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AHybridSteepestDescentMethod for

ConstrainedConvexOptimization

Mathieu Gerard 1,∗, Bart De Schutter 2, Michel Verhaegen 1

Delft University of Technology

Abstract

This paper describes a hybrid steepest descent method to decrease over time any given convex cost function while keeping the
optimization variables into any given convex set. The method takes advantage of properties of hybrid systems to avoid the
computation of projections or of a dual optimum. The convergence to a global optimum is analyzed using Lyapunov stability
arguments. A discretized implementation and simulation results are presented and analyzed. This method is of practical
interest to integrate real-time convex optimization into embedded controllers thanks to its implementation as a dynamical
system, its simplicity, and its low computation cost.
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1 Introduction

Optimization problems play a role of increasing impor-
tance in many engineering domains, and specially in con-
trol theory. While some design procedures require find-
ing the optimum of a complex problem only once, other
real-time control techniques want to track the optimum
of a time-varying cost function with time-varying con-
straints. Some applications based on real-time optimiza-
tion are the following:

• Model Predictive Control [15], [10]. The cost func-
tion measures the error between the predicted out-
puts of the controlled plant and the desired outputs,
over a prediction horizon. The desired outputs can be
changed in real-time, for example by a human opera-
tor, which makes the optimization problem time vary-
ing. The variables to be continuously optimized are
the future control inputs to the plant over a control
horizon.

• Control Allocation [4]. Here the task is to optimally
distribute some desired control input to a set of ac-
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tuators, based on actuator cost and constraints. The
changing character of the generic control input makes
the problem time-varying.

• Lyapunov-based control. Stabilization is per-
formed by making a Lyapunov function or an objec-
tive function to decrease over time down to a mini-
mum. A good summary of such methods applied to
the field of motion coordination can be found in [16].

• Model Reference Adaptive Control [19], [17],
[12]. The objective is to adapt the controller param-
eters so that the controlled plant behaves like the
reference one. The time-varying cost function is com-
puted from the output error between the controlled
and the reference plants.

In the literature, one can distinguish 3 main approaches
to deal with these problems:

• Repeated Optimization [15] where the new opti-
mization problem is solved at each time step;

• Precomputed Optimization [1] where all the pos-
sible problems are solved off-line and stored in a look-
up table, which can become very large;

• Update Laws [19] where the optimization variables
are taken as states of a dynamical system and are given
a certain dynamics.

In the field of optimization, many efficient techniques
exist to solve constrained convex optimization problems
[5]. They are designed to output, after several iterations,
an accurate value of the optimum. Therefore they are
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very well suited for off-line optimization, where a prob-
lem should be solved accurately once. However, the iter-
ative character and the complexity of the algorithm do
not always make it suitable for on-line implementation.
This is probably why those techniques are not often, and
very cautiously, integrated into embedded controllers.

On the other hand, update laws are very easy to im-
plement and require very few computation power. Since
many years, research on this topic has been going on
within the field of adaptive control [19], [17], [12]. For
example, one interesting method to adapt the parame-
ters on-line in Model Reference Adaptive Control is to
use a gradient descent method for a cost function defined
as the square of the output error between the controlled
real plant and the reference. This technique works well
in the unconstrained case.

However, when it comes to adding constraints, solutions
in the control field are much more limited. One possible
method found in [17] and [12] is the gradient method
with projection. The idea is to project the gradient on
the active constraints when the state is on the boundary
of the feasible set. In that way, the descent direction is
always such that the state stays in the feasible set. This
method works in continuous time but the discrete-time
implementation is much more intricate, specially in the
case of nonlinear constraints. Moreover, the way to com-
pute the projection is not obvious and rather complex.
Therefore it is only worked out and used for very simple
cases.

In case of discrete-time implementation, which is always
the case when using digital controllers, the only cur-
rently available method, proposed in [12], uses scaling to
project back any new value of the state into the feasible
set if necessary. However, the idea is worked out only in
case of a very simple feasible set (a ball centered at the
origin) and no proof of convergence is given.

