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Dynamic Speed Limits and On-Ramp Metering for IVHS

using Model Predictive Control

Lakshmi Dhevi Baskar, Bart De Schutter, and Hans Hellendoorn

Abstract— We consider traffic management and control ap-
proaches for Intelligent Vehicle Highway Systems (IVHS),
which consist of interacting intelligent vehicles and intelligent
roadside controllers. The vehicles are organized in platoons
with short intraplatoon distances, and larger distances between
platoons. All vehicles are assumed to be fully automated, i.e.,
throttle, braking, and steering commands are determined by
an automated on-board controller. We consider both dynamic
speed limit control for the platoons in the IVHS and access
control at the on-ramps using ramp metering. We propose a
model-based predictive control (MPC) approach to determine
appropriate speed limits and release times at the on-ramps for
the platoons. The proposed approach is also applied to a simple
simulation example in which the aim is to minimize the total
time all vehicles spend in the network by optimally assigning
dynamic speed limits and on-ramp release times.

I. INTRODUCTION

The ever-increasing demand for mobility and transporta-

tion results in growing traffic congestion problems through-

out the world. On the short term one of the most promis-

ing approaches to reduce the frequency and the impact of

traffic jams is the use of advanced traffic management and

control methods in which control measures such as traffic

signals, dynamic route information panels, ramp metering

installations, dynamic speed limits, etc. are used to control

the traffic flows and to prevent or to reduce traffic jams,

or more generally to improve the performance of the traffic

system.

Advanced technologies from the field of control engi-

neering, communication, and information technology are

currently being combined with the existing transportation

infrastructure and equipment. This will result in integrated

traffic management and control systems that incorporate

intelligence in both the roadside infrastructure and in the

vehicles, and that are commonly called Intelligent Vehicle

Highway Systems (IVHS) [1], [2].

In IVHS every vehicle contains an automatic system

that can take over the driver’s responsibilities in steering,

braking, and throttle control. This complete automation of

driving tasks allows to arrange the vehicles in closely spaced

groups called platoons. In the platooning approach cars

travel on the highway in platoons with small distances (e.g.,

2 m) between vehicles within the platoon, and much larger

distances (e.g., 30–60 m) between different platoons. High
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speeds and short intraplatoon spacings allow more vehicles

to be accommodated on the network, which substantially

increases the maximal traffic flows [1].

In this paper, we deal traffic congestion problems by using

a variant of IVHS in which the monitoring and control

handles offered by automated intelligent vehicles (IVs) are

combined with those of the roadside infrastructure. In the

proposed approach platooning is integrated with conventional

traffic control measures such as dynamic speed limits, route

guidance, ramp metering, etc. The overall control framework

we use is the hierarchical framework we have presented in

[3]. We will in particular focus on the control layer that

manages the different platoons in the IVHS as well as the

access to the IVHS from the non-automated part of the

traffic network. More specifically, we will consider how to

determine appropriate speed limits for the platoons within the

IVHS and appropriate release times of vehicles or platoons

that enter the IVHS through on-ramps so as to optimize

the performance of the traffic system. Possible performance

measures in this context are throughput, travel times, safety,

fuel consumption, robustness, etc.

The paper is organized as follows. In Section II we reca-

pitulate the hierarchical IV-based traffic control framework

of [3] that will be adopted in this paper. Section III describes

the model-based predictive control (MPC) design method

that will be used to determine optimal speed limits and on-

ramp release times for the platoons. MPC requires prediction

models that offer a balanced trade-off between accuracy and

simulation speed. In Section IV we discuss some models

that could be used in this context. In Section V we apply the

proposed approach to a case study based on simulations and

we highlight the potential effects of the proposed approach

on the traffic flow performance.

II. HIERARCHICAL FRAMEWORK FOR IV-BASED TRAFFIC

MANAGEMENT

Now we briefly present the hierarchical control framework

for IVHS we have proposed in [3] and which is closely

related to the PATH framework [2]. The framework of [3]

distributes the intelligence between roadside infrastructure

and vehicles, and uses IV-based control measures to prevent

congestion and/or to improve the performance of the traffic

network. The control architecture of [3] is based on the

platoon concept and consists of a multi-level control structure

with local controllers at the lowest level and one or more

higher supervisory control levels as shown in Figure 1. The

layers of the framework can be characterized as follows:
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Fig. 1. IV-based framework of [3]. The focus of this paper is indicated by
the dashed box.

