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A Distributed Model Predictive Control Approach

for the Control of Irrigation Canals

Rudy R. Negenborn and Bart De Schutter

Abstract— Water networks are large-scale systems, consisting
of many interacting components. They are currently typically
operated by local decentralized controllers which receive set-
points from human operators. We discuss how communi-
cation among the local controllers can be included and in
particular propose the use of distributed model predictive
control for enabling the local controllers to determine set-
points autonomously using communication and coordination.
We consider the control of a particular class of water networks,
viz. irrigation canals. A simulation study on a 7-reach irrigation
canal illustrates the potential of the proposed approach.

I. INTRODUCTION

A. Water networks

In the near future the importance of an efficient and

reliable flood and water management system will keep on

increasing, among others due to the effects of global warming

(higher sea levels, more heavy rain during the spring season,

but possibly also drier summers). Due to the large scale of

water networks, control of such networks in general cannot

be done in a centralized way, in which from a single location

measurements from the whole system are collected and

actions for the whole system are determined. Instead, control

is typically decentralized over several local control bodies,

each controlling a particular part of the network [1], [2].

Local control actions include activation of pumps or locks,

filling or draining of water reservoirs, or controlled flooding

of water meadows or of emergency water storage areas.

To each of the actions that can be taken in a water system

a certain cost is associated, and the same holds in case

of too high water levels (which may result in floods) or

too low groundwater or surface water levels (which have

a negative impact on agriculture, irrigation, and drinking

water supplies). Although the local water management bodies

usually only control or manage the water levels in a relatively

small region, the evolution of the water levels is influenced

by what happens over a much larger region, often extending

far beyond the neighborhood of the given region (e.g., due to

water arriving via rivers or via subsurface diffusion flows).

To improve the operation of water systems the controllers

of different parts of the water network should cooperate

and coordinate their local water management actions, and

take into account predictions or forecasts of future rain fall,

future droughts, future arrival of increased water flow via
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Fig. 1. Illustration of distributed MPC control of a network.

rivers, etc. (using various weather and hydrological sensors,

and prediction models). In this paper we propose the use of

distributed model predictive control to obtain more efficient

flood and water management with less risks and less costs.

B. Distributed model predictive control

To determine the actions that meet the control objectives

of the local control bodies as well as possible, the local

controllers have to make a trade-off among the various

actions available. An in particular promising form of control

for this seems to be model predictive control (MPC) [3].

Over the last decades MPC (also known as receding horizon

control or moving horizon control) has become an important

strategy for finding control policies for complex, dynamic

systems. MPC for centralized control has shown successful

application in the process industry [3], and is now gaining

increasing attention in fields like power networks [4], road

traffic networks [5], and steam networks [6].

In a distributed MPC control configuration, there are

multiple controllers, each of them using MPC to control its

own subnetwork, i.e., its own part of the overall network,

as illustrated in Fig. 1. The challenge in implementing

a distributed MPC strategy comes from ensuring that the

actions that the individual controllers choose result in a joint

performance that ideally is as good as when a hypothetical

centralized control configuration in which all information is

available at a central location would be used.

Various distributed MPC control schemes have been in-

vestigated since the 90s, e.g., in [7], [8], [9]. In this paper

we apply a particular distributed MPC scheme, recently

proposed in [10], for improving the operation of a particular

type of water systems, viz. irrigation canals.



C. Outline

The remainder of this paper is organized as follows. In

Section II we discuss a particular distributed MPC scheme.

In Section III we discuss the dynamics of a particular water

system, viz. an irrigation canal, and set up the distributed

MPC control scheme for control of this system. In Section

IV we illustrate the potential of the proposed approach

through simulation studies. Section V concludes the paper

and contains directions for future research.

II. DISTRIBUTED MODEL PREDICTIVE CONTROL

In distributed MPC control each individual controller is re-

sponsible for a particular part of the network. The individual

controllers on the one hand obtain measurements from and

determine actions for their part of the network, and on the

other hand communicate with other controllers in order to

obtain coordination and to improve predictions. To actually

determine which actions to take each controller uses MPC.