This paper bridges those two worlds of control and op-
timization by developing an update law to deal with the
“general” case of a convex cost function and convex con-
straints while enabling easy integration into traditional
controllers. Moreover, the method is simple, which al-
lows good insight, has low computational cost and is
easily discretizable for discrete-time implementation.

The proposed technique takes the form of a traditional
ordinary differential equation

ẋ = f(x)

In [6], they are designed to sort lists and to diagonalize
matrices. References [13] and [3] present plenty of exam-
ples where methods coming from the control area can be
used to synthesize and analyze numerical algorithms. In
this paper, the vector field f will be designed to solve

constrained convex optimization problems. If the opti-
mization problem is time-varying, f can obviously be
expected to also depend on time. However, the rest of
the paper will focus on an invariant problem for simplic-
ity. The formal requirements are described in Section 2.
The proposed system is described and analyzed in Sec-
tion 3. Section 4 will show that the technique can still be
used after a simple discretization. Finally a simulation
example is presented in Section 5.

2 Problem formulation

Let us consider the convex optimization problem

min
x

q(x) (1)

subject to g(x) ≤ 0

with x ∈ ℜn, q : ℜn → ℜ a differentiable convex function
and g : ℜn → ℜm such that each gi is a differentiable
convex function for i = 1, ..,m. The constraint g(x) ≤ 0
defines a convex set that we will call the feasible set,
for consistency with the optimization terminology. Its
complement is called the infeasible set. The two following
assumptions are made:

Assumption 1 The feasible set is not empty, i.e. ∃xf

s.t. g(xf ) ≤ 0.

The optimal value of the cost function in the feasible set
is then denoted q∗, i.e. q∗ = minx{q(x)|g(x) ≤ 0}

Assumption 2 q∗ is finite

The objective is to find a vector function f : ℜn → ℜn

such that the dynamical system

ẋ(t) = f(x(t)) (2)

has the following properties:

• for x(t̄) outside the feasible set at some time t̄, the
trajectory x(t) enters into the feasible set, i.e. ∃tf > t̄
s.t. g(x(tf)) ≤ 0.

• the trajectory x(t) remains in the feasible set as soon
as x(tf) is in the set, i.e. g(x(t)) ≤ 0 ∀t > tf s.t.
g(x(tf)) ≤ 0,

• for x(tf) in the feasible set, the trajectory x(t) de-
creases the cost function q(x(t)) at all time until
q(x(t)) = q∗, i.e. q(x(t1)) > q(x(t2)) ∀(t1, t2) with
tf ≤ t1 < t2 s.t. q(x(t1)) > q∗, and limt→∞ q(x(t)) =
q∗.

3 Hybrid steepest descent solution

One efficient way to decrease an unconstrained cost func-
tion is to use a gradient descent method, as used tra-
ditionally in adaptive control [17]. Therefore the basis
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of this method is similar. It can also be noted that the
gradient of a function is not its only descent direction.
Other directions have been proposed in the literature,
like Newton’s direction [5]. The investigation of alterna-
tive directions to improve the convergence while limiting
the increase of computation complexity is left for future
work.

The original idea of the current paper is based on the
way the constraints are considered. Because of the com-
putational complexity, a direct projection of the gradient
on the constraints is discarded. But on the other hand,
each constraint is seen as a kind of barrier. More pre-
cisely, each constraint which would not be satisfied at a
certain time instant will push the trajectory toward the
feasible set. In that way, the trajectory will never leave
the feasible set. Furthermore, if x(t) is on the bound-
ary of the feasible set, it will be pushed alternatively by
both the gradient and the constraint. If they are pushing
in opposite directions, x(t) will naturally slide along the
border and the projection will appear indirectly. Com-
pared to interior point methods, this technique has the
advantage to have descent directions defined outside the
feasible set, which can be useful in case of time-varying
constraints.

The proposed hybrid feedback law is therefore:

f(x) =

{

−∇q(x) if gj(x) ≤ 0 ∀j

−
∑

i∈L(x) ∇gi(x) if ∃j : gj(x) > 0
(3)

with L(x) = {l : gl(x) ≥ 0}.