• The higher-level controllers (such as area, regional, and

supraregional controllers) provide network-wide coor-

dination of the lower-level and middle-level controllers.

The activities of a group of roadside controllers could

be supervised by an area controller. In turn, a group

of area controllers could be supervised or controlled by

regional controllers, and so on.

• The roadside controllers use IV-based control measures

to improve the traffic flow. Each platoon in the highway

network is considered as a single entity by the roadside

controller. This significantly reduces the complexity of

the control problem compared to the case where each

individual vehicle would be controlled by the roadside

controller. As a consequence, the whole traffic network

can be managed more efficiently.

• The platoon controllers receive commands from the

roadside controllers and are responsible for control

and coordination of each vehicle inside the platoon.

The platoon controllers are mainly concerned with ac-

tually executing the interplatoon maneuvers (such as

merges with other platoons, splits, and lane changes)

and intraplatoon activities (such as maintaining safe

intervehicle distances).

• The vehicle controllers present in each vehicle receive

commands from the platoon controllers (e.g., set-points

or reference trajectories for speeds, headways, and

paths) and they translate these commands into control

signals for the vehicle actuators such as throttle, braking,

and steering actions.

For a more extensive description of the framework the

interested reader is referred to [3].

In the remainder of the paper we focus on the roadside

controllers and on their interaction with the platoons and

the platoon controllers. The main tasks of the roadside

controllers are to assign desired speeds for each platoon, to

provide safe distances to avoid collisions between platoons,

desired platoon sizes (depending on the traffic conditions),

dynamic route guidance for the platoons, ramp metering

values at the on-ramps, and also to instruct for merges, splits,

and lane changes of platoons. Moreover, we also consider the

interface between the IVHS network (i.e., the fully automated

road network), and the non-automated road network, where

drivers still have full manual control over their vehicle. The
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Fig. 2. Prediction and control horizon in MPC.

interface consists of on-ramps, at which the IVHS control

architecture will take over control of the vehicles and arrange

them in platoons.

III. MODEL PREDICTIVE CONTROL FOR IV-BASED

TRAFFIC MANAGEMENT

A. Model predictive control

Model Predictive Control (MPC) [4], [5] has originated

in the process industry and it has already been successfully

implemented in many industrial applications. MPC makes

use of discrete-time models. Let Tctrl be the control sampling

interval, i.e., the time interval between two updates of the

control signal settings. At each control step k (correspond-

ing to time t = kTctrl), the MPC controller first measures

or determines the current state x(k) of the system. Next,

the controller uses (on-line) optimization and an explicit

prediction model to determine the optimal values for the

control measures over a given prediction period determined

by the control horizon Np (see Figure 2). In order to reduce

the computational complexity of the problem, one often

introduces a constraint of the form u(k+ j) = u(k+ j − 1)
for j = Nc, . . . ,Np−1, where Nc is called the control horizon.

The optimal control inputs are then applied to the system

in a receding horizon approach as follows. At each control

step k only the first control sample u∗(k) of the optimal

control sequence u∗(k), . . . ,u∗(k+Nc − 1) is applied to the

system. Next, the prediction horizon is shifted one step

forward, and the prediction and optimization procedure over

the shifted horizon is repeated using new system measure-

ments. This receding horizon approach introduces a feedback

mechanism, which allows to reduce the effects of possible

disturbances and model mismatch errors.

B. MPC for IVHS

We now explain how MPC can be applied for speed

control and on-ramp control in IVHS. The roadside controller

works with platoons as basic entities. So the state of the

system includes the positions and speeds of the platoon

leaders and the lengths of the platoons, as well as the number

of platoons waiting at the mainstream origins and on-ramps

of the IVHS network. The control signal u will consist of the

speed limits for the platoon leaders, on-ramp release times,

etc.



There exists a wide range of traffic models [6]. An impor-

tant factor that determines the choice of the model to be used

in MPC is the trade-off between accuracy and computational

complexity since at each control step k the model will be

simulated repeatedly within the on-line optimization algo-

rithm. As a consequence, very detailed microscopic traffic

simulation models are usually not suited as MPC prediction

model. Instead, simplified or more aggregate models are

usually applied. In Section IV we will present some models

that are especially suited for use in MPC for IVHS. Note

however that MPC is a modular approach so that in case a

given prediction model does not perform well, it can easily

be replaced by another prediction model.