A. General ingredients and structure of distributed MPC

At each control cycle each controller uses the following

information:

• a prediction model describing the behavior of its sub-

network;

• an objective function expressing which subnetwork be-

havior and actions are desired;

• possibly constraints on the local states, the local inputs,

and the local outputs;

• possibly known information about future disturbances

and exogenous inputs;

• a measurement of the state of the subnetwork at the

beginning of the current control cycle.

The objective of each controller is to determine those actions

that optimize the behavior of the overall network and to

minimize costs as specified through the objective function.

In order to find the actions that lead to the best performance,

each controller uses its prediction model to predict the be-

havior of its subnetwork under various actions over a certain

prediction horizon, starting from the state at the beginning

of the control cycle. Once the controller has determined

the actions that optimize the performance of its subnetwork

over the prediction horizon, it implements these actions until

the beginning of the next control cycle, at which point the

controller determines new actions over the prediction horizon

starting at that point, using updated information. Hence, each

controller operates in a receding or rolling horizon fashion

to determine its actions.

To make accurate predictions of the evolution of a

subnetwork, each controller requires the current state of

its subnetwork, a sequence of actions over the prediction

horizon, and predictions of the values of variables that

interconnect the model of its subnetwork with the model

of other subnetworks. The predictions of the values of these

so-called interconnecting variables are based on the infor-

mation communicated with the neighboring controllers. One

particular class of methods aims at achieving cooperation

among controllers in an iterative way in which in each

control cycle controllers perform several iterations consisting

of local problem solving and communication. In each iter-

ation controllers then obtain information about the plans of

neighboring controllers. Ideally, at the end of the iterations

the controllers choose overall optimal actions.

In [10] we have proposed a distributed MPC scheme for

control of general transportation networks. Water networks

are a particular type of transportation networks, and there-

fore this scheme is also suitable for distributed control of

water networks. The actions that the controllers determine

using the scheme lead over the iterations to overall optimal

performance if certain assumptions on the dynamics, the in-

formation available to controllers, and the control objectives

are made. Below we briefly outline these assumptions and

the steps of the scheme.

B. Dynamics

Let the network be divided into n subnetworks. Assume

that the dynamics of subnetwork i ∈ {1, . . . , n} are given

by a deterministic linear discrete-time time-invariant model

(possibly obtained after symbolic or numerical linearization

of a nonlinear model in combination with discretization):

xi(k + 1) = Aixi(k) +B1,iui(k)

+B2,idi(k) +B3,ivi(k) (1)

yi(k) = Cixi(k) +D1,iui(k)

+D2,idi(k) +D3,ivi(k), (2)

where at control cycle k, for subnetwork i, xi(k) ∈ R
nxi

are the local states, ui(k) ∈ R
nui are the local inputs,

di(k) ∈ R
ndi are the local known exogenous inputs, yi(k) ∈

R
nyi are the local outputs, vi(k) ∈ R

nvi are the remaining

variables influencing the local dynamical states and outputs,

and Ai ∈ R
nxi

×nxi , B1,i ∈ R
nxi

×nui , B2,i ∈ R
nxi

×ndi ,

B3,i ∈ R
nxi

×nvi , Ci ∈ R
nyi

×nxi , D1,i ∈ R
nyi

×nui ,

D2,i ∈ R
nyi

×ndi , D3,i ∈ R
nyi

×nvi determine how the

different variables influence the local states and outputs of

subnetwork i. The vi(k) variables appear due to the fact that

a subnetwork is connected to other subnetworks. Hence, the

vi(k) variables represent the influence of other subnetworks

on subnetwork i. If the values of vi(k) would be constant,

then the dynamics of subnetwork i would be decoupled from

the other subnetworks. In practice, however, the variables

vi(k) are equal to some of the variables of models represent-

ing dynamics of neighboring subnetworks. Below we refer

to the interconnecting input variables win,ji(k) ∈ R
nwin,ji

as these variables of subnetwork i that are influenced by

subnetwork j, i.e., a selection of vi(k), and we refer to

the interconnecting output variables wout,ji(k) ∈ R
nwout,ji as

these variables of subnetwork i that influence a neighboring

subnetwork j, i.e., a selection of xi(k), ui(k), and yi(k).
Fig. 2 illustrates the relations between the variables of the

models of two subnetworks.