The rest of this section is dedicated to the analysis of the
behavior of this system using hybrid systems techniques
and Lyapunov arguments.

3.1 Filippov solutions and sliding modes

The vector field f(x) is measurable and essentially lo-
cally bounded but discontinuous. Therefore the study
of the solution of the vector differential equation ẋ(t) =
f(x(t)) requires the use of a particular solution concept.
We make use of the Filippov solution concept [9], [18]
recalled in the following definition:

Definition (Filippov) A vector function x(.) is called a
solution of (2) on [t1, t2] if x(.) is absolutely continuous
on [t1, t2] and for almost all t ∈ [t1, t2]: ẋ ∈ K[f ](x),
where K[f ](x) is the convex hull of the limits of f(y)
for y → x while y stays out of a set of zero Lebesgue
measure where f is not defined [9], [18].

At a point x around which f(x) is continuous, K[f ](x)
reduces to f(x). However, on a switching surface,
K[f ](x) will contain a set of possible values for ẋ.

So, at all time, ẋ has the following form:

ẋ = −γ0(x)∇q(x)−

m
∑

i=1

γi(x)∇gi(x) (4)

for some γj(x) ≥ 0, j ∈ {0, ...,m}. Depending the situa-
tion, the values of the γj(x) will be different:

• for x strictly in the feasible set, γ0 = 1 and γi = 0 ∀i,
• for x in the infeasible set, γj = 1 ∀j ∈ L(x) and 0
otherwise (so γ0 = 0),

• for x on a boundary, the values of the γj will depend
on a possible sliding motion as defined by the Filippov
solution concept.

Following the Filippov solution concept, for x on the
switching surface between the feasible and infeasible
sets, either a sliding motion can take place, i.e. a motion
along the switching surface, or a motion toward one
of the sets [9]. Since the −∇gi(x) are always pointing
toward the feasible region, a sliding mode will appear
only if −∇q(x) is pointing toward the infeasible region.
In that case, the sliding motion will require γ0(x) > 0
in (4). In case there is no sliding motion, then due to
(3), we have f(x) = −∇q(x) and γ0(x) = 1 in (4). In
conclusion, γ0(x) > 0 on the boundary between the
feasible and infeasible sets.

3.2 Stationary points of the update law (2)-(3)

The most interesting property of the update law (2)-(3)
is that the globally stable equilibria of the dynamical
system precisely coincide with the optimal points of the
constrained optimization problem. First it will be shown
that the stationary points of the systems are optimal,
and vice versa. The stability of those points is proved in
the next subsection.

Definition [9] A point x = p is called stationary if it is
a trajectory, that is, if x(t) ≡ p is a solution of (2).

Following the definition, it can be concluded that a point
p is stationary if and only if 0 ∈ K[f ](p), [9]. Further, a
point will be called an equilibrium if it is stationary and
stable.

Theorem 1 below states that, if the convex optimization
problem is feasible, the stationary points lie in the feasi-
ble set. The “optimality” of the stationary points is con-
sidered in Theorem 2. Further, the next section demon-
strates the asymptotic stability.

Theorem 1 If the functions gi(x) : ℜ
n → ℜ are convex

(i = 1, ...,m) and if there exists an xf such that gi(xf) ≤
0 ∀i ∈ {1, ...,m} then

∑

i∈L

∇gi(x̄) 6= 0
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for any subset L of {1, ...,m} and any x̄ such that gi(x̄) >
0 for some i ∈ L.