C. Performance criteria and constraints

Possible performance criteria Jperf(k) for MPC for IVHS

are the total time spent in a traffic network, the total through-

put, the total fuel consumption, safety, or a combination of

these, all evaluated over the time period [kTctrl,(k+Np)Tctrl).
Moreover, in order to prevent oscillations and frequent

shifting in the control signals, one often adds a penalty on

variations in the control signal u, which results in the total

performance function

Jtot(k) = Jperf(k)+α
Nc−1

∑
j=0

‖u(k+ j)−u(k+ j−1)‖2 , (1)

at control step k, where α > 0 is a weighting factor.

The MPC controller can also explicitly take into account

operational constraints such as minimum separation between

the platoons, minimum and maximum speeds, minimum

headways, etc.

IV. PREDICTION MODELS FOR IVHS

Now we describe simplified traffic models for vehicles and

for platoons that can be used as (part of the) prediction model

within the MPC-based roadside controller.

In this paper, we mainly deal with the longitudinal aspects

of the driver tasks, which can be classified as free-flow, car-

following, and stop-and-go behavior. In free-flow behavior,

the vehicles can travel at their desired speed (corresponding

to the speed limit, e.g., 120 km/h). As the traffic demand

increases, the vehicles start to follow their predecessors at

closer distances and at reduced speeds (50–80 km/h). Once

the capacity of the highway is being utilized at its maximum,

the vehicles move with stop-and-go movements (0–40 km/h).

A. Vehicle models

We use general kinematics motion equations to model the

dynamics of the vehicles, which, after discretization leads to:

xi(ℓ+1) = xi(ℓ)+ vi(ℓ)Tsim +0.5ai(ℓ)T
2

sim (2)

vi(ℓ+1) = vi(ℓ)+ai(ℓ)Tsim (3)

where ℓ is the simulation step counter, Tsim the simulation

time step, xi(ℓ) the longitudinal position of vehicle i at time

t = ℓTsim, vi(ℓ) the speed of vehicle i at time t = ℓTsim,

and ai(ℓ) the acceleration for vehicle i at time t = ℓTsim.

The acceleration used in (2)–(3) is calculated according to

the current driving situation as will be explained below. In

addition, the acceleration is limited between a maximum

acceleration aacc,max and a maximum (in absolute value)

comfortable deceleration adec,max.

B. Longitudinal models for human drivers

When there is no predecessor or when the time headway

to the predecessor is larger than the critical time headway

(e.g., 10 s), then the vehicle is said to be in free-flow mode.

Once the vehicle travels with a smaller time headway than

the critical time headway to its predecessor, then the vehicle

is said to be in car-following mode.

1) Free-flow model: The acceleration for free-flow driving

conditions is determined by the delayed difference between

the current speed and the reference speed:

ai(ℓ) = K(vref,i(ℓ−σ)− vi(ℓ−σ)) , (4)

where K is the proportional constant, vref,i is the reference

speed, and σ is the reaction delay1. The reference speed

can either be issued by roadside infrastructure or it can be

driver’s desired maximum speed.

2) Car-following model: As described in [7] there exist

various types of car-following models such as stimulus

response models [8], collision avoidance models [9], psy-

chophysical models [10], and cellular automata models [11].

We will use a stimulus response model [8] to describe

the behavior of human drivers as this model is most often

used and also easy to implement. Stimulus response models

are based on the hypothesis that each vehicle accelerates or

decelerates as a function of the relative speed and distance

between the vehicle and its predecessor. In particular, the

Gazis-Herman-Rothery (GHR) model [12] states that after a

reaction delay, the follower vehicle i accelerates or deceler-

ates in proportion to the speed of the vehicle itself, to the

relative speed with respect to its predecessor (vehicle i+1),

and to the inverse of distance headway between them. The

reference acceleration is thus

ai(ℓ) =Cv
β
i (ℓ)

(vi+1(ℓ−d)− vi(ℓ−d))

(xi+1(ℓ−d)− xi(ℓ−d))γ
, (5)

where C, β , and γ are the model parameters, and d is the

driver delay2.

C. Longitudinal models for intelligent vehicles

In our approach, intelligent vehicles will use adaptive

cruise control (ACC) and intelligent speed adaptation (ISA)

measures and are arranged in platoons. We now discuss how

the accelerations for the platoon leaders and for the follower

vehicles within a platoon are calculated.