C. Available information

Assume that each of the subnetworks i ∈ {1, . . . , n} is

controlled by a controller i that:
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Fig. 2. Illustration of the relation between the models and variables of two
subnetworks i and j.

• has a prediction model of the form (1)–(2) of the

dynamics of subnetwork i;
• can measure or estimate the state xi(k) of its subnet-

work;

• can determine settings ui(k) for the actuators of its

subnetwork;

• can estimate exogenous inputs di(k + l) of its sub-

network over a certain horizon of length N , for l =
{0, . . . , N − 1};

• can communicate with neighboring controllers, i.e., the

controllers controlling the subnetworks j ∈ Ni, where

Ni = {ji,1, . . . , ji,mi
} is the set of indexes of the mi

subnetworks connected to subnetwork i, also referred

to as the neighbors of subnetwork or controller i.

D. Control objectives

We assume that the controllers are cooperative, meaning

that the individual controllers strive for the best overall net-

work performance. In addition, we assume that the objectives

of the controllers can be represented by convex functions

Jlocal,i, for i ∈ {1, . . . , n}, which are typically linear or

quadratic. Such functions are commonly encountered, in

particular for systems that can be represented by (1)–(2),

as illustrated in Section III-E.

E. Distributed MPC scheme

The distributed MPC scheme that we employ comprises

at control cycle k the following steps:

1) For i = 1, . . . , n, controller i makes a measurement of

the current state of the subnetwork xi(k) and estimates

the expected exogenous inputs di(k + l), for l =
0, . . . , N − 1.

2) The controllers cooperatively solve their control prob-

lems in the following iterative way1:

a) Set the iteration counter s to 1 and initialize the

Lagrange multipliers λ̃
(s)

in,ji(k), λ̃
(s)

out,ij(k) arbitrar-

ily2.

b) For i = 1, . . . , n, one controller i after an-

other determines x̃
(s)
i (k + 1), ũ

(s)
i (k), w̃

(s)
in,ji(k),

1The tilde notation is used to represent variables over the prediction
horizon. E.g., ũi(k) = [ui(k)

T, . . . ,ui(k +N − 1)T]T.
2The Lagrange multipliers can in principle be initialized arbitrarily.

However, initializing them with values close to the optimal Lagrange
multipliers will increase the convergence of the decision making process.
Therefore, also initializing the Lagrange multipliers with values obtained
from the previous control cycle is beneficial, since typically these Lagrange
multipliers will be good initial guesses for the new solution. This is referred
to as warm start.

w̃
(s)
out,ji(k) as solution of the following optimiza-

tion problem:

min
x̃i(k+1),ũi(k),ỹi(k),

w̃in,ji,1i(k),...,w̃in,ji,mi
i(k),

w̃out,ji,1i(k),...,w̃out,ji,mi
i(k)

Jlocal,i (x̃i(k + 1), ũi(k), ỹi(k))

+
∑

j∈Ni

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) ,

(3)

subject to the local dynamics (1)–(2) of subnet-

work i over the horizon, the measurement of the

current state xi(k), the known exogenous inputs

d̃i(k). In this, the additional objective function

Jinter,i is at iteration s defined as

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) =

[

λ̃
(s)

in,ji(k)

−λ̃
(s)

out,ij(k)

]T
[

w̃in,ji(k)
w̃out,ji(k)

]

+
γc

2

∥

∥

∥

∥

[

w̃in,prev,ij(k)− w̃out,ji(k)
w̃out,prev,ij(k)− w̃in,ji(k)

]∥

∥

∥

∥

2

2

,

where w̃in,prev,ij(k) = w̃
(s)
in,ij(k) and w̃out,prev,ij(k)

= w̃
(s)
out,ij(k) is the information computed at the

current iteration s for each controller j ∈ Ni

that has solved its problem before controller i in

the current iteration s, and where w̃in,prev,ij(k) =

w̃
(s−1)
in,ij (k) and w̃out,prev,ij(k) = w̃

(s−1)
out,ij (k) is the

information computed at the last iteration s − 1
for the other controllers. Furthermore, γc is a pos-

itive scalar that penalizes the deviation from the

interconnecting variable iterates that were com-

puted by the controllers before controllers i in

the current iteration and by the other controllers

during the last iteration. The results w̃
(s)
out,ji(k) of

the optimization are sent to controller j.

c) Update the Lagrange multipliers,

λ̃
(s+1)

in,ji (k) = λ̃
(s)

in,ji(k)

+ γc

(

w̃
(s)
in,ji(k)− w̃

(s)
out,ij(k)

)

. (4)

d) Move on to the next iteration s + 1 and repeat

steps 2b–2c. The iterations stop when the follow-

ing stopping condition is satisfied:
∥

∥

∥

∥

∥

∥

∥

∥









λ̃
(s+1)

in,err,j1,11(k)
...

