. Note however that the proposed

approach can also be extended to more complex networks

with multiple origins, multiple destinations, multiple route

choice locations, and multiple routes.

destination

traffic flow direction

route 1
origin

route 2

Fig. 1. Network with two routes.

1) Network variables: Consider the network of Figure 1.

Each route r (r ∈ {1,2}) can be described by the following

parameters, where d is the counter for the days. The length of

route r is denoted by lr (km), and its capacity is denoted by

Cr (veh/h). The speed limit vr(d) (km/h) gives the maximum

speed that is allowed on route r at day d. This speed limit



will be bounded between a minimum speed limit vmin
r (km/h)

and a maximum speed limit vmax
r (km/h). The outflow limit

Qr(d) (veh/h) gives the number of vehicles per hour that

are allowed to leave the route. The maximum value of the

outflow limit, Qmax
r (veh/h), is equal to or lower than the

actual capacity of the road: Qmax
r 6Cr. The minimum value

Qmin
r (veh/h) can be selected to prevent almost total closure

of the road when outflow control is applied.

We consider one part of the day, e.g., the morning peak.

We denote this period by the time interval [0,T ] and we

assume that the demand Qin(d) (veh/h) in the network is

constant during [0,T ]. The demand is distributed over the

two routes according to the turning rate β (d), which gives

the percentage of the vehicles that select route 1.

An important characteristic of the routes is the “free-flow”

travel time, which describes the time that a vehicle needs to

travel a route when there is no delay due to congestion. The

free-flow travel time at day d along route r is given by:

τ free
r (d) =

lr

vr(d)
. (1)

2) Travel time model: The model of [8] for the mean

experienced travel time assumes that the travel time τr on a

route has two components: the time spent in the queue τ
queue
r

and the free-flow travel time τ free
r :

τr(d) = τqueue
r (d)+ τ free

r (d) .

The time in the queue τ
queue
1 depends on the number of

vehicles in the queue. We assume that the queues are vertical

queues that build up at the end of each route. So during the

period [0,T ] the queue grows as shown in Figure 2.

β (d)Qin(d)> Q1(d)

β (d)Qin(d)6 Q1(d)

τ free
1 (d) T

(β
(d
)Q
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)
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Q
1
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1
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Fig. 2. Evolution of the queue length N on route 1 during the period [0,T ].

Since the number of vehicles leaving the queue per time

unit is at most Q1, the mean time that the vehicles spend in

the queue at the end of route 1 is given by:

τ
queue
1 (d) =

Nmean
1 (d)

Q1(d)

=
(β (d)Qin(d)−Q1(d))(T − τ free

1 (d))

2Q1(d)

if β (d)Qin(d)> Q1(d)

and

τ
queue
1 (d) = 0 if β (d)Qin(d)6 Q1(d) ,

where Nmean
1 (d) is the average number of vehicles in the

queue at the end of route 1. Hence,

τ
queue
1 (d) = max

(

0,
(β (d)Qin(d)−Q1(d))(T − τ free

1 (d))

2Q1(d)

)

,

and thus

τ1(d) = max

(

0,
(β (d)Qin(d)−Q1(d))(T − τ free

1 (d))

2Q1(d)

)

+ τ free
1 (d) . (2)

A similar reasoning for route 2 results in

τ2(d) = max

(

0,
((1−β (d))Qin(d)−Q2(d))(T − τ free

2 (d))

2Q2(d)

)

+ τ free
2 (d) . (3)

3) Route choice model: Route choice models describe the

route choice of drivers at locations where a route must be

selected. The model of [8] updates the turning rates based on

the difference in travel times between the two routes while

also taking into account that the turning rates are bounded

between 0 and 1. This yields

β (d +1) = min
(

1,max(0,β (d)+κ(τ2(d)− τ1(d)))
)

. (4)

Here κ includes the fraction of drivers that change their route

from one day to the next based on the travel time difference.

B. Route choice control using MPC

1) Outflow control and speed limit control: Now two

control inputs can be selected for influencing the route choice

of the drivers with existing control methods: outflow limits

and speed limits. Both inputs influence the travel time of

the drivers, and thus indirectly the route choice. Outflow

control limits the flow that can leave a link. The outflow

can be lowered using, e.g., traffic signals and ramp metering

installations. The control via the speed limits influences the

free-flow travel time on the two routes. Variable message

signs could be used to display the speed limits.