Proof Let us define T gi
x̄ (x) the tangent hyperplane to the

function gi at x̄:

T
gi
x̄ (x) = ∇gTi (x̄) (x− x̄)+ gi(x̄)

∆
= Gi(x̄)x−hi(x̄) (5)

where Gi(x̄) = ∇gTi (x̄) and hi(x̄) = ∇gTi (x̄)x̄ − gi(x̄).
Due to the convexity of gi, we know that

gi(x) ≥ T
gi
x̄ (x) ∀x̄, ∀x (6)

The proof is done by contradiction. Assume there exist a
point x̄ and a set L such that

{

gi(x̄) = Gi(x̄)x̄− hi(x̄) > 0 ∀i ∈ L
∑

i∈L Gi(x̄) = 0
(7)

This directly leads to

0 =
∑

i∈L

Gi(x̄)x̄ >
∑

i∈L

hi(x̄) (8)

Furthermore, by the hypothesis of the theorem, there ex-
ists an xf such that gi(xf) ≤ 0 ∀i ∈ L and therefore by
(5) and (6)

0 ≥
∑

i∈L

gi(xf) ≥
∑

i∈L

(Gi(x̄)xf − hi(x̄)) = −
∑

i∈L

hi(x̄)

(9)

Equations (8) and (9) clearly lead to a contradiction. It
can therefore be concluded that a combination (x̄, L) does
not exist , which proves the theorem.

Using this result, the “optimality” of the stationary
points can be assessed.

Theorem 2 If (1) is feasible then a point p is a station-
ary point of (2)-(3) if and only if it is an optimal point
of (1).

Proof Due to Theorem 1, it can be concluded that f(x)
is always different from 0 for x in the infeasible set and
therefore the stationary points lie in the feasible set.

For any feasible x, the dynamics takes the form of equa-
tion (4) with γ0(x) > 0. If there exists a stationary point
p such that ẋ(p) = 0, and by defining

λi =
γi(p)

γ0(p)
(10)

it is easy to check that the following set of equations is
satisfied:

gi(p) ≤ 0 ∀i

λi ≥ 0 ∀i

λigi(p) = 0 ∀i

∇q(p) +
∑m

i=1 λi∇gi(p) = 0

These equations are the well-known Karush-Kuhn-
Tucker (KKT) conditions, which prove that the station-
ary point p is an optimal solution of the convex problem
(1) while the λ’s are the Lagrange multipliers [5] [2].

Moreover, if p is optimal, it satisfies the KKT conditions.
The Lagrange multipliers λ will define a suitable dynam-
ics of the form (4), which belongs to K[f ](p). Therefore,
0 belongs to K[f ](p) and, following the definition, p is a
stationary point.

By Assumptions 1 and 2, there always exists at least one
such stationary point p. Furthermore, q(p) = q∗

3.3 Asymptotic stability

Finally, it can be shown that (2)-(3) is asymptotically
stable and converges toward one of the stationary points
found above. In view of the structure of (3), we propose
the following Lyapunov function:

V (x) = max(q(x), q∗)− q∗ + β

m
∑

i=1

max(gi(x), 0) (11)

with β a strictly positive parameter.

It is obvious that this Lyapunov function is strictly
positive everywhere except at stationary points where
V (p) = 0:

• in the infeasible set, we have V (x) > 0 since at least
one gi(x) > 0

• in the feasible set (or at the boundary), we have
V (x) > 0 since q(x) > q∗, except at the stationary
points where q(x) = q∗

Unfortunately, this Lyapunov function is not differen-
tiable everywhere. To handle this case, the theory devel-
oped in [18] will be used. The main stability theorem is
recalled below. But first, to go more smoothly through
the technicalities, let us recall some definitions.

Definition [11] A function f(x) is said to be essen-
tially bounded on X if the function is unbounded only
on a set of measure zero, i.e. µ{x ∈ X : |f(x)| > a} =
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0 for some real number a ≥ 0 where µ is the Lebesgue
measure.

Definition [7] A function V (x) is said to be regular
when the usual directional derivative exists in any direc-
tion. Examples of regular functions include smooth func-
tions, convex Lipschitz functions, and functions that can
be written as the pointwise maximum of a set of smooth
functions.

Therefore it can be concluded that V (x) is regular.

Definition [14] A continuous function α : [0, a) →
[0,∞) is said to belong to class K if it is strictly increas-
ing and α(0) = 0.