λ̃
(s+1)

in,err,jn,mnn(k)









∥

∥

∥

∥

∥

∥

∥

∥

∞

≤ γǫ,term, (5)

where λ̃
(s+1)

in,err,ji(k) = λ̃
(s+1)

in,ji (k) − λ̃
(s)

in,ji(k), and

γǫ,term is a small positive scalar and ‖ · ‖∞
denotes the infinity norm. Note that satisfaction

of this stopping condition can be determined in a

distributed way, since each individual component

of the infinity norm depends only on variables of

one particular controller.

3) The controllers implement the actions until the begin-

ning of the next control cycle.
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Fig. 3. Three control configurations for the control of irrigation canals.

4) The computations of the next control cycle are started.

Under the assumptions that we have made on the objective

functions and prediction models the solution of this scheme

converges to the solution that a centralized MPC controller

would have obtained, see [10].

III. CONTROL OF AN IRRIGATION CANAL

In this section we describe the dynamics and control of a

particular water network, viz. an irrigation canal. Irrigation

canals are used mostly to transport water from source nodes,

such as lakes, large rivers, etc., to sink nodes, such as small

rivers and pipes transporting water to agricultural fields of

farmers. Irrigation canals consist of several connected canal

reaches, the inflow or outflow of which can be controlled

using structures such as so-called overshot or undershot

gates, which restrict the flow of water flowing from an

upstream canal reach into a downstream canal reach [11].

These structures usually have a local flow controller that

regulates the position of the gates in order to obtain a certain

flow. We focus on determining the set-points for the local

flow controllers at these structures.

A. Control configurations

Fig. 3 illustrates three possible control configurations for

irrigation canals. Currently the configuration of Fig. 3(a)

is typically used in practice. A human operator manually

adjusts the set-points for the local flow controllers at the

undershot and overshot gates. This manual process is ex-

pensive, since the human operator has to travel from one

control structure to the next, possibly several times per day

[12]. A more advanced control configuration is depicted in

Fig. 3(b). In this case, the determination of the set-points for

the local flow controllers has been centralized and automated.

Although implementation of such a centralized control con-

figuration may be feasible in practice for relatively small wa-

ter networks, the increasing computational requirements and

required bandwidth prevent application to larger networks.

A centralized control configuration is not well scalable and

moreover constitutes a single point of failure. In addition,

in practice, management of irrigation canals may already

be distributed over several control authorities, preventing a

centralized control configuration from being implemented.

Instead of a centralized control configuration, the control

configuration in Fig. 3(c) may be employed, i.e., a distributed

control configuration may be installed, in which set-points

are autonomously decided upon by the distributed controllers

based on local communication and cooperation.

B. Benchmark system

The irrigation canal that we consider is based on the W-

M canal, which is a physically existing irrigation canal in

the South of Phoenix, Arizona. The canal is used to provide

water to farmers. The length of the canal is almost 10 km and

the maximum capacity of the head gate is 2.8m3/s [12].

The irrigation canal that we consider consists of 7 canal

reaches. At each of the reaches water can be taken out at

offtakes for irrigation purposes. Between each of the reaches

control structures are present in the form of undershot gates

to control the water flow locally. These control structures are

equipped with local flow controllers that adjust the height of

the undershot gate in order to meet a set-point for the water

flow.

In [12] an MPC scheme is proposed that is used by a single

controller to determine in a centralized way the set-points for

the local flow controllers, cf. Fig. 3(b). Here we propose to

use the distributed MPC scheme of Section II to take over

this task. Using a distributed approach there is no need for

a central control location in the network. Using a distributed

approach only local information available to a local controller

and information from neighboring local controllers is used.