1We assume here that the reaction time Treact, which typically has a value
of 1–1.2 s, is an integer multiple of the simulation time step Tsim. So, Treact =
σTsim with σ an integer.

2Here we assume again that Tdelay, which typically has a value of 1–1.2 s,
is an integer multiple of Tsim. So, Tdelay = dTsim with d an integer.



1) Platoon leader model: Platoon leaders have an

enforced-ISA system and the calculation of their acceleration

is based on a simple proportional controller:

ai(ℓ) = K1(vISA(ℓ)− vi(ℓ)) , (6)

where K1 is the proportional constant and vISA is the refer-

ence ISA speed provided by the roadside controller.

2) Follower vehicle model: The follower vehicles will use

their on-board ACC system to maintain short intraplatoon

distances. The ACC algorithm consists of a combined speed

and distance controller:

ai(ℓ) = K2(href,i(ℓ)− (xi+1(ℓ)− xi(ℓ)))

+K3(vi+1(ℓ)− vi(ℓ)) , (7)

where K2 and K3 are constants, and href,i is the reference

distance headway for vehicle i. The distance controller

calculates the safe distance headway as follows:

href,i(ℓ) = S0 + vi(ℓ)Thead,i +Li , (8)

where S0 is the minimum safe distance that is to be main-

tained at zero speed, Thead,i is the time headway for vehicle

i, and Li is the length of vehicle i.

D. Platoon-based prediction model

On a more aggregate level, we can also consider a platoon

of vehicles as a single entity without taking the detailed

interactions among the individual vehicles within a platoon

into account. So essentially we consider a platoon as one

vehicle with a length that is a function of the speed of the

platoon (due to the dependence of the intervehicle spacing

managed by the ACC on the speed (cf. (8))), and of the

number and lengths of the vehicles in the platoon. The

dynamics equations for the speed and position of the platoon

are the same as those of a platoon leader presented above.

Consider platoon p and assume for the sake of simplicity that

the vehicles in the platoon are numbered 1 (last vehicle), 2

(one but last vehicle), . . . , np (platoon leader). The speed

dependent length Lplatoon,p(ℓ) of platoon p is then given by

Lplatoon,p = (np −1)(S0 +S1vnp(ℓ))+
np

∑
i=1

Li , (9)

where S0+S1vnp(ℓ) is the speed-dependent intervehicle spac-

ing between the vehicles in the platoon, with S1 a model

constant, and vnp is the speed of the platoon (leader).

E. Merging at on-ramps

In order to model the merging behavior of platoons at on-

ramps we could use a simplified model that operates at the

platoon level. We consider each platoon at the on-ramp as

one entity that will join the mainstream lane as soon as there

is a sufficient large gap (including safety distances) available

between the platoons on the mainstream lane and provided

that the merging will not result in a collision in the next

time steps. If both conditions are satisfied then the platoon

joins the mainstream line (with a speed that is imposed by

the roadside controller).

7.5 km0 km 10 km 11 km

congestion at t start

13 km

Fig. 3. Set-up of the case study.

For individual vehicles not controlled by the roadside

controller we can use a similar model, i.e., the vehicle joins

the mainstream line provided that there is a sufficiently large

gap and that no collision is imminent; the vehicle’s speed can

then be taken equal to that of the immediate predecessor (if

present) or equal to the ISA speed limit otherwise.

V. CASE STUDY

In this section, we present a simple case study in which

the MPC control strategy described in Section III is used

by the roadside controller layer. We consider dynamic speed

limits and on-ramp metering as control measures.

A. Set-up

As a test-bed for illustrating the proposed IVHS-MPC

approach we use a basic set-up consisting of a 13 km single-

lane highway stretch with one mainstream origin, one on-

ramp (located at position x = 7.5 km), and one destination

(see Figure 3). We will compare three different situations:

• uncontrolled traffic (with human drivers),

• controlled traffic with human drivers and with au-

tonomous ISA and conventional ramp metering as con-

trol measures,

• IV-based traffic control with platoons and with dynamic

speeds and on-ramp release times for the platoons as

control measures.

For the sake of simplicity all vehicles are assumed to be

of the same length (Li = 4 m). For the controlled situation

with human drivers we assume that ISA limits the speed

in a hard way and that human drivers cannot surpass the

imposed speed limit. Similarly, we assume that the imposed

ramp metering rate is adhered to. In the IV-based case with

platoons we assume that all the vehicles are fully automated

IVs equipped with advanced communication and detection

technologies such as in-vehicle computers and sensors, and

with on-board ACC and ISA controllers.