2) MPC for route choice control: Just as in [8] we will

use Model Predictive Control (MPC) [13] to determine the

optimal values for the outflow control limits and speed

control limits. Below we will briefly present this method.

In MPC for route choice control the goal is to determine

the control inputs c that optimize a cost function J over

a given prediction period of Np days ahead, given the

current state of the network, the future demand, and a

model of the system, and subject to operational and other

constraints. This results in a sequence of optimal control

inputs c∗(d),c∗(d + 1), . . . ,c∗(d + Np − 1). To reduce the

computational complexity often a control horizon Nc (Nc <

Np) is introduced and the control sequence is constrained to

vary only for the first Nc days, after which the control inputs

are set to stay constant (i.e., c(d + j) = c(d +Nc − 1) for

j = Nc, . . . ,Np −1).

MPC uses a receding horizon approach, i.e., of the optimal

control signal sequence only the first sample c∗(d) is applied

to the system. Next, at day d +1, the procedure is repeated



given the new state of the system, and a new optimization

is performed for days d + 1 up to d +Np. Of the resulting

control signal again only the first sample is applied, and so

on. This is called the receding horizon approach.

In the context of route choice control typical examples

of cost functions are the total time the vehicles spend in the

network, the total queue length, or the norm of the difference

between the realized flows and the desired flows on the

routes. These cost functions serve either to handle as much

traffic as possible in a short time, or to keep vehicles away

from protected routes (e.g., routes through residential areas

or nature reserves).

The state of the system is in our case given by the mean

travel times, and the mean turning rates for the day. As

(prediction) model we could use the route choice model

of Section II. The control inputs are the outflow limits

and/or the speed limits. Typical constraints are maximum

and minimum values for these limits as well as maximal

travel times or maximal waiting times in the queues.

In [8] the control signal were assumed to be real-valued.

This results in continuous nonlinear nonconvex optimization

problems that could be solved using multi-start local search

methods (like SQP, pattern search, etc.) or (semi-)global

optimization methods like genetic algorithms or simulated

annealing [14]. Note that these approaches in principle only

yield a suboptimal solution as in practice it is not tractable

to find the global optimum of the continuous nonlinear

nonconvex optimization problems that arise in MPC for route

choice control.

In the remainder of this paper we will only allow discrete

values for the control input (in particular for the speed

limits). In the next section we will show that for linear

cost functions this will then result in a mixed-integer linear

programming (MILP) problem, for which efficient solvers

exist that guarantee to find the global optimum.

III. MPC FOR ROUTE CHOICE CONTROL USING

MIXED-INTEGER PROGRAMMING

In this section we show that for linear cost functions the

MPC route choice optimization problem can be recast as an

MILP problem.

A. Rules for creating mixed-integer linear inequalities

To formulate the route choice control problem described

above as an MILP problem, we first have to remove the

nonlinearities from the model. This is done by recasting the

nonlinear equations into linear ones, and by introducing ad-

ditional auxiliary variables. To perform these transformations

we use the following equivalences [15], where δ represents a

binary valued scalar variable, y a real valued scalar variable,

and f a function defined on a bounded set X with upper and

lower bounds M and m for the function values:

P1: [ f (x)6 0]↔ [δ = 1] is true if and only if
{

f (x)6 M(1−δ )
f (x)> ε +(m− ε)δ ,

where ε is a small positive number (typically the

machine precision),

P2: y = δ f (x) is equivalent to














y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )
y > f (x)−M(1−δ ) .

B. Reformulating the MPC route choice control problem

In this section we will consider the case of speed control

with no outflow control. For outflow control without speed

limit control and for combined speed and outflow control a

similar reasoning in combination with Properties P1 and P2

will also result in an MILP problem.

1) Model equations: For simplicity we assume that the

speed limits can only have two values va and vb (note

however that an extension to more than two values is

straightforward). The free-flow travel times corresponding to

these values can be represented by one binary variable δ as

follows. Define (cf. (1))

τ free
r,a =

lr

va

, τ free
r,b =

lr

vb

, and ∆r = τ free
r,b − τ free

r,a .

Then we can select va or vb on route r for day d by

introducing a binary variable δr(d) and setting

τ free
r (d) = τ free

r,a +∆rδr(d) .