C. Dynamics of irrigation canals

The dynamics of irrigation canals can be modeled in

detail, e.g., using the Saint Venant equations [11] resulting

in systems of highly-nonlinear partial differential-algebraic

equations. However, using such highly-detailed models for

predictive control results in significant requirements on com-

putational power. Therefore, similarly as in [12], we employ

the integral delay model [13] to model the dynamics of a

canal reach. This model has shown to adequately capture

relevant dynamics [13], and reduces computations required

for simulation of the dynamics significantly.

The integrator delay model is a discrete-time model, which

models how the water level at particular places in the canal

changes over time. Let time be discretized into control cycles

k ∈ N
+ (where N

+ are the positive natural numbers) and let

the continuous time between two control cycles k and k+1
correspond to Tc ∈ R

+ (s) (where R
+ are the positive real

numbers). Each canal reach is considered to have an inflow

from an upstream canal reach. Let this inflow into reach i be

given by qin,i(k) ∈ R
+ (m3/s). A canal reach has an outflow

to a downstream canal reach. Let qout,i(k) ∈ R
+ (m3/s)

denote this outflow. In addition to this inflow and outflow

due to upstream and downstream canal reaches there can

be additional local inflow (e.g., due to rainfall) and outflow



(e.g., due to outflow caused by farmers). Let such inflow be

represented by qext,in,i(k) ∈ R
+ (m3/s) and such outflow by

qext,out,i(k) ∈ R
+ (m3/s). The inflow qext,in,i(k) and outflow

qext,out,i(k) are assumed to be static and known or predicted

accurately in advance.

Depending on how the inflows and outflows change over

time, the levels of the water in reaches will change. Instead

of considering the levels of the water at each location in

the reaches, we only consider the levels of the water at the

downstream end of each reach. In addition to the amount of

inflow and outflow, also the surface of the reach influences

how much the level of the water will change. Let hi(k) ∈ R
+

(m) denote the level of the water in canal reach i, and let

the surface of reach i be ci ∈ R
+ (m2). It takes some time

for a change in the inflow of reach i to result in a change of

the water level at the downstream end of the reach. Let this

delay be kd,i ∈ N
+ control cycles for reach i.

Using the variables defined above, the model describing

how the level of the water in the canal reach changes from

one control cycle k to the next control cycle k + 1 is given

by:

hi(k + 1) = hi(k) +
Tc

ci
qin,i(k − kd,i)−

Tc

ci
qout,i(k)

+
Tc

ci
qext,in,i(k)−

Tc

ci
qext,out,i(k). (6)

Canal reaches are connected to one another. When two

canal reaches are connected to each other, the inflow of one

canal reach is equal to the outflow of the other. Hence, for

neighboring reaches i and j this interconnection is given by

qout,i(k) = qin,j(k). (7)

In the state-space form (1)–(2) the dynamics of canal reach

i are conveniently written down by defining

xi(k) =











hi(k)
qin,i(k − kd,i)

...

qin,i(k − 1)











di(k) =

[

qext,in,i(k)
qext,out,i(k)

]

ui(k) = qin,i(k) vi(k) = qout,i(k) yi(k) = xi(k)
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Ci =
[

1 0 · · · 0
]

D1,i = 0 D2,i =
[

0 0
]

D3,i = 0,

and

win,jdowni(k) = qout,i(k) wout,jupi(k) = qin,i(k),

where jup and jdown are the index of the upstream and

downstream canal reach, respectively.

D. Available information

There are n controllers, and each controller i is responsible

for canal reach i. Controller i can measure the water level

in its canal reach, can adjust the set-point for the flow

controller at its upstream gate, and can communicate with

the controllers of the canal reaches immediately upstream

and downstream of the canal reach. In addition, controller

i can obtain the expected water offtakes and rainfall with

respect to its canal reach.

The actions that are optimal for each of the controllers

depend on one another, since if one controller decides to

increase its inflow, the water level in the upstream reach

will decrease and therefore influences the decision making

process of the upstream controller.

E. Control objectives

The set-points determined by the controllers and provided

to the local flow controllers of the undershot gates should be

chosen in such a way that

1) the deviations of water levels hi from provided set-

points href,i ∈ R
+, for i ∈ {1, . . . , n} are minimized;

2) the changes in the water levels hi from one control

cycle to the next are minimized to encourage smooth

water level changes;

3) the changes in the set-points ui provided to the local

flow controllers are minimized to reduce equipment

wear.