B. Scenario

We simulate a period of 15 min starting at time

tstart = 7 h 20 min and ending at time tend = 7 h 35 min. The

demand of vehicles is taken to be constant during the

simulation period, and equals 900 veh/h for the mainstream

origin, and 350 veh/h for the on-ramp.

In the proposed scenario the initial state of the network is

as follows. There is a congestion from position x = 10 km

up to x = 11 km at time tstart. In the congested area there

are 100 vehicles with speed 0 km/h; in the non-congested

area there are 70 vehicles (uniformly distributed) with speed

120 km/h. Moreover, the on-ramp and mainstream origin

queues are empty. After time tstart, the traffic flow in the



congested area returns slowly to its regular value. As long

as the congestion exists3, the maximum outflow from the

traffic jam is less when compared to free-flow traffic due to

the capacity drop [13]. The value of this capacity drop in our

case is around 7 % for human drivers (both in the controlled

and the uncontrolled case) and 0 % for platoons (due to the

full automation).

C. Models

In order to compare the results obtained for the given

scenario using human driving (both without and with control)

and using our platoon-based hierarchical approach, we have

developed simulation models in Matlab for human driving

and platoon driving. For the sake of simplicity and to

avoid calibration, we have used the same models for both

simulation and prediction purposes in this simulation study.

For the vehicle models we have used the models of Section

IV. In particular, we have used (2)–(3) with the reference

accelerations given by respectively (4)–(5) for uncontrolled

human drivers, (4)–(5) with vref,i(ℓ) equal to the ISA speed

limit for human drivers with ISA, and (6)–(8) for platoons

of intelligent vehicles. If we express distances in m, times

in s, speeds in m/s, accelerations in m/s2, etc., the values of

the various parameters in these models have the following

values. For the car-following model (5) we have4 C = 1.55,

β = 1.08, and γ = 1.65 for acceleration, and C = 2.55,

β = −1.67, and γ = −0.89 for deceleration. Furthermore,

we have selected σ = 1, d = 1, K = 0.01, and K1 = 0.4.

For the follower vehicle model (7)–(8) we have K2 = 0.3,

K3 = 1, S0 = 3, and Thead = 1 for all vehicles. For the platoon

model (9) we have selected S1 = 1. Moreover, aacc,max = 5

and adec,max =−5 for all models.

The time step Tsim for the simulations is set to 1 s.

D. Control problem

The goal of our traffic controller is to improve the traffic

performance. The objective that we consider is minimization

of the total time spent (TTS) by all the vehicles in the

network using dynamic speed limits and on-ramp metering

as the control handles. The TTS for the entire simulation

period can be expressed as

JTTS,sim =
Nsim

∑
ℓ=1

(

nveh(ℓ)+qmain(ℓ)+qon(ℓ)
)

Tsim , (10)

where Nsim = 900 is the total number of simulation steps

(of length Tsim = 1 s) within the entire simulation period of

15 min, nveh(ℓ) is the number of vehicles that are present

within the network at time t = tstart + ℓTsim, qmain(ℓ) is the

number of vehicles in the queue at the mainstream origin at

time t = tstart + ℓTsim, and qon(ℓ) is the number of vehicles

present in the on-ramp queue at time t = tstart + ℓTsim.

3E.g., nearly 4 min after tend for the uncontrolled case
4These values are inspired by the ones used in MITSIM [14].

The corresponding performance function Jperf(k) used in

the MPC approach at control step k is then given by

Jperf(k) =
(k+Np)K

∑
ℓ=kK+1

(

nveh(ℓ)+qmain(ℓ)+qon(ℓ)
)

Tsim ,

with5 K = Tctrl
Tsim

. In the total MPC objective function we have

also included a penalty term with α = 0.02 (cf. (1)).

For the controlled human situation the applied control

measures are ISA (with one speed limit for each section

of 1 km length between position x = 0 km and position

x = 10 km6) and on-ramp metering. So the control signal

u for the MPC problem of control step k includes the ISA

speed limits for the first 10 sections and the ramp metering

rates (expressed as a number between 0 and 1) at control

steps k up to k+Nc −1 (i.e., 11Nc variables in total).