Recall that we consider the case of speed control with no

outflow control; so Q1(d) =C1 and Q2(d) =C2 for all d. If

we substitute the above expression for τ free
1 (d) in (2) we get

τ1(d) = max(0,y3(d))+ τ free
1,a +∆1δ1(d) (5)

with

y3(d) = a1β (d)+a2δ1(d)β (d)+a3δ1(d)+a4 (6)

with a1 = 1
2C1

Qin(d)(T − τ free
1,a ), a2 = − 1

2C1
Qin(d)∆1, a3 =

1
2
∆1, and a4 = − 1

2
(T − τ free

1,a ). By introducing an extra vari-

able y1(d) = δ1(d)β (d) and using Property P2 with f (x) =
β (d), m= 0, and M = 1, (6) can be transformed into a system

of linear inequalities. In a similar way τ2(d) can be expressed

as

τ2(d) = max(0,y4(d))+ τ free
2,a +∆2δ2(d) (7)

with y4(d) given by

y4(d) = a5β (d)+a6y2(d)+a7δ2(d)+a8

with a5 = − 1
2C2

Qin(d)(T − τ free
2,a ), a6 = 1

2C2
Qin(d)∆2, a7 =

− 1
2C2

∆2(Qin(d)−C2), and a8 =
1

2C2
(Qin(d)−C2)(T − τ free

2,a ),
and with y2(d) = δ2(d)β (d). Using Property P2 these equa-

tions can also be transformed into a system of linear inequal-

ities.

Now define the auxiliary variables η(d) and γ(d) such

that (cf. (4))

γ(d) = β (d)+κ(τ2(d)− τ1(d)) (8)

η(d) = max(0,γ(d)) . (9)

Then we have

β (d +1) = min(η(d),1) . (10)



Let us now discuss how these equations can be recast as

a system of mixed-integer linear inequalities.

Combining (5), (7), and (8) we get

γ(d) = β (d)−κ max(0,y3(d))+κ max(0,y4(d))

−κ∆1δ1(d)+κ∆2δ2(d)+κ(τ free
2,a − τ free

1,a ) .

Now we define binary variables δ3(d) and δ4(d) such that

δ3(d) = 1 if and only if y3(d) > 0, and δ4(d) = 1 if and

only if y4(d)> 0. Note that using Property P1 these equiva-

lences can be recast as a system of linear inequalities. Now

we have max(0,y3(d)) = δ3(d)y3(d) and max(0,y4(d)) =
δ4(d)y4(d). So after introducing y5(d) = δ3(d)y3(d) and

y6(d) = δ4(d)y4(d) and noting that both these expressions

can be recast as a system of linear inequalities via Property

P2, we get

γ(d) = β (d)−κy5(d)+κy6(d)+b1δ1(d)+b2δ2(d)+b3

(11)

with b1 = −κ∆1, b2 = κ∆2, and b3 = κ(τ free
2,a − τ free

1,a ). Note

that equation (11) is linear.

Now consider (9). If we define the binary variable δ5(d)
such that δ5(d) = 1 if and only if γ(d) > 0 (note that this

equivalence can be recast as a system of linear inequalities

via Property P2), we get η(d) = δ5(d)γ(d), which can in

its turn also be expressed as a system of linear inequalities

using Property P2.

Consider (10) and define the binary variable δ6(d) such

that

δ6(d) = 1 if and only if η(d)≤ 1 .

Note that this equivalence can be recast as a system of linear

inequalities via Property P2. It is easy to verify that now we

have

β (d +1) = min(η(d),1) = δ6(d)η(d)+1−δ6(d) ,

which after introducing the auxiliary variable z(d) =
δ6(d)η(d) (this equivalence can also be recast as a system

of linear inequalities via Property P1), results in the linear

equation

β (d +1) = z(d)+1−δ6(d) .

If we now collect all variables for day d in one vector

w(d) =
[

β (d) δ1(d) . . . δ6(d) y1(d) . . . y6(d) γ(d) η(d)

z(d)
]T

, we can express β (d + 1) as an affine function of

w(d): β (d + 1) = aw(d) + b for a properly defined vector

a and scalar b, where w(d) satisfies a system of linear

equations Cw(d) = e, Fw(d)6 g, which corresponds to the

various linear equations and constraints introduced above.