After defining the deviation in the water level hdev,i(k) ∈ R

as hdev,i(k) = hi(k) − href,i, the objective function Jlocal,i

can be written as

Jlocal,i(·) =
N−1
∑

l=0

ph,i (hdev,i(k + 1 + l))
2

+

N−1
∑

l=0

p∆h,i (hdev,i(k + 1 + l)− hdev,i(k + l))
2

+

N−1
∑

l=0

pu,i (ui(k + l)− ui(k − 1 + l))
2

where for controller i, ph,i ∈ R
+ is the quadratic cost on

the water level deviation, p∆h,i ∈ R
+ is the quadratic cost

on a change in the water level deviation, and pu,i ∈ R
+ is

the quadratic cost on a change in the set-point provided to

the local flow controller.

IV. SIMULATION

In this section we describe a simulation result to illustrate

the performance of the controllers discussed in this paper.

We have implemented the model of the benchmark irrigation

canal consisting of 7 canal reaches in Matlab v7.33. For

3See http://www.mathworks.com/.



TABLE I

VALUES OF THE PARAMETERS OF THE MODEL, TAKEN FROM [12].

i 1 2 3 4 5 6 7

kd,i (steps) 1 3 1 1 9 3 5

ci (m2) 397 653 503 1530 1614 2000 1241
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Fig. 4. Evolution for four representative canal reaches of (a) set-points
and (b) deviation of the water levels from reference values.

solving the optimization problems at each control sample we

use the ILOG CPLEX v10.0 quadratic programming solver

through the Tomlab v5.7 interface [14] to Matlab.

We compare the performance of the distributed MPC

scheme with a hypothetical centralized scheme, i.e., we com-

pare the performance of a control configuration of Fig. 3(c)

with a corresponding control configuration of Fig. 3(b).

A. Scenario

The parameters used for the model of the irrigation canal

are shown in Table I. The time Tc between two consecutive

control cycles is 240 s. The controllers use as parameters

N = 31, γc = 1, γǫ,term = 1.10−4. A prediction horizon

length of 31 is chosen to take into account the total delay

present in the irrigation canal [12]. The cost coefficients that

the controllers use are chosen as ph,i = 10, p∆h,i = 1,

pu,i = 0.01, for i ∈ {1, . . . , n}.

As scenario we consider a sudden increase in the water

offtake of canal reach 3 at k = 30 of 0.1m3/s.

B. Results

Fig. 4(a) shows the changes in the set-points decided upon

by the controllers. Fig. 4(b) shows the closed-loop evolution

of the deviations of the water levels from the reference

values. It can be seen that the inflow of canal reach 1 is

increased right before the additional offtake increase takes

place to prevent having a too low water level after the

additional offtake. It can also be observed that the deviations

of the water levels after the offtake increase are minimal due

to the changes in the set-points. We observe that after about

25 control cycles the set-points settle at a constant value,

while the deviations of the water levels from the references

are minimal, and that thus the controllers have performed

their tasks adequately.

The costs computed over the full simulation using the

distributed MPC scheme are 1832.10−7. A centralized MPC

controller based on the same objectives obtains costs over the

full simulation of 1831.10−7. This difference in performance

is negligible, and hence, in this case in which the as-

sumptions made are valid, indeed, the distributed controllers

have achieved a performance comparable to the performance

obtained by a centralized MPC controller.

V. CONCLUSION AND FUTURE RESEARCH

In this paper we have considered model predictive con-

trol (MPC) for distributed control of water networks. In

particular, we have discussed the use of a serial, iteration-

based, distributed MPC scheme for the control of irrigation

canals. We have illustrated the potential of the approach in

a simulation study on a 7-reach irrigation canal.

Future work consists of further assessing the performance

of the proposed scheme, extending the system model to

include constraints on the minimal and maximal flow pos-

sible through undershot and overshot gates, assessing the

performance of the distributed MPC scheme using linear

prediction models on a nonlinear simulation model of the

canal, and, based on this assessment, further improving the

system model if necessary.
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