Definition [7] The Clarke’s generalized gradient ∂V (x)
of a locally Lipschitz function V (x) is the convex hull
of the limits of the gradients of the function around the
points where the gradient of V is not defined.

∂V (x) = c̄o{ lim
y→x,y/∈ΩV

∇V (y)} (12)

for ΩV a set of measure zero where the gradient of V is
not defined.

Definition [18] The set ˙̃
V (x), which is proved in [18]

to contain d
dtV (x(t)), when this last quantity exists, is

defined as
˙̃
V (x)

∆
=

⋂

ξ∈∂V (x)

ξTK[f ](x) (13)

In the smooth case, where all the functions involved are

differentiable, ˙̃
V (x) reduces to the time derivative of the

function V (x(t)): ˙̃
V (x) = ∇V T ẋ.

Definition A set S is said to be negative if all the ele-
ments of the set are negative: S < 0 ⇔ s < 0 ∀s ∈ S

Theorem 3 [18] Let ẋ = f(x) be essentially locally
bounded in a region Q ⊃ {x ∈ ℜn| ‖x− p‖ < r} for
some real number r and 0 ∈ K[f ](p). Also let V : ℜn →
ℜ be a regular function satisfying V (p) = 0 and 0 <
V1(‖x− p‖) ≤ V (x) ≤ V2(‖x− p‖) for x 6= p in Q for
some V1, V2 ∈ class K. Then

(1) ˙̃
V (x) ≤ 0 in Q implies that x(t) ≡ p is a uniform
stable function.

(2) If in addition, there exists a class K function w(.)

in Q with the property ˙̃
V (x) ≤ −w(x) < 0 for x 6= p

then the solution x(t) ≡ p is uniformly asymptoti-
cally stable.

Now Theorem 3 is used to prove the stability of (2)-(3).

Theorem 4 The system defined by (2)-(3) is uniformly
asymptotically stable if it has one unique finite stationary
point.

Proof The vector field f (3) satisfies the requirements of
Theorem 3 for any set Q of the form {x ∈ ℜn| ‖x− p‖ <
r} with a finite r and 0 ∈ K[f ](p). Moreover, the Lya-
punov function V (11) is continuous, since it is the sum
of continuous functions; regular and convex, since it can
be written as the pointwise maximum of a set of smooth
convex functions; and positive. Then due to the convex-
ity of the functions and the unique finite stationary point
p such that V (p) = 0, V can be bounded from below by
the function V1(||x − p||) with V1 of class K. With the
same arguments, V can also be bounded from above by a
function V2(||x− p||) with V2 of class K.

The stability conclusion coming from Theorem 3 now
depends on the values of the generalized time derivative
of V . The 3 main regions are first considered before going
to a more general case including the boundaries.

• For x in the feasible set we have: V (x) = q(x) − q∗,
∇V = ∇q, ẋ = −∇q and therefore

˙̃
V (x) = −∇q(x)T∇q(x) ≤ 0

which is always negative as long as ∇q(x) 6= 0, and
this can only happen at the stationary point. Moreover,
as we move away from the optimal point in the feasi-
ble set, the norm of ∇q(x) cannot decrease, because of

the convexity of q(x), and therefore ˙̃
V (x) cannot in-

crease. This will be important when showing that ˙̃
V (x)

can be bounded from below and from above by class K
functions.

• For x in the infeasible set for q(x) < q∗ we
have: V (x) = β

∑

i∈L gi(x), ∇V =
∑

i∈L ∇gi(x),
ẋ = −

∑

i∈L ∇gi(x) and therefore

˙̃
V (x) = −β

∥

∥

∥

∥

∥

∑

i∈L

∇gi(x)

∥

∥

∥

∥

∥

2

< 0

which is always strictly negative and never increasing
as we move away from the stationary point by the same
convexity arguments as before.