C. Cost function

To be able to transform the route choice control problem

into an MILP problem, the cost function should be linear or

piecewise affine. Possible goals of the controller that allow

for such cost functions are reaching a desired flow on one

of the routes, or minimizing the flow on a route (with as

constraint, e.g., a maximum allowed travel time on the other

route — see also Section III-D). The MPC cost function for

a minimum flow on route 1 is given by:

J(d) = min

Np

∑
j=1

β (d + j)Qin(d + j) .

Let us define

F̃(d) =







β (d +1)Qin(d +1)
...

β (d +Np)Qin(d +Np)






,

F̃desired(d) =







qdesired
1 (d +1)

...

qdesired
1 (d +Np)






,

where qdesired
1 (d + j) denotes the desired flow on route 1 at

day d+ j. The MPC cost function corresponding to reaching

a desired flow on route 1 is then given by:

J(d) = min‖F̃desired(d)− F̃(d)‖

using either the 1-norm or the ∞-norm. When a 1-norm

is used, the problem can transformed into a linear one as

follows:

min‖F̃desired(d)− F̃(d)‖1

= min

Np

∑
j=1

|qdesired
1 (d + j)−β (d+ j)Qin(d + j)|

= min

Np

∑
j=1

q(d + j)

s.t. q(d + j)> qdesired
1 (d + j)−β (d+ j)Qin(d + j)

q(d + j)>−qdesired
1 (d + j)+β (d+ j)Qin(d + j)

for j = 1, . . . ,Np.

It is easy to verify that for the optimal solution of the latter

problem we have

q∗(d + j) = max
(

qdesired
1 (d + j)−β ∗(d + j)Qin(d + j),

−qdesired
1 (d + j)+β ∗(d + j)Qin(d + j)

)

= |qdesired
1 (d + j)−β ∗(d + j)Qin(d + j)|

for all j.

Similarly, for the ∞-norm we have

min‖F̃desired(d)− F̃(d)‖∞

min max
j=1,...,Np

|qdesired
1 (d + j)−β (d+ j)Qin(d + j)|

= min q

s.t. q > qdesired
1 (d + j)−β (d+ j)Qin(d + j)

q >−qdesired
1 (d + j)+β (d+ j)Qin(d + j)

for j = 1, . . . ,Np,

which is also a linear programming problem.



D. Constraints

It might be useful to add a constraint on the travel time

on the second route, because minimizing, e.g., the flow on

route 1 results in a higher flow and thus a longer travel time

on route 2:

τ2(d + j)6 τmax
2 (d + j) for j = 0, . . . ,Np −1 , (12)

where τmax
2 (d+ j) denotes the maximal travel time on route

2 on day d + j. Note that τ2(d + j) will not be a variable

in the optimization problem. However, using (7) we can

easily eliminate it from the constraint (12). This yields the

equivalent system of constraints

τ free
2,a +∆2δ2(d + j)6 τmax

2 (d + j)

y4(d + j)+ τ free
2,a +∆2δ2(d + j)≤ τmax

2 (d + j)

for j = 0, . . . ,Np − 1. Note that these constraints are also

linear.

An alternative constraint is to have a minimal or maximal

flow on a given route. For route 2 this would result in

Fmin
2 (d + j)6 (1−β (d + j))Qin(d + j)6 Fmax

2 (d + j) ,

for j = 1, . . . ,Np, where Fmin
2 (d+ j) and Fmax

2 (d+ j) denote

respectively the minimal and maximal allowed flow on route

2 on day d + j. This constraint is also linear.

E. MILP

If we collect the linear objective function and all the linear

constraints introduced above into one big problem, we get

an MILP problem in the variables w(d),w(d+1), . . . ,w(d+
Np − 1),β (d + Np) and q(d + 1),q(d + 2), . . . ,q(d + Np)
(when the 1-norm is used) or q (when the ∞-norm is used).

Although MILP problems are in general NP-hard, recently

several efficient branch-and-bound MILP solvers [16] have

become available. Moreover, there exist several commer-

cial and free solvers for MILP problems such as, e.g.,

CPLEX, Xpress-MP, GLPK, or lp solve (see [17], [18] for

an overview). In principle, — i.e., when the algorithm is not

terminated prematurely due to time or memory limitations,

— these algorithms guarantee to find the global optimum.

This global optimization feature is not present in most

of the other mixed-integer optimization methods that are

usually used for MPC (such as simulated annealing, genetic

programming, tabu search, etc.).