For the platoon-based approach the control signal u for

the MPC problem of control step k includes speed limits

for all platoons that are present in the network as well as

the on-ramp release times for the platoons waiting at the

on-ramp both for control steps k up to k+Nc − 1. So if Pk

is the number of platoons present in the network at control

step k and that could enter the network between time t =
kTctrl and time t = (k+Np)Tctrl and if Qk is the number of

platoons that could enter the network between t = kTctrl and

t = (k+Np)Tctrl, we have PkNc +Qk variables in total.

As we focus on dynamic speed limits for each platoon and

on on-ramp metering, the platoon size is not yet considered

to be a control variable, but kept fixed at 10 for all platoons.

We consider a maximum speed of 120 km/h for both

the human drivers and the platoon leaders. In the platoon-

based approach the roadside controller has to take care of

maintaining safe interplatoon distances. This condition is

included as a constraint in the MPC optimization problem.

In particular, the minimal safe distance between a platoon p1

and its immediate predecessor platoon p2 in the same lane

is given by (cf. (8)): S0,platoon +Thead,platoon vplatoon,p1
, where

vplatoon,p1
is the speed of platoon p1. For the case study we

have selected S0,platoon = 20 m and Thead,platoon = 2 s.

The control sampling time Tctrl is set at 1 min. For the

prediction horizon Np we have taken a value that corresponds

to 13 min, and for the control horizon Nc we have selected

a value that corresponds to 2 min so as to limit the number

of optimization variables.

In this case study we have opted to use multi-start pattern

search [15] because our simulation experiments have shown

that this optimization method provides a good trade-off

between optimality and speed. In particular, we have used

the patternsearch command incorporated in the Genetic

Algorithm and Direct Search Toolbox of Matlab.

E. Results and analysis

For the scenario presented above, a closed-loop MPC

simulation has been carried out. Table I lists the TTS for

5We select Tctrl to be an integer multiple of Tsim. So K will be an integer.
6Note that considering speed limits in the remaining sections is not

necessary in the proposed scenario as for these sections setting the speed
limits equal to 120 km/h yields an optimal solution.



Case TTS (veh.h) Relative improvement

uncontrolled case 39.80 0 %

controlled (human drivers) 35.43 10.98 %

controlled (platoons) 29.39 26.16 %

TABLE I

RESULTS OF THE THREE APPROACHES. THE TTS IS THE TOTAL TIME

SPENT BY ALL VEHICLES IN THE NETWORK DURING THE ENTIRE

SIMULATION PERIOD (SEE (10)).

the three cases (i.e., uncontrolled, controlled with human

drivers, and controlled with platoons) as well as the rel-

ative improvement compared to the uncontrolled case. In

particular, we report JTTS,sim, the total time spent by all

vehicles in the network during the entire simulation period

of 15 min. Clearly, the IV-based traffic with platoons results

in the best performance with an improvement of about 26 %

with respect to the uncontrolled case.

The results can be explained as follows. In the uncon-

trolled case with human drivers, when there are no vehicles

in front of the driver or if there is enough space between

drivers, the drivers maintain their desired speed. But when a

driver is confronted with a traffic jam, he has to decelerate

in order to avoid a collision and he has to wait until the

incident gets cleared. Moreover, there is no ramp metering

action that can prevent or delay an extra flow of vehicles

from entering the mainstream highway. All this results in a

large time spent in the network for that vehicle, and thus

also in a higher value of the TTS.

For the same scenario but with human drivers and ISA

control, the MPC approach can predict the presence of the

congestion and prevent it or diminish its negative impacts by

slowing down vehicles (using speed limits) or delaying vehi-

cles (via on-ramp metering) before they reach the congested

area. For the platoon-based approach there is an additional

performance improvement caused by the full automation,

which allows to maintain small intervehicle distances (so that

more cars are allowed to traverse the network more quickly)

and which results in an almost 0 % capacity drop.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented how model predictive control (MPC)

can be used to determine optimal platoons speeds and

optimal platoon release times at on-ramps in IVHS. The

proposed approach has been illustrated using a case study

based on simulations and with dynamic speed limits and

on-ramp metering as control measures. The results of the

case study highlight the potential benefits and improvements

that can be obtained by using MPC for intelligent speed

adaptation in IVHS.

Future research topics include: additional and more exten-

sive case studies, inclusion of additional control measures

(such as lane allocation, variable platoon sizes, etc.), explicit

consideration of the other levels in the IVHS control hierar-

chy of [3], and extension to larger networks.
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