• For x in the infeasible set for q(x) ≥ q∗ we
have: V (x) = q(x) − q∗ + β

∑

i∈L gi(x), ∇V =
∇q+

∑

i∈L ∇gi(x), ẋ = −
∑

i∈L ∇gi(x) and therefore

˙̃
V (x) = −∇q(x)T

(

∑

i∈L

∇gi(x)

)

−β

∥

∥

∥

∥

∥

∑

i∈L

∇gi(x)

∥

∥

∥

∥

∥

2

< 0

Since
∑

i∈L ∇gi(x) 6= 0 (see Theorem 1), it is always

possible to find a β large enough such that ˙̃
V (x) is
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strictly negative. Moreover, again thanks to convex-
ity, the norm of ∇gi(x) cannot decrease as we move
away from the stationary point in the infeasible set.

Therefore, a large enough β can also render ˙̃
V (x) non-

increasing. The interpretation of β is here to create a
large enough barrier such that the constraints domi-
nate the cost function in the infeasible set.

• In the general case, ˙̃
V (x) is not anymore a number but

a set of values for each x. To show that ˙̃
V (x) < 0, the

fact that a subset of a negative set is also a negative
set will be used twice.
Since K[f ](x) is a subset of the “headless” cone

X̄ = {−ϕ0∇q(x)−
∑

i∈L(x)

ϕi∇gi(x)|ϕj ≥ 0,
∑

j

ϕj > 0}

and since ∂V contains

V̄ = {∇q(x) + β
∑

i∈L(x)

γi∇gi(x)|γj ≥ 0,
∑

j

γj ≤ 1}

˙̃
V (x) is included in the set W̄ = {

⋂

ξ∈V̄ ξT X̄}. So if

W̄ is negative, then ˙̃
V is negative as well.

IfK[f ](x) does not contain 0, i.e. if x is not the station-
ary point, then 0 is not in the convex “headless” cone
X̄ neither and the entire set is situated in a half-space
defined by the separating hyperplane passing through
0 and with normal vector v. Such hyperplane is not
unique and therefore a normal vector v can be chosen
such that v belongs to X̄ with ϕ0 > 0 and

∑

j ϕj = 1.

Then it is obvious that the vector− 1
ϕ0

v belongs to V̄ for

β ≥ 1
ϕ0

. Therefore, there exists a vector ξ = − 1
ϕ0

v be-

longing to V̄ such that ξT X̄ < 0, which implies W̄ < 0

and finally ˙̃
V (x) < 0. In case K[f ](p) contains zero,

the stationary point is reached and the value of the
Lyapunov function will remain zero.

Finally, Theorem 3 holds which proves the theorem.

In the case where the system (2)-(3) has many station-
ary points (for a convex optimization problem they will
represent a convex set : a sublevel set of a convex func-
tion [5]), the equivalent of LaSalle’s theorem for non-
smooth systems presented in [18] can be used to show
that the system (2)-(3) will converge to a point in the

largest invariant set of {x|0 ∈ ˙̃
V (x)}, which in our case

is the complete set of optimal points.

4 Discretization

Because of the sliding mode, i.e. the infinite number of
switches, the dynamical system cannot be simulated di-
rectly. For practical implementation, it is a good idea to

sample the system at a given sampling frequency [20].
In that way, the computation can easily be scheduled on
time-driven microcontrollers and the number of switches
is limited to one every period.

Obviously, because of the sampling, the accuracy of the
system is going to be reduced. Two main drawbacks can
be foreseen, whatever the sampling technique used:

• during a sliding mode, the trajectory will not stay
perfectly on the boundary but will meander slightly
around it. The amplitudes of the oscillations will de-
pend on the sampling period and on the norms of the
gradients ∇q(x) and ∇gi(x).

• the trajectory will not precisely converge toward the
precise optimal point but will oscillate around it.

In this paper, the sampling is done by approximating the
derivative by a forward difference, i.e. Euler’s method.
For a sampling time ∆t, the difference equation is given
by

xk+1 = xk + f(xk)∆t (14)

Other methods exist and will be investigated in future
research.