IV. SIMULATION EXAMPLE

In this section we illustrate the possibilities of the route

choice control method with a simulation example. As net-

work we have selected the simple network given in Figure 1

with speed limit control. The parameters are selected as

follows: κ = 0.25, C1 =C2 = 2000, l1 = 4, l2 = 6, va = 40,

vb = 100, and T = 1. This means that both routes have the

same capacity, but that route 1 has a lower free-flow travel

time because it is shorter. The total demand is Qin(d) =
3000 veh/h for all days. The initial turning rate β (0) is 0.4.

As cost function we have taken the 1-norm, as described

in Section III-C. We have simulated a period of 20 days,
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Fig. 3. Flows and speeds limits with an MILP-based MPC controller.

where the prediction and control horizons of the MPC-based

controllers are set to 8 days. For the sake of simplicity and to

eliminate possible influences of model mismatches, we have

used the same model for the simulation and for the prediction

by the MPC controller. We have set the desired flow on route

1 to 1000 veh/h, which can, e.g., be useful when the route

crosses a residential area. This lower desired flow on route

1 can lead to a large flow on route 2, which will result in

congestion on this route. To prevent this congestion, we have

put a limit of 2000 veh/h on the flow on route 2.

First, we have used the MILP formulation within the

controller. The results are shown in Figure 3. The top plot

shows the flow on route 1, which starts at 1200 veh/h, and

then decreases until it starts oscillating around 1020 veh/h.

These oscillations are caused by the interplay between the

bound of 2000 veh/h on the flow on route 2 (see Figure 3

(middle)), and the repeated switching between the maximum

and minimum values of the speed limit on route 1 (see Figure

3 (bottom)).

Recall that we have introduced the MILP formulation

because it allows for finding the global optimum, and because

it is fast. To illustrate these properties we compare the

MILP formulation with three other optimization methods:

a multi-run genetic algorithm [19], multi-start simulated

annealing [20], and brute-force enumeration. As MILP solver

we have used CPLEX, implemented through the cplex

interface function of the Matlab Tomlab toolbox [21]. For



method cost (veh/h) CPU time (s)

MILP 850.0 2.23
genetic algorithm 850.0 138.55
simulated annealing 850.0 171.43
enumeration 850.0 296.55

TABLE I

COSTS AND COMPUTATION TIMES FOR DIFFERENT OPTIMIZATION

ALGORITHMS.

method cost (veh/h)

MILP 850.0
genetic algorithm 1709.0
simulated annealing 1080.8

TABLE II

COSTS FOR A MAXIMAL COMPUTATION TIME OF 2.23 S.

the genetic algorithm and simulated annealing method we

have used the ga and simulannealbnd functions of

the Matlab Genetic Algorithm and Direct Search Toolbox

[22] respectively. For all these optimization functions we

have specified that the values of the optimization variables

should be integers. For cplex the default settings were

used; for ga and simulannealbnd we have implemented

the constraint of the flow on route 2 through a penalty

term and tuned the settings to get a near-optimal solution

in the shortest possible time. The resulting costs J and the

required computation times (on a 3 GHz Intel Pentium 4

processor) for the complete closed-loop simulation are given

in Table I. Clearly, the MILP approach outperforms the other

approaches.

Next, we have re-run the genetic algorithm and the sim-

ulated annealing approach giving each of them a maximal

CPU time of 2.23 s (i.e., the CPU time required by the MILP

algorithm). The results of this experiment are given in Table

II. These results once again show that the MILP approach

outperforms the other approaches.

V. CONCLUSIONS

We have considered a method based on model predictive

control (MPC) to influence day-to-day route choice in traffic

networks using existing traffic control measures like outflow

control and variable speed limits. In general, this results

in nonlinear nonconvex optimization problems. However,

we have shown that for a linear cost function the MPC

optimization problem can be recast as a mixed-integer linear

programming problem for which efficient solvers exist that

guaranteedly converge to a global optimum.

The proposed approach has been illustrated by a simula-

tion example with speed limit control where the goal of the

controller was to obtain a desired flow on one of the routes.

The developed MILP algorithm has been compared with

some other available optimization approaches. For the case

study the MILP algorithm has shown to be the fastest, and

in addition it always returns the globally optimal solution.
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