Further, in order to reduce oscillations during the sliding
mode, smooth transitions can be implemented between
the feasible and the infeasible set [8]. In practice, the gra-
dient of the constraints are weighted based on the value
of the constraint via a smoothened step s, for example:

s(g(x)) =
1

π
atan(

g(x)

ǫ
) + 0.5 (15)

where ǫ is a tuning parameter which should be small.
Then the gradient of the cost function is weighted by a
complementary function. Finally, the smooth version of
f is given by

fs = −

(

1−
1

m

m
∑

i=1

s(gi(x))

)

∇q(x)−

m
∑

i=1

s(gi(x))∇gi(x)

(16)

5 A simulation example

To illustrate the essence of the developed method, we
consider a simple convex optimization problem in 2 di-
mensions. The cost function and one of the constraints
are chosen to be linear while the second constraint is
taken nonlinear, although convex.

Let us consider the following optimization problem for

x =
(

x1 x2

)T

:
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Figure 1. Simulation with sampling time ∆t = 0.01. The
oscillations in the sliding mode are not visible and the tra-
jectory converges toward the optimal point. Just after t = 3
the trajectory reaches the feasible set; after t = 11 the tra-
jectory starts sliding along the nonlinear constraint; and at
t = 40 the optimal point is reached.

min
x

−x1 (17)

subject to
(x1 − 10)2

36
+

(x2 − 10)2

81
− 1 ≤ 0

10

8
x1 + x2 − 28 ≤ 0

We have:

∇q(x) =
(

−1 0
)T

(18)

∇g1(x) =
(

1
18 (x1 − 10) 2

81 (x2 − 10)
)T

(19)

∇g2(x) =
(

10
8 1

)T

(20)
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Figure 2. Simulation with sampling time ∆t = 0.5. The oscil-
lations in the sliding mode are now visible but the trajectory
still evolves in the right direction until oscillating around the
optimal point.

Figure 1 presents the results of the simulation for a
small sampling time ∆t = 0.01 and initial condition
x0 = (0 0)T . While x is outside the feasible set (until
t = 3), the trajectory converges toward it. Then the gra-
dient of the cost function is followed until reaching a con-
straint at t = 11. Afterwards, the trajectory slides along
the constraint to the optimal point, which is reached at
t = 40. Thanks to the small sampling time, the oscil-
lations in the sliding mode are hardly visible. It can be
checked that the Lyapunov function (with β = 3) al-
ways decreases over time. Note that on the trajectory
picture, the dashed curves represent the zero level-sets
of the constraints and therefore the interior of the bold
dashed curve is the feasible set.

Figure 2 presents the same results for a larger sampling
time ∆t = 0.5. Here the oscillations are very large but
the trajectory is still evolving in the right direction.
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Figure 3. Simulation with sampling time ∆t = 0.5 and
smooth transitions. The oscillations in the sliding mode are
completely removed.

In order to reduce the oscillations induced by the slid-
ing mode, smooth transitions are implemented between
the feasible and infeasible sets. The results are shown on
Figure 3 . The oscillations are completely removed, un-
fortunately at a cost of slight decrease of the accuracy.

6 Conclusion

A very simple hybrid system implementing a convex op-
timization algorithm has been presented. The main idea
is to follow the steepest descent direction for the objec-
tive function in the feasible set and for the constraints in
the infeasible set. The continuous hybrid system guar-
antees that its trajectory enters the feasible set of the re-
lated optimization problem and next converges asymp-
totically to the set of optimal points. Furthermore, a
possible discretization has been proposed for practical
implementation. After sampling, the trajectory is then

meandering around the border of the feasible set and fi-
nally oscillates around the optimal point.

In this paper, convex problems have been considered in
order to be able to draw conclusions about the conver-
gence to a global optimum. In case of non-convex prob-
lems, the convergence can still be assured towards a lo-
cal optimum. However, nothing will guarantee that the
global optimum is attained.

The scope of application of this kind of method will not
be in the off-line optimization arena. However, in partic-
ular for on-line application, this method will be of inter-
est. This is because of its implementation as a dynamical
system, its simplicity, its low computation cost, and its
capacity to be implemented in discrete-time.
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